Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-18T23:16:39.710Z Has data issue: false hasContentIssue false

3 - Event-Related Potential (ERP) Measures in Auditory Development Research

from SECTION ONE - CENTRAL SYSTEM: THEORY, METHODS, AND MEASURES

Published online by Cambridge University Press:  27 July 2009

Laurel J. Trainor
Affiliation:
Professor of Psychology, Neuroscience and Behavior McMaster University
Louis A. Schmidt
Affiliation:
McMaster University, Ontario
Sidney J Segalowitz
Affiliation:
Brock University, Ontario
Get access

Summary

INTRODUCTION

Between birth and 2 years of age, the human cortex undergoes tremendous development, with region-specific and layer-specific patterns of synaptic maturation, overgrowth, and pruning that are undoubtedly influenced by environmental input and complex patterns of neurotransmitter expression (e.g., Huttenlocher & Dabholkar, 1997; Moore & Guan, 2001). During this period, the newborn, who is totally dependent on caregivers for survival, turns into a walking, talking, thinking, self-aware being. These anatomical and functional changes across development should be reflected in vivo in the electrical brain activity that can be measured at the scalp.

In practice, collecting data from infants can be rather difficult. While studies that condition a behavioral response, such as sucking or looking, are probably the most advanced of the techniques available, there remain considerable problems in the type and amount of data that can be collected from preverbal infants with short attention spans and immature motor response systems, especially in the first months after birth. Postmortem studies of brain development can also be problematic because death in infancy is usually associated with abnormalities that may invalidate generalizations to normal development. Many of the imaging techniques available for the study of adult brain responses are difficult to apply to human infants. For example, fMRI and MEG require that the subject remain very still throughout the testing period. It is thus possible to test sleeping infants, but rather difficult to test awake infants (Anderson et al., 2001; Hattori et al., 2001; Souweidane et al., 1999).

Type
Chapter
Information
Developmental Psychophysiology
Theory, Systems, and Methods
, pp. 69 - 102
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alain, C., Achim, A., & Woods, D. L. (1999). Separate memory-related processing for auditory frequency and patterns. Psychophysiology, 36, 737–744.CrossRefGoogle ScholarPubMed
Albrecht, R., Suchodoletz, W., & Uwer, R. (2000). The development of auditory evoked dipole source activity from childhood to adulthood. Clinical Neurophysiology, 111, 2268–2276.CrossRefGoogle ScholarPubMed
Alho, K., Sainio, K., Sajaniemi, N., Reinikainen, K., & Näätänen, R. (1990). Event-related brain potentials of human newborns to pitch change of an acoustic stimulus. Electroencephalography and Clinical Neurophysiolology, 77, 151–155.CrossRefGoogle ScholarPubMed
Alho, K., Tervaniemi, M., Huotilainen, M., Lavikainen, J., Tiitinen, H., Ilmoniemi, R. J., Knuutila, J., & Näätänen, R.et al. (1996). Processing of complex sounds in the human auditory cortex as revealed by magnetic brain responses. Psychophysiology, 33, 369–375.CrossRefGoogle ScholarPubMed
Anderson, A. W., Marois, R., Colson, E. R., Peterson, B. S., Duncan, C. C., Ehrenkranz, R. A., Schneider, M. P. H., Gore, J. C., & Ment, L. R.., et al. (2001). Neonatal auditory activation detected by functional magnetic resonance imaging. Magnetic Resonance Imaging, 19, 1–5.CrossRefGoogle ScholarPubMed
