Skip to main content
×
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Cited by
    This chapter has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Aly, Amal H. Debbab, Abdessamad and Proksch, Peter 2011. Fifty years of drug discovery from fungi. Fungal Diversity, Vol. 50, Issue. 1, p. 3.

    ×
  • Print publication year: 2007
  • Online publication date: October 2013

4 - Fungal metabolites as lead structures for agriculture

from II - Bioactive molecules
Summary

Introduction

In order to meet an increasing food and feed demand for a rising human population agricultural production must be increased, in which crop protection plays a key role. For many decades this field has been the domain of inorganic and synthetic organic chemistry. Many pests could be effectively controlled but high toxicity for humans and non-target organisms as well as in some cases a prolonged persistence in the environment, have made a search for less toxic and more environmentally safe compounds mandatory. The emergence of resistant pathogens, especially fungi, has added to the problem making an intensive search for agrochemicals with new target sites necessary. Today, the standards to be met by new agrochemicals are very high, especially with regard to efficiency and ecological safety. The price has to be competitive and, in general, much lower compared to pharmaceutical compounds. In addition, the active ingredients have to be produced in very large quantities. In 2004, 85 000 tons of agrochemicals were produced in Germany, among them 37 000 tons of fungicides (Hübenthal, 2005).

Natural products in plant protection

Natural products obtained from terrestrial and marine microorganisms, plants and animals are important sources of new chemical structures with biological activities useful for medicine or agriculture. In human medicine the natural products themselves, or semi-synthetic derivatives, play key roles in antibiotic therapy, organ transplantation, cancer therapy and other important fields. In the field of plant protection, their roles are much less conspicuous.

