Published online by Cambridge University Press: 06 July 2010
As we stated in Chapter 4, a fundamental idea in studying a conic Q is to understand how it intersects lines. It is however not just the intersections of Q with a single line which are significant for its geometry, but its intersections with pencils of lines. That is a major theme of this text, which we introduced in Chapter 7 by studying the intersections of Q with parallel pencils of lines. In this chapter we develop the theme by studying how Q meets a general pencil of lines through a point on Q itself. That leads to a central geometric idea, the ‘tangent’ to Q at a point, representing the best possible first-order approximation. In Section 9.3 we introduce the companion idea of the ‘normal’ to Q at a point, the line through that point perpendicular to the tangent. In the next three chapters we will use the material developed so far to look at the three main conic classes of ellipses, parabolas, and hyperbolas in more detail. Each has distinctive features, which are best discussed within the context of their class.
Tangent Lines
Consider the pencil of lines through a fixed point W on a conic Q. Think of another point W′ on Q, and consider the line L through W, W′. (Figure 9.1.) The idea is that as W′ moves along Q into coincidence with W, so L will tend towards a limiting position, the ‘tangent’ line at W.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.