Bosnyak, D. J., Eaton, R. A., & Roberts, L. E. (2004). Distributed auditory cortical activations are modified when nonmusicians are trained at pitch discrimination with 40-Hz amplitude modulated tones. Cerebral Cortex, 14, 1088–1099.CrossRefGoogle Scholar
Čeponiené, R., Kushnerenko, E., Fellman, V., Renlund, M., Suominen, K., & Näätänen, R. (2002a). Event-related potential features indexing central auditory discrimination by newborns. Brain Research: Cognitive Brain Research, 13, 101–113.Google Scholar
Čeponiené, R., Rinne, T., & Näätänen, R. (2002b). Maturation of cortical sound processing as indexed by event-related potentials. Clinical Neurophysiology, 113, 870–882.CrossRefGoogle Scholar
Cheour, M., Alho, K., Sainio, K., Reinikainen, K., Renlund, M., Aaltonen, O., Eerola, O., & Näätänen, R.., et al. (1997). The mismatch negativity to changes in speech sounds at the age of three months. Developmental Neuropsychology, 13, 167–174.CrossRefGoogle Scholar
Cheour, M., Čeponiené, R., Hukki, J., Haapanen, M. -L., Näätänen, R., & Alho, K. (1999). Dysfunction in neonates with cleft palate revealed by the mismatch negativity. Electroencephalography and Clinical Neurophysiology, 110, 324–328.Google ScholarPubMed
Cheour, M., Čeponiené, R., Lehtokoski, A., Luuk, A., Allik, J., Alho, K., & Näätänen, R., et al. (1998). Development of language-specific phoneme representations in the infant brain. Nature Neuroscience, 1, 351–353.CrossRefGoogle ScholarPubMed
Cheour, M., Leppänen, P. H., & Kraus, N. (2000). Mismatch negativity (MMN) as a tool for investigating auditory discrimination and sensory memory in infants and children. Clinical Neurophysiology, 111, 4–16.CrossRefGoogle ScholarPubMed
Cheour-Luhtanen, M., Alho, K., Kujala, T., Sainio, K., Reinikainen, K., Renlund, M., Aaltonen, O., Eerola, O., & Näätänen, R., et al. (1995). Mismatch negativity indicates vowel discrimination in newborns. Hearing Research, 82, 53–58.CrossRefGoogle ScholarPubMed
Connolly, J. F., D'Arcy, R. C., Newman, L., & Kemps, R. (2000). The application of cognitive event-related brain potentials (ERPs) in language-impaired individuals: Review and case studies. International Journal of Psychophysiology, 38, 55–70.CrossRefGoogle ScholarPubMed
Creutzfeldt, O., & Houchin, J. (1974). Neuronal basis of EEG waves. In Remond, A., (Ed.), Handbook of electroencephalography and clinical neurophysiology (pp. 5–55). Amsterdam: Elsevier.Google Scholar
Dehaene-Lambertz, G. (2000). Cerebral specialization for speech and non-speech stimuli in infants. Journal of Cognitive Neuroscience, 12, 449–460.CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G., & Baillet, S. (1998). A phonological representation in the infant brain. Neuroreport, 9, 1885–1888.CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G., & Dehaene, S. (1994). Speed and cerebral correlates of syllable discrimination in infants. Nature, 370, 292–295.CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G., & Pena, M. (2001). Electrophysiological evidence for automatic phonetic processing in neonates. Neuroreport, 12, 3155–3158.CrossRefGoogle ScholarPubMed
Dien, J. (1998). Issues in the application of the average reference: Review, critiques, and recommendations. Behavior Research Methods, Instruments and Computers, 30, 34–43.CrossRefGoogle Scholar
Eggermont, J. J., & Ponton, C. W. (2002). The neurophysiology of auditory perception: From single units to evoked potentials. Audiology and Neuro-Otology, 7, 71–99.CrossRefGoogle ScholarPubMed
Eggermont, J. J., & Ponton, C. W. (2003). Auditory-evoked potential studies of cortical maturation in normal hearing and implanted children: Correlations with changes in structure and speech perception. Acta Otolaryngologica, 123, 249–252.CrossRefGoogle ScholarPubMed
