Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T02:18:54.781Z Has data issue: false hasContentIssue false

12 - Diatoms as indicators of environmental change in subarctic and alpine regions

from Part III - Diatoms as indicators in Arctic, Antarctic, and alpine lacustrine environments

Published online by Cambridge University Press:  05 June 2012

André F. Lotter
Affiliation:
Utrecht University
Reinhard Pienitz
Affiliation:
Université Laval
Roland Schmidt
Affiliation:
Institute for Limnology
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Subarctic and mountain regions are characterized by strong gradients that make their terrestrial and aquatic ecosystems very sensitive to environmental change. The terrestrial Arctic can be delimited by the northern tree line, the 10 °C July isotherm, or the southern extent of discontinuous permafrost which, in the eastern Canadian Arctic for example, currently extends to the southern end of Hudson Bay. In this chapter, we focus on the subarctic region, which, depending on local climates, roughly falls between 50° N and 70° N latitude and includes the transition from boreal forest (taiga) in the south to tundra landscapes in the north, whereas the chapter by Douglas and Smol (this volume) discusses diatom-based studies from the High Arctic. In mountain regions the same steep climatic and environmental gradients are present but over much shorter distances, with the timber line also representing the most prominent ecotone. It is characterized by the transition from closed forest to the most advanced solitary trees (i.e. timber line), to single tree islands (i.e. tree line), and eventually to open, unforested vegetation. This biological boundary can vary in width from tens of meters in mountain regions to many kilometers in the Subarctic. In northern Europe it is formed by deciduous trees such as Betula, Alnus, and Populus, whereas coniferous trees (e.g. Pinus, Picea, Larix, Juniperus) form the tree line in the European Alps, northern North America, and Eurasia.

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 231 - 248
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

,ACIA (Arctic Climate Impact Assessment) (2004). ACIA, Impacts of a Warming Arctic: Arctic Climate Impact Assessment. New York: Cambridge University Press.Google Scholar
Anderson, N. J. (2000). Diatoms, temperature and climatic change. European Journal of Phycology, 35, 307–14.Google Scholar
Arzet, K., Steinberg, C., Psenner, R., & Schulz, N. (1986). Diatom distribution and diatom inferred pH in the sediment of four alpine lakes. Hydrobiologia, 143, 247–54.CrossRefGoogle Scholar
Backman, A. L. & Cleve-Euler, A. (1922). Die fossile Diatomeenflora in Österbotten. Acta Forestalia Fennica, 22, 5–73.CrossRefGoogle Scholar
Baron, J. S., Nydick, K. R., Rueth, H. M., Lafrancois, B. M., & Wolfe, A. P. (2005). High elevation ecosystem responses to atmospheric deposition of nitrogen in the Colorado Rocky Mountains, USA. In Global Change and Mountain Regions. An Overview of Current Knowledge, ed. Huber, U. M., Bugmann, H. K. M., & Reasoner, M. A., Dordrecht: Springer, pp. 429–36.CrossRefGoogle Scholar
Battarbee, R. W. (1991). Palaeolimnology and climate change. In Evaluation of Climate Proxy Data in Relation to the European Holocene, ed. Frenzel, B., B. Gläser, Stuttgart: Fisher, pp. 149–57.Google Scholar
Battarbee, R. W., Grytnes, J. A., Thompson, R., et al. (2002a). Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. Journal of Paleolimnology, 28, 161–79.CrossRefGoogle Scholar
Battarbee, R. W., Thompson, R., Catalan, J., Grytnes, J. A., & Birks, H. J. B. (2002b). Climate variability and ecosystem dynamics of remote alpine and arctic lakes: the MOLAR project. Journal of Paleolimnology, 28, 1–6.CrossRefGoogle Scholar
Bigler, C., Grahn, E., Larocque, I., Jeziorski, A., & Hall, R. (2003). Holocene environmental change at Lake Njulla (999 m a.s.l.), northern Sweden: a comparison with four small nearby lakes along an altitudinal gradient. Journal of Paleolimnology, 29, 13–29.CrossRefGoogle Scholar
Bigler, C. & Hall, R. I. (2002). Diatoms as indicators of climatic and limnological change in Swedish Lapland: a 100-lake calibration set and its validation for paleoecological reconstructions. Journal of Paleolimnology, 27, 79–96.CrossRefGoogle Scholar
Bigler, C. & Hall, R. I. (2003). Diatoms as quantitative indicators of July temperature: a validation attempt at century-scale with meteorological data from northern Sweden. Palaeogeography, Palaeoclimatology, Palaeoecology, 189, 147–60.CrossRefGoogle Scholar
Bigler, C., Heiri, O., Krskova, R., Lotter, A. F., & Sturm, M. (2006). Distribution of diatoms, chironomids and cladocera in surface sediments of thirty mountain lakes in south-eastern Switzerland. Aquatic Sciences, 68, 154–71.CrossRefGoogle Scholar
