Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T10:21:22.968Z Has data issue: false hasContentIssue false

8 - The space advantage for measuring dark energy with Type Ia supernovae

Published online by Cambridge University Press:  05 July 2014

Alex Kim
Affiliation:
Lawrence Berkeley National Laboratory
Pilar Ruiz-Lapuente
Affiliation:
Universitat de Barcelona
Get access

Summary

Introduction

The observed accelerated expansion of the universe (Riess et al., 1998; Perlmutter et al., 1999) is in conflict with longstanding expectations of cosmology. The dynamics of the universe is not dominated by the self-attraction of its contents as expected from “normal” gravity: in that case the rate of expansion would have been decelerating. In response to the observations, a slew of theories have been proposed to describe the repulsive force responsible for the acceleration. One possibility is that most of the energy content in the universe has, unexpectedly, a negative equation of state. Alternatively, there may be a problem with our standard conception of gravity: in the dimensionality of space, the existence of a geometric cosmological constant, or a breakdown of general relativity. The source of the observed accelerated expansion, whatever its underlying cause, is commonly referred to as “dark energy”.

The universe's expansion history is charted using brightness and redshift measurements of distant Type Ia supernovae (SNe Ia), which serve as standard candles. The bulk of the data used to discover the accelerating universe and provide the first coarse measurements of the dark energy parameters was obtained from ground-based observatories. As interest now shifts toward identifying the physics responsible for the acceleration, more distant supernovae and more accurate and precise distances as inferred from light curves and spectra are required. The stability of a space-based platform allows for an experiment that accurately and precisely maps the expansion history and probes dark energy models.