Escera, C., Alho, K., Schröger, E., & Winkler, I. (2000). Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiology and Neuro-Otology, 5, 151–166.CrossRefGoogle ScholarPubMed
Escera, C., Alho, K., Winkler, I., & Näätänen, R. (1998). Neural mechanisms of involuntary attention to acoustic novelty and change. Journal of Cognitive Neuroscience, 10, 590–604.CrossRefGoogle Scholar
Fishman, Y. I., Reser, D. H., Arezzo, J. C., & Steinschneider, M. (1998). Pitch vs. spectral encoding of harmonic complex tones in primary auditory cortex of the awake monkey. Brain Research, 786, 18–30.CrossRefGoogle ScholarPubMed
Fishman, Y. I., Reser, D. H., Arezzo, J. C., & Steinschneider, M. (2000). Complex tone processing in primary auditory cortex of the awake monkey. II. Pitch vs. critical band representation. Journal of the Acoustical Society of America, 108, 247–262.CrossRefGoogle Scholar
Flemming, L., Wang, Y., Caprihan, A., Eiselt, M., Haueisen, J., & Okada, Y. (2005). Evaluation of the distortion of EEG signals caused by a hole in the skull mimicking the fontanel in the skull of human neonates. Clinical Neurophysiology, 116, 1141–1152.CrossRefGoogle ScholarPubMed
Friederici, A. D., Friedrich, M., & Weber, C. (2002). Neural manifestation of cognitive and precognitive mismatch detection in early infancy. Neuroreport, 13, 1251–1254.CrossRefGoogle ScholarPubMed
Friedrich, M., Weber, C., & Friederici, A. D. (2004). Electrophysiological evidence for delayed mismatch response in infants at-risk for specific language impairment. Psychophysiology, 41, 772–782.CrossRefGoogle ScholarPubMed
Gomes, H., Dunn, M., Ritter, W., Kurtzberg, D., Brattson, A., Kreuzer, J. A., & Vaughan, H. G. Jr., et al. (2001). Spatiotemporal maturation of the central and lateral N1 components to tones. Brain Research Developmental Brain Research, 129, 147–155.CrossRefGoogle ScholarPubMed
Hattori, H., Yamano, T., Tsutada, T., Tsuyuguchi, N., Kawawaki, H., & Shimogawara, M. (2001). Magnetoencephalography in the detection of focal lesions in West syndrome. Brain and Development, 23, 528–532.CrossRefGoogle ScholarPubMed
He, C., Hotson, L., & Trainor, L. J. (2007). Mismatch responses to pitch changes in early infancy. Journal of Cognitive Neuroscience, 19, 878–892.CrossRefGoogle ScholarPubMed
Hillyard, S. A., & Kutas, M. (1983). Electrophysiology of cognitive processing. Annual Review of Psychology, 34, 33–61.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387, 167–178.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Hyde, M. (1997). The N1 response and its applications. Audiology and Neuro-Otology, 2, 281–307.CrossRefGoogle ScholarPubMed
Javitt, D. C., Steinschneider, M., Schroeder, C. E., Vaughan, H. G. Jr., & Arezzo, J. C. (1994). Intracortical mechanisms of mismatch negativity (MMN) generation. Brain Research, 667, 192–200.CrossRefGoogle ScholarPubMed
Johnstone, S. J., Barry, R. J., Anderson, J. W., & Coyle, S. F. (1996). Age-related changes in child and adolescent event-related potential component morphology, amplitude and latency to standard and target stimuli in an auditory oddball task. International Journal of Psychophysiology, 24, 223–238.CrossRefGoogle Scholar
Konig, N., & Marty, R. (1974). On function and structure of deep layers of immature auditory cortex. Journal of Physiology, 68, 145–155.Google ScholarPubMed
Konig, N., Pujol, R., & Marty, R. (1972). A lamina study of evoked potentials and unit responses in the auditory cortex of the postnatal cat. Brain Research, 36, 469–493.CrossRefGoogle Scholar