Bigler, C., Larocque, I., Peglar, S. M., Birks, H. J. B., & Hall, R. I. (2002). Quantitative multiproxy assessment of long-term patterns of Holocene environmental change from a small lake near Abisko, northern Sweden. The Holocene, 12, 481–96.CrossRefGoogle Scholar
Birks, H. H. & Birks, H. J. B. (2006). Multi-proxy studies in palaeolimnology. Vegetation History and Archaeobotany, 15, 235–51.CrossRefGoogle Scholar
Birks, H. J. B. (1995). Quantitative palaeoenvironmental reconstructions. In Statistical Modelling of Quaternary Science Data, ed. Maddy, D. & Brew, J. S., Cambridge: Quaternary Research Association, pp. 161–254.Google Scholar
Bloom, A. M., Moser, K. A., Porinchu, D. F., & MacDonald, G. M. (2003). Diatom-inference models for surface-water temperature ation set from the Sierra Nevada, California, USA. Journal of Paleolimnology, 29, 235–55.CrossRefGoogle Scholar
Cantonati, M., Corradini, G., Jüttner, I., & Cox, E. J. (2001). Diatom assemblages in high mountain streams of the Alps and Himalaya. Nova Hedwigia, Beiheft, 123, 37–61.Google Scholar
Catalan, J., Pla, S., Rieradevall, M., et al. (2002a). Lake Redò ecosystem response to an increasing warming in the Pyrenees during the twentieth century. Journal of Paleolimnology, 28, 129–45.CrossRefGoogle Scholar
Catalan, J., Vetura, M., Brancelj, A., et al. (2002b). Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. Journal of Paleolimnology, 28, 25–46.CrossRefGoogle Scholar
Cholnoky, B. J. (1968). Die Ökologie der Diatomeen in Binnengewässern, Lehre: J. Cramer.Google Scholar
Cleve-Euler, A. (1934). The diatoms of Finnish Lapland. Societas Scientiarum Fennica Commentationes Biologicae, IV, 1–154.Google Scholar
Conde, D., Aubriot, L., & Sommaruga, R. (2000). Changes in UV penetration associated with marine intrusions and freshwater discharge in a shallow coastal lagoon of the southern Atlantic Ocean. Marine Ecology Progress Series, 207, 19–31.CrossRefGoogle Scholar
Dauta, A., Devaux, J., Piquemal, F., & Boumnich, L. (1990). Growth rate of four freshwater algae in relation to light and temperature. Hydrobiologia, 207, 221–6.CrossRefGoogle Scholar
Denys, L. (1990). Fragilaria blooms in the Holocene of the western coastal plain of Belgia. In Proceedings of the 10th International Diatom Symposium, Joensuu, Finland, ed. Simola, H., Koeltz Scientific Books, Königstein, pp. 397–406.Google Scholar
Dixit, S. S., Keller, W., Dixit, A. S., & Smol, J. P. (2001). Diatom-inferred dissolved organic reconstructions provide assessments of past UV-B penetration in Canadian shield lakes. Canadian Journal of Fisheries and Aquatic Sciences, 58, 543–50.CrossRefGoogle Scholar
Eppley, R. W. (1977). The growth and culture of diatoms. In The Biology of Diatoms, ed. Werner, D., Botanical Monographs, Oxford: Blackwell, pp. 24–64.Google Scholar
Fallu, M.-A., Allaire, N., & Pienitz, R. (2002). Distribution of freshwater diatoms in 64 Labrador (Canada) lakes: species–environment relationships along latitudinal gradients and reconstruction models for water colour and alkalinity. Canadian Journal of Fisheries and Aquatic Sciences, 59, 329–49.CrossRefGoogle Scholar
Fallu, M.-A. & Pienitz, R. (1999). Diatomées lacustres de Jamésie-Hudsonie (Québec) et modele de reconstitution des concentrations de carbone organique dissous. Écoscience 6, 603–20.CrossRefGoogle Scholar
Fan, H. & Gasse, F. (1994). A late-Pleistocene–Holocene diatom record and palaeoenvironment of Bangong lake, west Tibet. Acta Geographica Sinica, 49, 33–45.Google Scholar
Fan, H., Gasse, F., Huc, A., et al. (1996). Holocene environmental changes in Bangong Co basin (western Tibet). Part 3: biogenic remains. Palaeogeography, Palaeoclimatology, Palaeoecology, 120, 65–78.CrossRefGoogle Scholar
Fee, E. J., Shearer, J. A., DeBruyn, E. R., & Schindler, E. U. (1992). Effects of lake size on phytoplankton photosynthesis. Canadian Journal of Fisheries and Aquatic Sciences, 49, 2445–59.CrossRefGoogle Scholar
Foged, N. (1955). Diatoms from Peary Island, north Greenland. Meddelelser om Grönland, 128, 1–90.Google Scholar
Foged, N. (1964). Freshwater diatoms from Spitsbergen. Tromsö Museums Skrifter, 11.Google Scholar
Gajewski, K., Garneau, M., & Bourgeois, J. C. (1995). Paleoenvironments of the Canadian High Arctic derived from pollen and plant macrofossils: problems and potentials. Quaternary Science Reviews, 14, 609–29.CrossRefGoogle Scholar
Gasse, F., Arnold, M., Fontes, J. C., et al. (1991). A 13,000-year climate record from western Tibet. Nature, 353, 742–5.CrossRefGoogle Scholar
Gasse, F., Fontes, J. C., Campo, E., & Wie, K. (1996). Holocene environmental changes in Bangong Co basin (Western Tibet). Part 4: discussions and conclusions. Palaeogeography, Palaeoclimatology, Palaeoecology, 120, 79–92.CrossRefGoogle Scholar