Type
Chapter
Information
Dark Energy
Observational and Theoretical Approaches
, pp. 215 - 245
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldering, G., et al. (2004). [astro-ph/0405232].
Aldering, G., et al. (2006). Astrophys. J. 650, 510.CrossRef
Aldering, G., Kim, A. G., Kowalski, M., Linder, E. V., and Perlmutter, S. (2007). Astropart. Phys. 27, 213.CrossRef
Arnett, W. D. (1969). Astrophys. Space Sci. 5, 180.CrossRef
Arnett, W. D. (1982). Astrophys. J. 253, 785.CrossRef
Astier, P., et al. (2006). Astron. Astrophys. 447, 31.CrossRef
Bebek, C. J., et al. (2004). SPIE Conf. SSer. 5167, 50.
Benetti, S., et al. (2005). Astrophys. J. 623, 1011.CrossRef
Benford, D. J., and Lauer, T. R. (2006). SPIEConf. Ser. 6265.
Blondin, S., and Tonry, J. L. (2007). Astrophys. J. 666, 1024.CrossRef
Bohlin, R. C. (2007). Astron. Soc. Pacif. Conf. Ser. 364, 315.
Bongard, S., Baron, E., Smajda, G., Branch, D., and Hauschildt, P. H. (2006). Astrophys. J. 647, 513.CrossRef
Brown, M. G., et al. (2006). SPIE Conf. Ser. 6265.
Burstein, D., and Heiles, C. (1982). Astron. J. 87, 1165.CrossRef
Caldwell, R. R., and Linder, E. V. (2005). Phys. Rev. Lett. 95, 141301.CrossRef
Cardelli, J. A., Clayton, G. C., and Mathis, J. S. (1989). Astrophys. J. 345, 245.CrossRef
Clocchiatti, A., et al. (2006). Astrophys. J. 642, 1.CrossRef
Conley, A., et al. (2008). Astrophys. J. 681, 482.CrossRef
Copin, Y., et al. (2006). New Astron. Rev. 50, 436.CrossRef
Cousins, A.W. (1976). Mon. Not. R. Astron. Soc. 81, 25.
Crotts, A., et al. (2005). [astro-ph/0507043].
Daly, R. A., and Djorgovski, S. G. (2004). Astrophys. J. 612, 652.CrossRef
Deustua, S. (2007). Astron. Soc. Pacif. Conf. Ser. 364, 355.
Filippenko, A. V., Li, W. D., Treffers, R. R., and Modjaz, M. (2001). Astron. Soc. Pacif. Conf. Ser. 183, 121.
Fitzpatrick, E. L., and Massa, D. (2007). Astrophys. J. 663, 320.CrossRef
Freedman, W. L., et al. (2001). Astrophys. J. 553, 47.CrossRef
Garnavich, P. M., et al. (1998). Astrophys. J. 493, L53.CrossRef
Goobar, A., and Perlmutter, S. (1995). Astrophys. J. 450, 14.CrossRef
Gunnarsson, C., Dahlén, T., Goobar, A., Jönsson, J., and Mörtsell, E. (2006). Astrophys. J. 640, 417.CrossRef
Guy, J., et al. (2007). Astron. Astrophys. 466, 11.CrossRef
Hamuy, M., et al. (1996a). Astron. J. 112, 2408.CrossRef
Hamuy, M., et al. (1996b). Astron. J. 112, 2438.CrossRef
Hamuy, M., et al. (2003). Nature (London) 424, 651.CrossRef
Hayes, D. S. (1985). In Calibration of Fundamental Stellar Quantities,D.S., Hayes, L. E., Pasinetti, and A.G.D., Philip, Eds., Dordrecht: D. Reidel Publishing Co., p. 225.CrossRefGoogle Scholar
Höflich, P., Gerardy, C., Linder, E., et al. (2003). In Stellar Candles for the Extragalactic Distance Scale,D., Alloin and W., Gieren, Eds., Berlin: Springer-Verlag, p. 203.CrossRefGoogle Scholar
Holland, S. E., Groom, D. E., Palaio, N. P., Stover, R. J., and Wei, M. (2003). IEEE Trans. Elec. Dev. 50, 225.CrossRef
Holz, D. E. (1998). Astrophys. J. 506, L1.CrossRef
Holz, D. E., and Liender, E. V. (2005). Astrophys. J. 631, 678.CrossRef
Howell, D. A., et al. (2005). Astrophys. J. 634, 1190.CrossRef
Hoyle, F., and Fowler, W. A. (1960). Astrophys. J. 132, 565.CrossRef
Hsiao, E. Y., et al. (2007). Astrophys. J. 663, 1187.CrossRef
James, J. B., Davis, T. M., Schmidt, B. P., and Kim, A. G. (2006). Mon. Not. R. Astron. Soc. 370, 933.CrossRef
Jha, S. (2002). Harvard University D. Phil. thesis.
Jha, S., Riess, A. G., and Kirshner, R. P. (2007). Astrophys. J. 659, 122.CrossRef
Johnson, H. L. and Morgan, W.W. (1953). Astrophys. J. 117, 313.CrossRef