Kral, A., Hartmann, R., Tillein, J., Heid, S., & Klinke, R. (2000). Congenital auditory deprivation reduces synaptic activity within the auditory cortex in a layer-specific manner. Cerebral Cortex, 10, 714–726.CrossRefGoogle Scholar
Kraus, N., McGee, T., Carrell, T., Sharma, A., Micco, A., & Nicol, T. (1993). Speech-evoked cortical potentials in children. Journal of the American Academy of Audiology, 4, 238–248.Google ScholarPubMed
Kurtzberg, D., Hilpert, P. L., Kreuzer, J. A., & Vaughan, H. G. Jr. (1984). Differential maturation of cortical auditory evoked potentials to speech sounds in normal fullterm and very low-birthweight infants. Developmental Medicine and Child Neurology, 26, 466–475.CrossRefGoogle ScholarPubMed
Kushnerenko, E., Čeponiené, R., Balan, P., Fellman, V., Huotilainen, M., & Näätänen, R. (2002a). Maturation of the auditory event-related potentials during the first year of life. Neuroreport, 13, 47–51.CrossRefGoogle Scholar
Kushnerenko, E., Čeponiené, R., Balan, P., Fellman, V., & Näätänen, R. (2002b). Maturation of the auditory change detection response in infants: A longitudinal ERP study. Neuroreport, 13, 1843–1848.CrossRefGoogle Scholar
Kushnerenko, E., Čeponiené, R., Fellman, V., Huotilainen, M., & Winkler, I. (2001a). Event-related potential correlates of sound duration: Similar pattern from birth to adulthood. Neuroreport, 12, 3777–3781.CrossRefGoogle Scholar
Kushnerenko, E., Cheour, M., Čeponiené, R., Fellman, V., Renlund, M., Soininen, K., Alku, P., Koskinen, M., Sainio, K., & Näätänen, R., et al. (2001b). Central auditory processing of durational changes in complex speech patterns by newborns: An event-related brain potential study. Developmental Neuropsychology, 19, 83–97.CrossRefGoogle Scholar
Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207, 203–205.CrossRefGoogle ScholarPubMed
Leppänen, P. H. T., Eklund, K. M., & Lyytinen, H. (1997). Event-related brain potentials to change in rapidly presented acoustic stimuli in newborns. Developmental Neuropsychology, 13, 175–204.CrossRefGoogle Scholar
Leppänen, P. H., Guttorm, T. K., Pihko, E., Takkinnen, S., & Lyytinen, H. (2004). Maturational effects on newborn ERPs measured in the mismatch negativity paradigm. Experimental Neurology, 190, 91–101.CrossRefGoogle ScholarPubMed
Leppänen, P. H., & Lyytinen, H. (1997). Auditory event-related potentials in the study of developmental language-related disorders. Audiology and Neuro-Otology, 2, 308–340.CrossRefGoogle Scholar
Leppänen, P. H., Pihko, E., Eklund, K. M., & Lyytinen, H. (1999). Cortical responses of infants with and without a genetic risk for dyslexia: II. Group effects. Neuroreport, 10, 969–973.CrossRefGoogle ScholarPubMed
Liégeois-Chauvel, C., Musolini, A., Badier, J. M., Marquis, P., & Chauvel, P. (1994). Evoked potentials recorded from the auditory cortex in man: Evaluation and topography of the middle latency components. Electroencephalography and Clinical Neurophysiology, 92, 204–214.CrossRefGoogle ScholarPubMed
McArthur, G., & Bishop, D. (2002). Event-related potentials reflect individual differences in age-invariant auditory skills. Neuroreport, 13, 1079–1082.CrossRefGoogle ScholarPubMed
Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: Investigation of evoked potentials and EEG phenomena. Physiology Review, 65, 37–100.CrossRefGoogle ScholarPubMed
Mitzdorf, U. (1994). Properties of cortical generators of event-related potentials. Pharmacopsychiatry, 27, 49–52.CrossRefGoogle ScholarPubMed
Miyata, H., Kawaguchi, S., Samejima, A., & Yamamoto, T. (1982). Postnatal development of evoked responses in the auditory cortex of the cat. Japanese Journal of Physiology, 32, 421–429.CrossRefGoogle ScholarPubMed