Gregory-Eaves, I., Smol, J. P., Finney, B., Lean, D. R. S., & Edwards, M. E. (2000). Characteristics and variation in lakes along a north–south transect in Alaska. Archiv für Hydrobiologie, 147, 193–223.CrossRefGoogle Scholar
Hartig, J. H. & Wallen, D. G. (1986). The influence of light and temperature on growth and photosynthesis of Fragilaria crotonensis Kitton. Journal of Freshwater Ecology, 3, 371–82.CrossRefGoogle Scholar
Hausmann, S. & Kienast, F. (2006). A diatom-inference model for nutrients screened to reduce the influence of background variables: application to varved sediments of Greifensee and evaluation with measured data. Palaeogegraphy, Palaeoclimatology, Palaeoecology, 233, 96–112.CrossRefGoogle Scholar
Hausmann, S. & Lotter, A. F. (2001). Morphological variation within Cyclotella comensis Grunow and its importance for quantitative temperature reconstructions. Freshwater Biology, 46, 1323–33.CrossRefGoogle Scholar
Hausmann, S., Lotter, A. F., Leeuwen, J. F. N., et al. (2002). Interactions of climate and land use documented in the varved sediments of Seebergsee in the Swiss Alps. The Holocene, 12, 279–89.CrossRefGoogle Scholar
Haworth, E. Y. (1976). Two late-glacial (Late Devensian) diatom assemblage profiles from northern Scotland. New Phytologist, 77, 227–256.CrossRefGoogle Scholar
Heegaard, E., Lotter, A. F., & Birks, H. J. B. (2006). Aquatic biota and the detection of climate change: are there consistent aquatic ecotones? Journal of Paleolimnology, 35, 507–18.CrossRefGoogle Scholar
Huber, K., Weckström, K., Drescher-Schneider, R., et al. (2010). Climate changes during the last glacial termination inferred from diatom-based temperatures and pollen in a sediment core from Längsee (Austria). Journal of Paleolimnology, 43, 131–47.CrossRefGoogle Scholar
Hustedt, F. (1922). Bacillariales aus Innerasien, gesammelt von Dr. Sven Hedin. Botany, 6, 107–52.Google Scholar
Hustedt, F. (1939). Systematische und ökologische Untersuchungen über die Diatomeen-Flora von Java, Bali und Sumatra nach dem Material der Deutschen limnologischen Sunda-Expedition. Archiv für Hydrobiologie Beiheft, II, 1–155, 274–394.Google Scholar
Hustedt, F. (1942). Diatomeen aus der Umgebung von Abisko in Schwedisch-Lappland. Archiv für Hydrobiologie, 39, 82–174.Google Scholar
Hustedt, F. (1943). Die Diatomeenflora einiger Hochgebirgsseen der Landschaft Davos in den Schweizer Alpen. Int. Rev. Gesellschaft Hydrobiologie, 43, 124–97.CrossRefGoogle Scholar
Hustedt, F. (1956). Kieselalgen (Diatomeen). Stuttgart: Kosmos.Google Scholar
Ioriya, T. (1995). Achnanthales and Cymbellales (Bacillariophyceae) from Kathmandu Valley. In Cryptogams of the Himalayas, ed. Watanabe, M. & Hagiwara, H., Tsukuba, Japan: National Science Museum, pp. 19–28.Google Scholar
,IPCC (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Parry, M. L., Canziani, O. F., Palutikof, J. P., Linden, P. J., & Hanson, C.E., Cambridge: Cambridge University Press.Google Scholar
Joynt, E. H. & Wolfe, A. P. (2001). Paleoenvironmental inference models from sediment diatom assemblages in Baffin Island lakes (Nunavut, Canada) and reconstruction of summer water temperature. Canadian Journal of Fisheries and Aquatic Sciences, 58, 1222–43.CrossRefGoogle Scholar
Juggins, S. (2007). C2 Version 1.5 User guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle University, Newcastle upon Tyne.
Jüttner, I., Cox, E. J., & Ormerod, S. J. (2000). New or poorly known diatoms from Himalayan streams. Diatom Research, 15, 237–62.CrossRefGoogle Scholar
Jüttner, I., Reichardt, E., & Cox, E. J. (2004). Taxonomy and ecology of some new Gomphonema species common in Himalayan streams. Diatom Research, 19, 235–64.CrossRefGoogle Scholar
Jüttner, I., Rothfritz, H., & Ormerod, S. J. (1996). Diatoms as indicators of river quality in the Nepalease Middle Hills with consideration of the effects of habitat-specific sampling. Freshwater Biology, 36, 475–86.CrossRefGoogle Scholar
Jüttner, I., Sharma, S., Manidahal, B., et al. (2003). Diatoms as indicators of stream quality in the Kathmandu Valley and Middle Hills of Nepal and India. Freshwater Biology, 48, 2065–84.CrossRefGoogle Scholar
Kamenik, C., Koinig, K. A., & Schmidt, R. (2005). Potential effects of pre-industrial lead pollution on algal assemblages from an alpine lake. Verhandlungen Internationale Vereinigung für Limnologie, 29, 535–8.Google Scholar
Kamenik, C. & Schmidt, R. (2005). Chrysophyte resting stages: a tool for reconstructing winter/spring climate from Alpine lake sediments. Boreas, 34, 477–89.CrossRefGoogle Scholar
Karst-Riddoch, T. L., Pisaric, M. F. J., & Smol, J. P. (2005). Diatom responses to 20th century-related environmental changes in high-elevation mountain lakes of the northern Canadian Cordillera. Journal of Paleolimnology, 33, 265–82.CrossRefGoogle Scholar