Jönsson, J., Dahlén, T., Goobar, A., et al. (2006). Astrophys. J. 639, 991.CrossRef
Kaiser, M. E., Kruk, J. W., McCandliss, S. R., et al. (2007). Astron. Soc. Pacif. Conf. Ser. 364, 361.
Kasen, D. (2006). Astrophys. J. 649, 939.CrossRef
Keller, S. C., et al. (2007). Publ. Astron. Soc. Austral. 24, 1.CrossRef
Khokhlov, A. M. (1991). Astron. Astrophys. 245, 114.
Kim, A. G. and Miquel, R. (2006). Astropart. Phys. 24, 451.CrossRef
Kim, A. G. and Miquel, R. (2007). Astropart. Phys. 28, 448.CrossRef
Kim, A., Goobar, A., and Perlmutter, S. (1996). Publ. Astron. Soc. Pacif. 108, 190.CrossRef
Kim, A. G., Linder, E. V., Miquel, R., and Mostek, N. (2004). Mon. Not. R. Astron. Soc. 347, 909.CrossRef
Knop, R. A., et al. (2003). Astrophys. J. 598, 102.CrossRef
Krisciunas, K., Phillips, M. M., and Suntzeff, N. B. (2004a). Astrophys. J. 602, L81.CrossRef
Krisciunas, K., et al. (2004b). Astron. J. 128, 3034.CrossRef
Leonard, D. C., Li, W., Filippenko, A. V., Foley, R. J., and Chornock, R. (2005). Astrophys. J. 632, 450.CrossRef
Linder, E. V. (2006). Phys. Rev. D 74, 103518.CrossRef
Linder, E. V. (2007). J. Phys. A 40, 6697.CrossRef
Nobili, S., and Goobar, A. (2008). Astron. Astrophys. 487, 19.CrossRef
Nomoto, K., Sugimoto, D., and Neo, S. (1976). Astrophys. Space Sci. 39, L37.CrossRef
Norgaard-Nielsen, H. U., Hansen, L., Jorgensen, H. E., Aragon-Salamanca, A., and Ellis, R. S. (1989). Nature (London) 339, 523.CrossRef
Nugent, P., Phillips, M., Baron, E., Branch, D., and Hauschildt, P. (1995). Astrophys. J. 455, L147.CrossRef
Nugent, P., Kim, A., and Perlmutter, S. (2002). Publ. Astron. Soc. Pacif. 114, 803.CrossRef
Padmanabhan, N., et al. (2008). Astrophys. J. 674, 1217.CrossRef
Perlmutter, S., et al. (1995). Astrophys. J. 440, L41.CrossRef
Perlmutter, S., et al. (1997). Astrophys. J. 483, 565.CrossRef
Perlmutter, S., et al. (1998). Nature (London) 391, 51.CrossRef
Perlmutter, S., et al. (1999). Astrophys. J. 517, 565.CrossRef
Phillips, M. M., Lira, P., Suntzeff, N. B., Schommer, R. A., Hamuy, M., and Maza, J. (1999). Astron. J. 118, 1766.CrossRef
Plewa, T., Calder, A. C., and Lamb, D. Q. (2004). Astrophys. J. 612, L37.CrossRef
Prieto, J. L., et al. (2007). [arXiv:0706.4088].
Rapetti, D., Allen, S. W., Amin, M. A., and Blandford, R. D. (2007). Mon. Not. R. Astron. Soc. 375, 1510.CrossRef
Riess, A. G., Press, W. H., and Kirshner, R. P. (1996). Astrophys. J. 473, 88.CrossRef
Riess, A. G., et al. (1998). Astron. J. 116, 1009.CrossRef
Riess, A. G., et al. (1999). Astrophys. J. 117, 707.
Riess, A. G., et al. (2001). Astrophys. J. 560, 49.CrossRef
Riess, A. G., et al. (2004). Astrophys. J. 607, 665.CrossRef
Riess, A. G., et al. (2007). Astrophys. J. 659, 98.CrossRef
Schlegel, D. J., Finkbeiner, D. P., and Davis, M. (1998). Astrophys. J. 500, 525.CrossRef
Smith, J. A., et al. (2002). Astron. J. 123, 2121.CrossRef
Stubbs, C. W., and Tonry, J. L. (2006). Astrophys. J. 646, 1436.CrossRef
Sweeney, D.W. (2006). SPIE Conf. Ser. 6267.
Tripp, R., and Branch, D. (1999). Astrophys. J. 525, 209.CrossRef
Wang, L., Baade, D., and Patat, F. (2007). Science 315, 212.CrossRef
Wang, L., Goldhaber, G., Aldering, G., and Perlmutter, S. (2003). Astrophys. J. 590, 944.CrossRef
Wang, Y., and Tegmark, M. (2005). Phys.Rev. D 71, 103513.CrossRef
Weller, J., and Albrecht, A. (2002). Phys. Rev. D 65, 103512.CrossRef
Wood-Vasey, W. M. (2002). IAU Circ. 8019, 2.
Wood-Vasey, W. M., et al. (2007a). Astrophys. J. 666, 694.CrossRef
Wood-Vasey, W. M., et al. (2007b). [arXiv:0711.2068].

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×