Molfese, D. L. (2000). Predicting dyslexia at 8 years of age using neonatal brain responses. Brain and Language, 72, 238–245.CrossRefGoogle ScholarPubMed
Molfese, D. L., & Molfese, V. J. (1985). Electrophysiological indexes of auditory-discrimination in newborn infants: The bases for predicting later language development. Infant Behavior and Development, 8, 197–211.CrossRefGoogle Scholar
Molfese, D. L., & Molfese, V. J. (1997). Discrimination of language skills at five years of age using event-related potentials recorded at birth. Developmental Neuropsychology, 13, 135–156.CrossRefGoogle Scholar
Moore, J. K., & Guan, Y. L. (2001). Cytoarchitectural and axonal maturation in human auditory cortex. Journal of the Association for Research in Otolaryngology, 2, 297–311.CrossRefGoogle ScholarPubMed
Morr, M. L., Shafer, V. L., Kreuzer, J. A., & Kurtzberg, D. (2002). Maturation of mismatch negativity in typically developing infants and preschool children. Ear and Hearing, 23, 118–136.CrossRefGoogle ScholarPubMed
Muir, D. W., Clifton, R. K., & Clarkson, M. G. (1989). The development of a human auditory localization response: A U-shaped function. Canadian Journal of Psychology, 43, 199–216.CrossRefGoogle ScholarPubMed
Muir, D., & Field, J. (1979). Newborn infants orient to sounds. Child Development, 50, 431–436.CrossRefGoogle ScholarPubMed
Näätänen, R. (1992). Attention and brain function. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology, 24, 375–425.CrossRefGoogle ScholarPubMed
Näätänen, R., Tervaniemi, M., Sussman, E., Paavilainen, P., & Winkler, I. (2001). ‘Primitive intelligence’ in the auditory cortex. Trends in Neuroscience, 24, 283–288.CrossRefGoogle Scholar
Näätänen, R., & Winkler, I. (1999). The concept of auditory stimulus representation in cognitive neuroscience. Psychological Bulletin, 125, 826–859.CrossRefGoogle ScholarPubMed
Neijenhuis, K., Snik, A., Priester, G., Kordenoordt, S., & Broek, P. (2002). Age effects and normative data on a Dutch test battery for auditory processing disorders. International Journal of Audiology, 41, 334–346.CrossRefGoogle ScholarPubMed
Novak, G. P., Kurtzberg, D., Kreuzer, J. A., & Vaughan, H. G. Jr. (1989). Cortical responses to speech sounds and their formants in normal infants: Maturational sequence and spatiotemporal analysis. Electroencephalography and Clinical Neurophysiology, 73, 295–305.CrossRefGoogle ScholarPubMed
Pang, E. W., Edmonds, G. E., Desjardins, R., Khan, S. C., Trainor, L. J., & Taylor, M. J. (1998). Mismatch negativity to speech stimuli in 8-month-old infants and adults. International Journal of Psychophysiology, 29, 227–236.CrossRefGoogle ScholarPubMed
Pang, E. W., & Taylor, M. J. (2000). Tracking the development of the N1 from age 3 to adulthood: An examination of speech and non-speech stimuli. Clinical Neurophysiology, 111, 388–397.CrossRefGoogle ScholarPubMed
Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392, 811–814.CrossRefGoogle ScholarPubMed
Pantev, C., Roberts, L. E., Schulz, M., Engelien, A., & Ross, B. (2001). Timbre-specific enhancement of auditory cortical representations in musicians. Neuroreport, 12, 169–174.CrossRefGoogle ScholarPubMed
Picton, T. W., Alain, C., Otten, L., Ritter, W., & Achim, A. (2000). Mismatch negativity: Different water in the same river. Audiology and Neuro-Otology, 5, 111–139.CrossRefGoogle ScholarPubMed
Picton, T. W., Alain, C., Woods, D., John, M. S., Scherg, M., Valdes-Sosa, P., Bosch-Bayard, J., & Trujillo, N. J. et al. (1999). Intracerebral sources of human auditory-evoked potentials. Audiology and Neuro-Otology, 4, 64–79.CrossRefGoogle ScholarPubMed