Kauppila, T., Moisio, T., & Salonen, V.-P. (2002). A diatom-based inference model for autumn epilimnetic total phosphorus concentration and its application to a presently eutrophic boreal lake. Journal of Paleolimnology, 27, 261–273.CrossRefGoogle Scholar
Kilham, S. S., Theriot, E. C., & Fritz, S. C. (1996). Linking planktonic diatoms and climate in the large lakes of the Yellowstone ecosystem using resource theory. Limnology and Oceanography, 41, 1052–62.CrossRefGoogle Scholar
Kingston, J. C., Lowe, R. L., Stoermer, E. F., & Ladewski, T. B. (1983). Spatial and temporal distribution of benthic diatoms in northern Lake Michigan. Ecology, 64, 1566–80.CrossRefGoogle Scholar
Koinig, K. A., Kamenik, C., Schmidt, R., et al. (2002). Environmental changes in an alpine lake (Gossenköllesee, Austria) over the last two centuries – the influence of air temperature on biological parameters. Journal of Paleolimnology, 28, 147–160.CrossRefGoogle Scholar
Koinig, K. A., Schmidt, R., Sommaruga-Wögrath, S., Tessadri, R., & Psenner, R. (1997). Climate change as the primary cause for pH shifts in a high alpine lake. Water, Air, and Soil Pollution, 104, 167–80.CrossRefGoogle Scholar
Koinig, K. A., Sommaruga-Wögrath, S., Schmidt, R., Tessadri, R., & Psenner, R. (1998). Acidification processes in high alpine lakes. In Headwaters: Water Resources and Soil Conservation, ed. Haigh, M. J., Krecek, J., Raijwar, G. S., & Kilmartin, M. P., Rotterdam: A.A. Balkema Publishers, pp. 45–54.Google Scholar
Koivo, L. K. & Ritchie, J. C. (1978). Modern diatom assemblages from lake sediments in the boreal–arctic transition area. Canadian Journal of Botany, 56, 1010–20.CrossRefGoogle Scholar
Kolbe, R. W. (1927). Zur Ökologie, Morphologie und Systematik der Brackwasser-Diatomeen. Die Kieselalgen des Sperenberger Salzgebiets., Pflanzenforschung, vol. 7, Jena: G. Fischer.
Korhola, A. & Weckström, J. (2004). Paleolimnological studies in Arctic Fennoscandia and the Kola Peninsula (Russia). In Long-term environmental change in arctic and antarctic lakes, ed. Pienitz, R., Douglas, M. S. V., & Smol, J. P., Developments in Paleoenvironmental Research, Dordrecht: Springer, pp. 381–418.CrossRefGoogle Scholar
Korhola, A., Weckström, J., Holmström, L., & Erästö, P. (2000). A quantitative Holocene climatic record from diatoms in northern Fennoscandia. Quaternary Research, 54, 284--94.CrossRef
Krasske, G. (1932). Beiträge zur Kenntnis der Diatomeenflora der Alpen. Hedwigia, 72, 92–134.Google Scholar
Laing, T. E., Pienitz, R., & Payette, S. (2002). Evaluation of limnological responses to recent environmental change and caribou activity in the Rivière Geroge region, northern Québec, Canada. Arctic, Antarctic, and Alpine Research, 54, 454–64.CrossRefGoogle Scholar
Laing, T. E., Rühland, K. M., & Smol, J. P. (1999). Past environmental and climatic changes related to tree-line shifts inferred from fossil diatoms from a lake near the Lena River Delta, Siberia. The Holocene, 9, 547–557.CrossRefGoogle Scholar
Laing, T. E. & Smol, J. P. (2000). Factors influencing diatom distributions in circumpolar treeline lakes of northern Russia. Journal of Phycology, 36, 1035–48.CrossRefGoogle Scholar
Lange-Bertalot, H. & Metzeltin, D. (1996). Indicators of oligotrophy. Iconographia Diatomologica, 2, 1–390.Google Scholar
Laurion, I., Vincent, W. F., & Lean, D. R. S. (1997). Underwater ultraviolet radiation: development of spectral models for northern high latitude lakes. Photochemistry and Photobiology, 65, 107–14.Google Scholar
Lee, E. J., Kenkel, N., & Booth, T. (1996). Atmospheric deposition of macronutrients by pollen in the boreal forest. Ecoscience, 3, 304–9.CrossRefGoogle Scholar
Li, S. F., Wang, F. B., & Zhang, J. (1999). Diatom-based reconstruction of Holocene environmental changes in Angren Lake, southern Tibet. Chinese Science Bulletin, 44, 1123–6.CrossRefGoogle Scholar
Li, Y., Gong, Z., Xie, P., & Shen, J. (2006). Distribution and morphology of two endemic gomphonemoid species, Gomphonema kaznakowi Mereschkowsky and G. yangtzensis Li nov. sp. in China. Diatom Research, 21, 313–24.CrossRefGoogle Scholar
Li, Y., Gong, Z., Xie, P., & Shen, J. (2007). Diatoms of eight lakes from Yunnan Province, China. Journal of Freshwater Ecology, 22, 169–71.CrossRefGoogle Scholar
Li, Y., Xie, P., Gong, Z., & Shi, Z. (2003). Gomphonemaceae and Cymbellaceae (Bacillariophyta) from Hengduan Mountains region (southwest China). Nova Hedwigia, 76, 307–36.CrossRefGoogle Scholar
Li, Y., Xie, P., Gong, Z., & Shi, Z. (2004). A Survey of the Gomphonemaceae and Cymbellaceae (Bacillariophyta) from the Jolmolungma Mountain (Everest) region of China. Journal of Freshwater Ecology, 19, 189–194.CrossRefGoogle Scholar
Livingstone, D. M. (1997). Break-up dates of Alpine lakes as proxy data for local and regional mean surface air temperatures. Climatic Change, 37, 407–39.CrossRefGoogle Scholar
