Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T10:30:37.422Z Has data issue: false hasContentIssue false

Introduction

Published online by Cambridge University Press:  10 March 2010

Patrick McNamara
Affiliation:
Boston University
Robert A. Barton
Affiliation:
University of Durham
Charles L. Nunn
Affiliation:
Max Planck Institute for Evolutionary Anthropology
Get access

Summary

Why do we and other animals sleep? When we are asleep, we are not performing activities that are important for reproductive success, such as locating food, caring for offspring, or finding mates. In the wild, sleep might make an animal more vulnerable to predation, and it certainly interferes with vigilance for predators. Sleep is found across the animal kingdom, yet it varies remarkably in its most fundamental characteristics across species. And for almost every pattern associated with sleep, exceptions can be found. For all of these reasons, sleep continues to be an evolutionary puzzle. Fortunately, sleep also has attracted much scientific interest, with many significant findings in the past 10 years.

The aim of this volume is to summarize recent advances in our understanding of the diversity of sleep patterns found in animals. Many of the chapters that follow examine sleep in different taxonomic groups, including insects, fish, reptiles, birds, and mammals. We take this “comparative approach” because it is one of the key ways in which biologists investigate the evolution of a trait (Harvey & Pagel, 1991). Indeed, the comparative method has long been used to investigate the evolution of sleep, particularly in mammals (e.g., Meddis, 1983; Zepelin, 1989). More recent comparative studies have capitalized on advances in the study of phylogenetic relationships to test hypotheses on the evolution of sleep (Capellini, Barton, Preston, et al., 2008a; Lesku, Roth, Amlaner, et al., 2006; Preston, Capellini, McNamara, et al., 2009; Roth, Lesku, Amlaner, et al., 2006).

Type
Chapter
Information
Evolution of Sleep
Phylogenetic and Functional Perspectives
, pp. 1 - 11
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Campbell, S. S., & Tobler, I. (1984). Animal sleep: A review of sleep duration across phylogeny. Neuroscience and Biobehavioral Reviews, 8, 269–300.CrossRefGoogle ScholarPubMed
Capellini, I., Barton, R. A., Preston, B., McNamara, P., & Nunn, C. L. (2008a). Phylogenetic analysis of the ecology and evolution of mammalian sleep. Evolution, 62(7), 1764–1776.CrossRefGoogle ScholarPubMed
Capellini, I., Nunn, C. L., McNamara, P., Preston, B. T., & Barton, R. A. (2008b). Energetic constraints, not predation, influence the evolution of sleep patterning in mammals. Functional Ecology, 22(5), 847–853.CrossRefGoogle Scholar
Harvey, P. A., & Pagel, M. (1991). The comparative method in evolutionary biology. Oxford: Oxford University Press.Google Scholar
Kilduff, T. S., Krilowicz, B., Milsom, W. K., Trachsel, L., & Wang, L. C. (1993). Sleep and mammalian hibernation: Homologous adaptations and homologous processes?Sleep, 16(4), 372–386.CrossRefGoogle ScholarPubMed
Lesku, J. A., Roth, T. C., Amlaner, C. J., & Lima, S. L. (2006). A phylogenetic analysis of sleep architecture in mammals: The integration of anatomy, physiology, and ecology. American Naturalist, 168(4), 441–453.CrossRefGoogle ScholarPubMed
Lyamin, O. I., Manger, P. R., Ridgway, S. H., Mukhametov, L. M., & Siegel, J. (2008). Cetacean sleep: An unusual form of mammalian sleep. Neuroscience and Biobehavioral Reviews, 32(8), 1451–1484.CrossRefGoogle ScholarPubMed
McNamara, P., Capellini, I., Harris, E., Nunn, C. L., Barton, R. A., & Preston, B. (2008). The phylogeny of sleep database: A new resource for sleep scientists. The Open Sleep Journal, 1, 11–14.CrossRefGoogle ScholarPubMed
Meddis, R. (1983). The evolution of sleep. In Mayes, A. (Ed.), Sleep mechanisms and functions in humans and animals: An evolutionary perspective (pp. 57–106). Berkshire, England: Van Nostrand Reindhold.Google Scholar
Moorcroft, W. H. (2003). Understanding sleep and dreaming. New York: Springer.Google Scholar
Preston, B. T., Capellini, I., McNamara, P., Barton, R. A., & Nunn, C. L. (2009). Parasite resistance and the adaptive significance of sleep. BMC Evolutionary Biology, 9, 7.CrossRefGoogle Scholar
Rattenborg, N. C., Martinez-Gonzalez, D., & Lesku, J. A. (2009). Avian sleep homeostasis: Convergent evolution of complex brains, cognition, and sleep functions in mammals and birds. Neuroscience and Biobehavioral Reviews, 33(3), 253–270.CrossRefGoogle ScholarPubMed
Rattenborg, N. C., Martinez-Gonzalez, D., Lesku, J. A., & Scriba, M. (2008). A bird's-eye view of sleep. Science, 322(5901), 527.CrossRefGoogle Scholar
Rattenborg, N. C., Voirin, B., Vyssotski, A. L., Kays, R. W., Spoelstra, K., Kuemmeth, F., et al. (2008). Sleeping outside the box: Electroencephalographic measures of sleep in sloths inhabiting a rainforest. Biology Letters, 4(4), 402–405.CrossRefGoogle ScholarPubMed
Roth, T. C., Lesku, J. A., Amlaner, C. J., & Lima, S. L. (2006). A phylogenetic analysis of the correlates of sleep in birds. Journal of Sleep Research, 15, 395–402.CrossRefGoogle ScholarPubMed
Trevathan, W. R., Smith, E. O., & McKenna, J. (Eds.). (1999). Evolutionary medicine and health: New perspectives. New York: Oxford University Press.
Trevathan, W. R., Smith, E. O., & McKenna, J. (Eds.). (2007). Evolutionary medicine and health: New perspectives. New York: Oxford University Press.
Zepelin, H. (1989). Mammalian sleep. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practices of sleep medicine (pp. 30–49). Philadelphia: W. B. Saunders.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×