Picton, T. W., Lins, O. G., & Scherg, M. (1995). The recording and analysis of event-related potentials. In Boller, F. & Grafman, J. (Eds.), Handbook of neuropsychology (Vol. 10, pp. 3–73). New York: Elsevier.Google Scholar
Pihko, E., Leppänen, P. H. T., Eklund, K. M., Cheour, M., Guttorm, T. K., & Lyytinen, H. (1999). Cortical responses of infants with and without a genetic risk for dyslexia: I. Age effects. Neuroreport, 10, 901–905.CrossRefGoogle ScholarPubMed
Pisoni, D. B., Lively, S. E., & Logan, J. S. (1994). Perceptual learning of nonnative speech contrasts: Implications for theories of speech perception. In Goodman, J. C. & Nusbaum, H. C. (Eds.), The development of speech perception: The transition from speech sounds to spoken words (pp. 121–166). Cambridge, MA: The MIT Press.Google Scholar
Ponton, C. W., & Eggermont, J. J. (2001). Of kittens and kids: Altered cortical maturation following profound deafness and cochlear implant use. Audiology and Neuro-Otology, 6, 363–380.CrossRefGoogle ScholarPubMed
Ponton, C. W., Eggermont, J. J., Don, M., Waring, M. D., Kwong, B., Cunningham, J., & Trautwein, P. et al. (2000). Maturation of the mismatch negativity: Effects of profound deafness and cochlear implant use. Audiology and Neuro-Otology, 5, 167–185.CrossRefGoogle ScholarPubMed
Ponton, C. W., Eggermont, J. J., Kwong, B., & Don, M. (2000). Maturation of human central auditory system activity: Evidence from multi-channel evoked potentials. Clinical Neurophysiology, 111, 220–236.CrossRefGoogle ScholarPubMed
Scherg, M. (1990). Fundamentals of dipole source potential analysis. In Grandori, F., Hoke, M., & Romani, G. L. (Eds.), Auditory evoked magnetic fields and electric potentials, advances in audiology (Vol. 5, pp. 40–69). Basel: Karger.Google Scholar
Scherg, M., & Cramon, D. (1986). Psychoacoustic and electrophysiologic correlates of central hearing disorders in man. European Archives of Psychiatry and Neurological Sciences, 236, 56–60.CrossRefGoogle ScholarPubMed
Schröger, E. (1998). Measurement and interpretation of the mismatch negativity. Behaviour Research Methods, Instruments and Computers, 30, 131–145.CrossRefGoogle Scholar
Segalowitz, S. J., & Berge, B. E. (1995). Functional asymmetries in infancy and early childhood: A review of electrophysiologic studies and their implications. In Davidson, R. J. & Hugdahl, K. (Eds.), Brain asymmetry (pp. 579–615). Cambridge: MIT Press.Google Scholar
Shahin, A., Bosnyak, D. J., Trainor, L. J., & Roberts, L. E. (2003). Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians. Journal of Neuroscience, 23, 5545–5552.CrossRefGoogle ScholarPubMed
Shahin, A., Roberts, L. E., & Trainor, L. J. (2004). Evidence for enhancement of auditory cortical development by musical experience. NeuroReport, 15, 1917–1921.CrossRefGoogle Scholar
Sharma, A., Kraus, N., McGee, T. J., & Nicol, T. G. (1997). Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. Electroencephalography and Clinical Neurophysiology, 104, 540–545.CrossRefGoogle ScholarPubMed
Sonnadara, R. R., Alain, C., & Trainor, L. J. (2006). Effects of spatial separation and stimulus probability on event-related potentials elicited by occasional changes in sound location. Brain Research, 1071, 175–185.CrossRefGoogle ScholarPubMed
Souweidane, M. M., Kim, K. H., McDowall, R., Ruge, M. I., Lis, E., Krol, G., & Hirsch, J. et al. (1999). Brain mapping in sedated infants and young children with passive-functional magnetic resonance imaging. Pediatric Neurosurgery, 30, 86–92.CrossRefGoogle ScholarPubMed