Livingstone, D. M. & Lotter, A. F. (1998). The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with palaeolimnological implications. Journal of Paleolimnology, 19, 181–98.CrossRefGoogle Scholar
Livingstone, D. M., Lotter, A. F., & Kettle, H. (2005). Altitude-dependent differences in the primary physical response of mountain lakes to climatic forcing. Limnology and Oceanography, 50, 1313–25.CrossRefGoogle Scholar
Livingstone, D. M., Lotter, A. F., & Walker, I. R. (1999). The decrease in summer surface water temperature with altitude in Swiss Alpine lakes: a comparison with air temperature lapse rates. Arctic, Antarctic, and Alpine Research, 31, 341–52.CrossRefGoogle Scholar
Lotter, A. F. (2003). Multi-proxy climatic reconstructions. In Global Change in the Holocene, ed. Mackay, A. W., Battarbee, R. W., Birks, H. J. B., & Oldfield, F., London: E. Arnold, pp. 373–83.Google Scholar
Lotter, A. F. (2005). Palaeolimnological investigations in the Alps: the long-term develpment of mountain lakes. In Global Change and Mountain Regions. An Overview of Current Knowledge, ed. Huber, U. M., Bugmann, H. K. M., & Reasoner, M. A., Dordrecht: Springer, pp. 105–112.CrossRefGoogle Scholar
Lotter, A. F., Appleby, P., Bindler, R., et al. (2002). The sediment record of the past 200 years in a Swiss high-alpine lake: Hagelseewli (2339 m a.s.l.). Journal of Paleolimnology, 28, 111–27.CrossRefGoogle Scholar
Lotter, A. F., & Bigler, C. (2000). Do diatoms in the Swiss Alps reflect the length of ice-cover?Aquatic Sciences, 62, 125–41.CrossRefGoogle Scholar
Lotter, A. F., Birks, H. J. B., Hofmann, W., & Marchetto, A. (1997). Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. Journal of Paleolimnology, 18, 395–420.CrossRefGoogle Scholar
Lotter, A. F., Birks, H. J. B., Hofmann, W., & Marchetto, A. (1998). Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. Journal of Paleolimnology, 19, 443–63.CrossRefGoogle Scholar
Lotter, A. F., & Psenner, R. (2004). Global change impacts on mountain waters: lessons from the past to help define monitoring targets for the future. In Global Environmental and Social Monitoring, ed. Lee, C. & Schaaf, M., Paris: UNESCO, pp. 102–14.Google Scholar
MacDonald, G. M., Felzer, B., Finney, B. P., & Forman, S. L. (2000). Holocene lake sediment records of Arctic hydrology. Journal of Paleolimnology, 24, 1–14.CrossRefGoogle Scholar
MacDonald, G. M., Edwards, T. W. D., Moser, K. A., Pienitz, R., & Smol, J. P. (1993). Rapid response of treeline vegetation and lakes to past climate warming. Nature, 361, 243–6.CrossRefGoogle Scholar
Marchetto, A., Mosello, R., Psenner, R., et al. (1995). Factors affecting water chemistry of alpine lakes. Aquatic Sciences, 57, 81–9.CrossRefGoogle Scholar
Marchetto, A., & Schmidt, R. (1993). A regional calibration data set to infer lakewater pH from sediment diatom assemblages in alpine lakes. Memorie dell'Istituto Italiano di Idrobiologia, 51, 115–25.Google Scholar
Mereschkowsky, C. (1906). Diatomées du Tibet. C.R. Societé Impériale de Russe de Geographie, 8, 1–383.Google Scholar
Montagnes, D. J. S., & Franklin, D. J. (2001). Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: reconsidering some paradigms. Limnology and Oceanography, 46, 2008–18.CrossRefGoogle Scholar
Moser, K. A., MacDonald, G. M., & Smol, J. P. (1996). Applications of freshwater diatoms to geographical research. Progress in Physical Geography, 20, 21–52.CrossRefGoogle Scholar
Müller, B., Lotter, A. F., Sturm, M., & Ammann, A. (1998). The influence of catchment quality and altitude on the water and sediment composition of 68 small lakes in central Europe. Aquatic Sciences, 60, 316–37.CrossRefGoogle Scholar
Niederhauser, P. & Schanz, F. (1993). Effects of nutrient (N, P, C) enrichment upon the littoral diatom community of an oligotrophic high-mountain lake. Hydrobiologia, 269/270, 453–62.CrossRefGoogle Scholar
Ohlendorf, C., Bigler, C., Goudsmit, G. H., et al. (2000). Causes and effects of long periods of ice cover on a remote high Alpine lake. Journal of Limnology, 59, 65–80.CrossRefGoogle Scholar
Overpeck, J., Hughen, K., Hardy, D., et al. (1997). Arctic environmental change of the last four centuries. Science, 278, 1251–6.CrossRefGoogle Scholar
Ozenda, P. (1985). La végétation de la chaîne alpine dans l'espace montagnard européen. Paris: Masson.Google Scholar
Pannard, A., Bormans, M., & Lagadeuc, Y. (2008). Phytoplankton species turnover controlled by physical forcing at different time scales. Canadian Journal of Fisheries and Aquatic Sciences, 65, 47–60.CrossRefGoogle Scholar
Patrick, R. (1971). The effects of increasing light and temperature on the structure of diatom communities. Limnology and Oceanography, 16, 405–21.CrossRefGoogle Scholar
Patrick, R. (1977). Ecology of freshwater diatoms and diatom communities. In The Biology of Diatoms, ed. Werner, D., Botanical Monographs, Oxford: Blackwell, pp. 284–332.Google Scholar
Pielke, R. A. & Vidale, P. L. (1995). The boreal forest and the polar front. Journal of Geophysical Research, 100, 25755–8.CrossRefGoogle Scholar
Pienitz, R., Lortie, G., & Allard, M. (1991). Isolation of lacustrine basins and marine regression in the Kuujjuaq area (northern Québec), as inferred from diatom analysis. Géographie physique et Quaternaire, 45, 155–74.CrossRefGoogle Scholar
Pienitz, R. & Smol, J. P. (1993). Diatom assemblages and their relationship to environmental variables in lakes from the boreal-tundra ecotone near Yellowknife, Northwest Territories, Canada. Hydrobiologia, 269/270, 391–404.CrossRefGoogle Scholar
Pienitz, R., Smol, J. P., & Birks, H. J. B. (1995). Assessment of freshwater diatoms as quantitative indicators of past climatic change in the Yukon and Northwest Territories, Canada. Journal of Paleolimnology, 13, 21–49.CrossRefGoogle Scholar
Pienitz, R., Smol, J. P., & Lean, D. R. S. (1997a). Physical and chemical limnology of 24 lakes located between the Yellowknife and Contwoyto Lake, Northwest Territories (Canada). Canadian Journal of Fisheries and Aquatic Sciences, 54, 347–58.CrossRefGoogle Scholar
Pienitz, R., Smol, J. P., & Lean, D. R. S. (1997b). Physical and chemical limnology of 59 lakes located between the southern Yukon and the Tuktoyaktuk Peninsula, Northwest Territories (Canada). Canadian Journal of Fisheries and Aquatic Sciences, 54, 330–46.CrossRefGoogle Scholar
Pienitz, R., Smol, J. P., & MacDonald, G. M. (1999). Paleolimnological reconstruction of Holocene climatic trends from two boreal treeline lakes, Northwest Territories, Canada. Arctic, Antarctic, and Alpine Research, 31, 82–93.CrossRefGoogle Scholar
Pienitz, R. & Vincent, W. F. (2000). Effect of climate change relative to ozone depletion on UV exposure in subarctic lakes. Nature, 404, 484–7.CrossRefGoogle ScholarPubMed
Psenner, R. & Schmidt, R. (1992). Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature, 356, 781–3.CrossRefGoogle Scholar
Raubitschek, S., Lücke, A., & Schleser, G. H. (1999). Sedimentation patterns of diatoms in Lake Holzmaar, Germany – (on the transfer of climate signals to biogenic silica oxygen isotope proxies). Journal of Paleolimnology, 21, 437–48.CrossRefGoogle Scholar
Rautio, M., Sorvari, S., & Korhola, A. (2000). Diatom and crustacean zooplankton communities, their seasonal variability and representation in the sediemnts of subarctic Lake Saanajärvi. Journal of Limnology, 59, 81–96.CrossRefGoogle Scholar
Raven, J. A. & Geider, R. J. (1988). Temperature and algal growth. New Phytologist, 110, 441–61.CrossRefGoogle Scholar
Rosén, P., Hall, R., Korsman, T., & Renberg, I. (2000). Diatom transfer-functions for quantifying past air temperature, pH and total organic carbon concentration from lakes in northern Sweden. Journal of Paleolimnology, 24, 109–23.Google Scholar
Rosén, P., Segerström, U., Eriksson, L., & Renberg, I. (2004). Do diatom, chironomid, and pollen records consistently infer Holocene July air temperature? A comparison using sediment cores from four alpine lakes in northern Sweden. Arctic, Antarctic and Alpine Research, 35, 279–90.CrossRefGoogle Scholar
Rothfritz, H., Jüttner, I., Suren, A. M., & Ormerod, S. J. (1997). Epiphytic and epilithic diatom communities along environmental gradients in the Nepalese Himalaya: implications for the assessment of biodiversity and water quality. Archiv für Hydrobiologie, 138, 465–82.Google Scholar
Rühland, K. M., Paterson, A. M., & Smol, J. P. (2008). Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Global Change Biology, 14, 2740–54.Google Scholar
Rühland, K., Phadtare, N. R., Pant, R. K., Sangode, S. J., & Smol, J. P. (2006). Accelerated melting of Himalayan snow and ice triggers pronounced changes in a valley peatland from northern India. Geophysical Research Letters, 33, DOI: 10.1029/2006GL026704.CrossRefGoogle Scholar
Rühland, K. & Smol, J. P. (1998). Limnological characteristics of 70 lakes spanning the arctic treeline from Coronation Gulf to Great Slave Lake in the central Northwest Territories, Canada. Internationale Revue der gesamten Hydrobiologie, 83, 183–203.CrossRefGoogle Scholar
Rühland, K. M. & Smol, J. P. (2002). Freshwater diatoms from the Canadian arctic treeline and development of paleolimnological inference models. Journal of Phycology, 38, 249–64.CrossRefGoogle Scholar
Rühland, K. M. & Smol, J. P. (2005). Diatom shifts as evidence for recent subarctic warming in a remote tundra lake, NWT, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 226, 1–16.CrossRefGoogle Scholar
Rühland, K. M., Smol, J. P., Wang, X., & Muir, D. C. G. (2003). Limnological characteristics of 56 lakes in the central Canadian Arctic treeline region. Journal of Limnology, 62, 9–27.CrossRefGoogle Scholar