Squires, K. C., Squires, N. K., & Hillyard, S. A. (1975). Two varieties of long latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalography and Clinical Neurophysiology, 38, 387–401.CrossRefGoogle ScholarPubMed
Stapells, D. R., Galambos, R., Costello, J. A., & Makeig, S. (1988). Inconsistency of auditory middle latency and steady-state responses in infants. Electroencephalography and Clinical Neurophysiology, 71, 289–295.CrossRefGoogle ScholarPubMed
Steinschneider, M., & Dunn, M. (2002). Electrophysiology in developmental neuropsychology. In Segalowitz, S. J. and Rapin, I. (Eds.), Handbook of neuropsychology (Vol. 7, pp. 91–146). Amsterdam: Elsevier.Google Scholar
Takegata, R., Paavilainen, P., Näätänen, R., & Winkler, I. (1999). Independent processing of changes in auditory single features and feature conjunctions in humans as indexed by the mismatch negativity. Neuroscience Letters, 266, 109–112.CrossRefGoogle ScholarPubMed
Tharpe, A. M., & Ashmead, D. H. (2001). A longitudinal investigation of infant auditory sensitivity. American Journal of Audiology, 10, 104–112.CrossRefGoogle ScholarPubMed
Thomas, D. G., & Lykins, S. M. (1995). Event-related potential measures of 24-hour retention in 5-month-old infants. Developmental Psychology, 31, 946–957.CrossRefGoogle Scholar
Thomas, D. G., Whitaker, E., Crow, C. D., Little, V., Love, L., Lykins, M. S., & Letterman, M. et al. (1997). Event-related potential variability as a measure of information store in infant development. Developmental Neuropsychology, 13, 205–232.CrossRefGoogle Scholar
Trainor, L. J., McDonald, K. L., & Alain, C. (2002). Automatic and controlled processing of melodic contour and interval information measured by electrical brain activity. Journal of Cognitive Neuroscience, 14, 430–442.CrossRefGoogle ScholarPubMed
Trainor, L., McFadden, M., Hodgson, L., Darragh, L., Barlow, J., Matsos, L., & Sonnadara, R. et al. (2003). Changes in auditory cortex and the development of mismatch negativity between 2 and 6 months of age. International Journal of Psychophysiology, 51, 5–15.CrossRefGoogle ScholarPubMed
Trainor, L. J., Samuel, S. S., Desjardins, R. N., & Sonnadara, R. R. (2001). Measuring temporal resolution in infants using mismatch negativity. Neuroreport, 12, 2443–2448.CrossRefGoogle ScholarPubMed
Trainor, L. J., Shahin, A., & Roberts, L. E. (2003). Effects of musical training on the auditory cortex in children. Annals of the New York Academy of Sciences, 999, 506–513.CrossRefGoogle ScholarPubMed
Tremblay, K., Kraus, N., McGee, T., Ponton, C., & Otis, B. (2001). Central auditory plasticity: Changes in the N1-P2 complex after speech-sound training. Ear and Hearing, 22, 79–90.CrossRefGoogle ScholarPubMed
Vaughan Jr., H. G., & Arezzo, J. C. (1988). The neural basis of event-related potentials. In Picton, T. W. (Ed.). Human event-related potentials (pp. 45–96). Amsterdam: Elsevier.Google Scholar
Vaughan, H. G. Jr., & Ritter, W. (1970). The sources of auditory evoked responses recorded from the human scalp. Electroencephalography and Clinical Neurophysiology, 28, 360–367.CrossRefGoogle ScholarPubMed
Werker, J. F., & Tees, R. C. (1984). Cross language speech perception: Evidence for perceptual reorganization during the 1st year of life. Infant Behavior and Development, 7, 49–63.CrossRefGoogle Scholar
Werner, L. A., & Marean, G. C. (1996). Human Auditory Development. Boulder, CO: Westview.Google Scholar
Woldorff, M., & Hillyard, S. (1991). Modulation of early auditory processing during selective listening to rapidly presented tones. Electroencephalography and Clinical Neurophysiology, 79, 170–191.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×