Saulnier-Talbot, É., Pienitz, R., & Vincent, W. F. (2003). Holocene lake succession and palaeo-optics of a subarctic lake, northern Québec, Canada. The Holocene, 13, 517–26.CrossRefGoogle Scholar
Schindler, D. W., Bayley, S. E., Parker, B. R., et al. (1996). The effects of climatic warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnology and Oceanography, 41, 1004–17.CrossRefGoogle Scholar
Schmidt, R., Kamenik, C., Kaiblinger, C., & Hetzel, M. (2004a). Tracking Holocene environmental changes in an alpine lake sediment core: application of regional diatom calibration, geochemistry, and pollen. Journal of Paleolimnology, 32, 177–96.CrossRefGoogle Scholar
Schmidt, R., Kamenik, C., Lange-Bertalot, H., & Klee, R. (2004b). Fragilaria and Staurosira (Bacillariophyceae) from sediment surfaces of 40 lakes in the Austrian Alps in relation to environmental variables, and their potential for palaeoclimatology. Journal of Limnology, 63, 171–89.CrossRefGoogle Scholar
Schmidt, R., Kamenik, C., & Roth, M. (2007). Siliceous algae-based seasonal temperature inference and indicator pollen tracking ca. 4,000 years of climate/land use dependency in the southern Austrian Alps. Journal of Paleolimnology, 38, 541–54.CrossRefGoogle Scholar
Schmidt, R. & Psenner, R. (1992). Climate changes and anthropogenic impacts as causes for pH fluctuations in remote high alpine lakes. Documenta Istituto Italiano di Idrobiologia, 32, 31–57.Google Scholar
Schmidt, R., Psenner, R., Müller, J., Indinger, P., & Kamenik, C. (2002). Impact of late glacial climate variations on stratification and trophic state of the meromictic lake Längsee (Austria): validation of a conceptual model by multi proxy studies. Journal of Limnology, 61, 49–60.CrossRefGoogle Scholar
Schmidt, R., Roth, M., Tessadri, R., & Weckström, J. (2008). Disentangling late-Holocene climate and land use impacts on an Austrian alpine lake using seasonal temperature anomalies, ice-cover, sedimentology, and pollen tracers. Journal of Paleolimnology, 40, 453–69.CrossRefGoogle Scholar
Schmidt, R., Wunsam, S., Brosch, U., et al. (1998). Late and post-glacial history of meromictic Längsee (Austria), in respect to climate change and anthropogenic impact. Aquatic Sciences, 60, 56–88.CrossRefGoogle Scholar
Seppä, H. & Weckström, J. (1999). Holocene vegetational and limnological changes in the Fennoscandian tree-line area as documented by pollen and diatom records from Lake Tsuolbmajävri, Finland. Ecoscience, 6, 621–35.CrossRefGoogle Scholar
Servant-Vildary, S. (1982). Altitudinal zonation of mountainous diatom flora in Bolivia: application to the study of the Quaternary. Acta Geologica Academiae Scientiarum Hungaricae, 25, 179–210.Google Scholar
Smol, J. P. (1988). Paleoclimate proxy from freshwater arctic diatoms. Verhandlungen Internationale Vereinigung für Limnologie, 23, 837–44.Google Scholar
Smol, J. P. (2002). Pollution of Lakes and Rivers. London: Arnold.Google Scholar
Smol, J. P. & Cumming, B. F. (2000). Tracking long-term changes in climate using algal indicators in lake sediments. Journal of Phycology, 36, 986–1011.Google Scholar
Smol, J. P., Cumming, B. F., Douglas, M. S. V., & Pienitz, R. (1995). Inferring past climate changes in Canada using paleolimnological techniques. Geoscience Canada, 21, 113–18.Google Scholar
Smol, J. P. & Douglas, M. (2007). From controversy to consensus: making the case for recent climate change in the Arctic using lake sediments. The Ecological Society of America, 5, 466–74.Google Scholar
Smol, J. P., Walker, I. R., & Leavitt, P. R. (1991). Paleolimnology and hindcasting climatic trends. Verhandlungen Internationale Vereinigung für Limnologie, 24, 1240–6.Google Scholar
Solovieva, N. & Jones, V. J. (2002). A multiproxy record of Holocene environmental changes in the central Kola Peninsula, northwest Russia. Journal of Quaternary Science, 17, 303–18.CrossRefGoogle Scholar
Sommaruga, R. & Psenner, R. (1997). Ultraviolet radiation in a high mountain lake of the Austrian Alps: air and underwater measurements. Photochemistry and Photobiology, 65, 957–63.CrossRefGoogle Scholar
Sommaruga-Wögrath, S., Koinig, K. A., Schmidt, R., et al. (1997). Temperature effects on the acidity of remote alpine lakes. Nature, 387, 64–7.CrossRefGoogle Scholar
Sorvari, S. & Korhola, A. (1998). Recent diatom assemblage changes in subarctic Lake Saanajärvi, NW Finnish Lapland, and their paleoenvironmental implicatinons. Journal of Paleolimnology, 20, 205–15.CrossRefGoogle Scholar
Sorvari, S., Korhola, A., & Thompson, R. (2002). Lake diatom response to recent arctic warming in Finnish Lapland. Global Change Biology, 8, 153–63.CrossRefGoogle Scholar
Stoermer, E. F. & Ladewski, T. B. (1976). Apparent optimal temperatures for the occurrence of some common phytoplankton species in southern Lake Michigan. University of Michigan, Great Lakes Research Division Publication, 18.Google Scholar
Thompson, R., Kamenik, C., & Schmidt, R. (2005a). Ultra-sensitive alpine lakes and climate change. Journal of Limnology, 64, 139–52.CrossRefGoogle Scholar
Thompson, R., Price, D., Cameron, N., et al. (2005b). Quantitative calibration of remote mountain-lake sediments as climatic recorders of air temperture and ice-cover duration. Arctic, Antarctic, and Alpine Research, 37, 626–35.CrossRefGoogle Scholar
Tinner, W. & Ammann, B. (2005). Long-term responses of mountain ecosystems to environmental changes: resilience, adjustment, and vulnerability. In Global Change and Mountain Regions. An Overview of Current Knowledge, ed. Huber, U. M., Bugmann, H. K. M., & Reasoner, M. A., Dordrecht: Springer, pp. 133–43.CrossRefGoogle Scholar
Tinner, W., Ammann, B., & Germann, P. (1996). Treeline fluctuations recorded for 12,500 years by soil profiles, pollen, and plant macrofossils in theArctic and Alpine Research, 28, 131–47.CrossRefGoogle Scholar
Tranquillini, W. (1979). Physiological Ecology of the Alpine Timberline. Berlin: Springer.Google Scholar
Tynni, R. (1976). Über Finnlands rezente und subfossile Diatomeen. Bulletin Geological Survey of Finland, 284, 1–37.Google Scholar
Campo, E. & Gasse, F. (1993). Pollen- and diatom-inferred climatic and hydrological changes in Sumxi Co basin (western Tibet) since 13,000 yr B.P. Quaternary Research, 39, 300–13.CrossRefGoogle Scholar
Ventura, M., Camarero, L., Buchaca, T., et al. (2000). The main features of seasonal variability in the external forcing and dynamics of a deep mountain lake (Redò, Pyrenees). Journal of Limnology, 59, 97–108.CrossRefGoogle Scholar
Vincent, W. F., Hobbie, J. E., & Laybourn-Parry, J. (2008). Introduction to the limnology of high latitude lake and river ecosystems. In Polar Lakes and Rivers – Limnology of Arctic and Antarctic Aquatic Ecosystems, ed. Vincent, W. F. & Laybourn-Parry, J., Oxford: Oxford University Press, pp. 1–23.Google Scholar
Vincent, W. F., & Pienitz, R. (1996). Sensitivity of high-latitude freshwater ecosystems to global change: temperature and solar ultraviolet radiation. Geoscience Canada, 23, 231–6.
Vinebrooke, R. D. & Leavitt, P. R. (1996). Effects of ultraviolet radiation on periphyton in an alpine lake. Limnology and Oceanography, 41, 1035–40.CrossRefGoogle Scholar
Gunten, L., Heiri, O., Bigler, C., et al. (2008). Seasonal temperatures for the past ∼400 years reconstructed from diatom and chironomid assemblages in a high-altitude lake (Lej da la Tscheppa, Switzerland). Journal of Paleolimnology, 39, 283–99.CrossRefGoogle Scholar
Vyverman, W. (1992). Altitudinal distribution of non-cosmopolitan desmids and diatoms in Papua New Guinea. British Phycological Journal, 27, 49–63.CrossRefGoogle Scholar
Vyverman, W. & Sabbe, K. (1995). Diatom-temperature transfer functions based on the altitudinal zonation of diatom assemblages in Papua New Guinea: a possible tool in the reconstruction of regional palaeoclimatic changes. Journal of Paleolimnology, 13, 65–77.CrossRefGoogle Scholar
Walker, M. J. C., Björck, S., Lowe, J. J., et al. (1999). Isotopic “events” in the GRIP ice core: a stratotype for the Late Pleistocene. Quaternary Science Reviews, 18, 1143–50.CrossRefGoogle Scholar
Weckström, J., Korhola, A., & Blom, T. (1997). The relationship between diatoms and water temperature in thirty subarctic Fennoscandian lakes. Arctic and Alpine Research, 29, 75–92.CrossRefGoogle Scholar
Wetzel, R. G. (2001). Limnology, San Diego, CA: Academic Press.Google Scholar
Wolfe, B. B., Edwards, T. W. D., Aravena, R., & MacDonald, G. M. (1996). Rapid Holocene hydrologic change along boreal tree-line revealed by δ13C and δ18O in organic lake sediments, Northwest Territories, Canada. Journal of Paleolimnology, 15, 171–81.CrossRefGoogle Scholar
Wrona, F. J., Prowse, T. D., Reist, J. D., et al. (2006). Effects of ultraviolet radiation and contaminant-related stressors on arctic freshwater ecosystems. AMBIO, 35, 388–401.CrossRefGoogle ScholarPubMed
Wunsam, S. & Schmidt, R. (1995). A diatom–phosphorus transfer function for alpine and pre-alpine lakes. Memorie dell'Istituto Italiano di Idrobiologia, 53, 85–99.Google Scholar
Wunsam, S., Schmidt, R., & Klee, R. (1995). Cyclotella-taxa (Bacillariophyceae) in lakes of the Alpine region and their relationship to environmental variables. Aquatic Sciences, 57, 360–86.CrossRefGoogle Scholar
Yang, X., Kamenik, C., Schmidt, R., & Wang, S. (2003). Diatom-based conductivity and water-level inference models from eastern Tibetan (Qinghai-Xizang) plateau lakes. Journal of Paleolimnology, 30, 1–19.CrossRefGoogle Scholar
Yang, X., Wang, S., Kamenik, C., et al. (2004). Diatom assemblages and quantitative reconstruction for paleosalinity from a sediment core of Chencuo Lake, southern Tibet. Science in China, 47, 522–8.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×