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Exploitation of Fungi
  • Online ISBN: 9780511902451
  • Book DOI: https://doi.org/10.1017/CBO9780511902451
Please enter your name
Please enter a valid email address
Who would you like to send this to *
×
References
Anke, T. & Erkel, G. (2002). Non ß-lactam antibiotics. In The Mycota X. Industrial Applications, ed. Osiewacz, H. D.. Berlin, Heidelberg: Springer Verlag, pp. 93–108.
Anke, T. & Steglich, W. (1999). Strobilurins and oudemansins. In Drug Discovery from Nature, eds. Grabley, S., & Thiericke, R.. Berlin, Heidelberg: Springer Verlag, pp. 320–34.
Anke, T., Oberwinkler, F., Steglich, W. & Schramm, G. (1977). The strobilurins – new antifungal antibiotics from the basidiomycete Strobilurus tenacellus (Pers. ex Fr.) Sing. Journal of Antibiotics, 30, 806–10.
Anke, T., Schramm, G., Steglich, W. & Jagow, G. (1988). Structure-activity relationships of natural and synthetic E-ß-methoxyacrylates of the strobilurin and oudemansin series. In The Roots of Modern Biochemistry – Energetics of the Cell, Fritz Lipmann's Squiggle and its Consequences. Amsterdam: W. de Gruyter, pp. 657–62.
Anke, T., Hecht, H.-J., Schramm, G. & Steglich, W. (1979). Antibiotics from basidiomycetes. IX. Oudemansin, an antifungal antibiotic from Oudemansiella mucida (Schrader ex Fr.) Hoehnel (Agaricales). Journal of Antibiotics, 32, 1112–17.
Arima, K., Imanaka, H., Kousaka, M., Fukuda, A. & Tamura, G. (1965). Studies on pyrrolnitrin, a new antibiotic. I. Isolation and properties of pyrrolnitrin. Journal of Antibiotics, 18, 201–4.
Becker, W. F., Jagow, G., Anke, T. & Steglich, W. (1981). Oudemansin, strobilurin A, strobilurin B and myxothiazol: new inhibitors of the bc1 segment of the respiratory chain with a E-ß-methoxyacrylate system as common structural element. FEBS Letters, 132, 329–33.
Capa, L., Mendoza, A., Lavandera, J. L., Heras, las G. F. & Garcia-Bustos, J. F. (1998). Translation elongation factor 2 is part of the target for a new family of antifungals. Antimicrobial Agents and Chemotherapy, 42, 2694–9.
Current, W. L., Tang, J., Boylan, C., Watson, P., Zeckner, D., Turner, W., Rodriguez, M., Dixon, C., Ma, D. & Radding J. A. (1995). Glucan biosynthesis as a target for antifungals: The echinocandin class of antifungals. In Antifungal Agents, Discovery and Mode of Action, eds. Dixon, G. K., Copping, L. G. & Hollomon, D. W.. Oxford: Bios Scientific Publishers, pp. 143–60.
Debono, M., Gordee, R. S. (1994). Antibiotics that inhibit fungal cell wall development. Annual Review of Microbiology, 48, 471–97.
Eilbert, F., Thines, E., Anke, H. & Sterner, O. (1999). Fatty acids and their derivates as modulators of appressorium formation in Magnaporthe grisea. Bioscience, Biotechnology and Biochemistry, 63, 879–83.
Eilbert, F., Anke, H. & Sterner, O. (2000a). Neobulgarones A-F from cultures of Neobulgaria pura, new inhibitors of appressorium formation in Magnaporthe grisea. Journal of Antibiotics, 53, 1123–9.
Eilbert, F., Engler-Lohr, M., Anke, H. & Sterner, O. (2000b). Bioactive sesquiterpenes from the basidiomycete Resupinatus leightonii. Journal of Natural Products, 63, 1286–7.
Gerth, K., Irschik, H., Reichenbach, H. & Trowitzsch, W. (1980). Myxothiazol, an antibiotic from Myxococcus fulvus (Myxobacterales). I. Cultivation, isolation, physico-chemical and biological properties. Journal of Antibiotics, 33, 1474–9.
Hoechst-Patent: DE 3025268 (Priorität: 4. 7. 80) Verfahren zur Synthese von Strobilurin.
Hübenthal, A. (2005). Pflanzenschutz zwischen Nutzen und Risiko. Nachrichten aus der Chemie, 7/8, 735–42.
Justice, C. J., Hsu, M., Tse, B., Ku, T., Baljovec, J., Schmatz, D. & Nielsen, J. (1998). Elongation factor 2 as a novel target for selective inhibition of fungal protein synthesis. Journal of Biological Chemistry, 273, 3148–51.
Kettering, M., Sterner, O. & Anke, T. (2004). Antibiotics in the chemical communication of fungi. Zeitschrift für Naturforschung, 59c, 816–23.
Kettering, M., Valdivia, C., Sterner, O., Anke, H. & Thines, E. (2005). Heptemerones A∼G, seven novel diterpenoids from Coprinus heptemerus: producing organism, fermentation, isolation and biological activities. Journal of Antibiotics, 58, 390–6.
Kraiczy, P., Haase, U., Gencic, S., Flindt, S., Anke, T., Brandt, U. & Jagow, G. (1996). The molecular basis for the natural resistance of the cytochrome bc1 complex from strobilurin-producing basidiomycetes to center Qp inhibitors. European Journal of Biochemistry, 235, 54–63.
Lebrun, M. H., Nicolas, L., Boutar, M., Gaudemer, F., Ranomenjanahary, S. & Gaudemer, A. (1988). Relationships between the structure and the phytotoxicity of the fungal toxin tenuazonic acid. Phytochemistry, 27, 77–84.
Sauter, H., Steglich, W. & Anke, T. (1999) Strobilurine: Evolution einer neuen Wirkstoffklasse. Angewandte Chemie. 111, 1416–38; Int. Ed. 39, 1328–49 (1999).
Schneider, G., Anke, H. & Sterner, O. (1995). Xylarin, an antifungal Xylaria metabolite with an unusal tricyclic uronic acid moiety. Natural Product Letters, 7, 309–16.
Schramm, G. (1980). Neue Antibiotika aus Höheren Pilzen. Dissertation, University of Bonn.
Selitrennikoff, C. P. (1995). Antifungal Drugs: (1,3) ß-Glucan Synthase Inhibitors. New York: Springer.
Stanley, M. S., Callow, M. E., Perry, R., Alberte, R. S., Smith, R. & Callow, J. A. (2002). Inhibition of fungal spore adhesion by zosteric acid as the basis for a novel, nontoxic crop protection technology. Phytopathology, 92, 378–83.
Staples, R. C. (2000). Research on the rust fungi during the twentieth century. Annual Review of Phytopathology, 38, 49–69.
Sterner, O., Thines, E., Eilbert, F. & Anke, H. (1998). Glisoprenins C, D and E, new inhibitors of appressorium formation in Magnaporthe grisea from cultures of Gliocladium roseum. Journal of Antibiotics, 51, 228–31.
Stevens, J. T. & Breckenridge, C. B. (2001). Crop protection chemicals. In Principles and Methods of Toxicology, ed. Hayes, W.. Philadelphia: Taylor & Francis, pp. 564–647.
Thines, E., Daussmann, T., Semar, M., Sterner, O. & Anke, H. (1995). Fungal melanin biosynthesis inhibitors: introduction of a test system based on the production of dihydroxynaphthalene (DHN) melanin in agar cultures. Zeitschrift für Naturforschung, 50c, 813–19.
Thines, E., Eilbert, F., Sterner, O. & Anke, H. (1997a). Glisoprenin A, an inhibitor of the signal transduction pathway leading to appressorium formation in germinating conidia of Magnaporthe grisea on hydrophobic surfaces. FEMS Microbiology Letters, 151, 219–24.
Thines, E., Eilbert, F., Sterner, O. & Anke, H. (1997b). Signal transduction leading to appressorium formation in germinating conidia of Magnaporthe grisea: effects of second messengers diacylglycerols, ceramides and sphingomyelin. FEMS Microbiology Letters, 156, 91–4.
Thines, E., Anke, H. & Sterner, O. (1997c). Scytalols A, B, C, and D and other modulators of melanin biosynthesis from Scytalidium sp. 36–93. Journal of Antibiotics, 51, 387–93.
Thines, E., Anke, H. & Weber, R. W. (2004). Fungal secondary metabolites as inhibitors of infection-related morphogenesis in phytopathogenic fungi. Mycological Research, 108, 14–25.
Tsurushima, T., Ueno, T., Fukam, H., Irie, H. & Inoue, M. (1995). Germination self-inhibitors from Colletotrichum gloeosporioides f. sp. jussiaea. Molecular Plant-Microbe Interactions, 8, 652–7.
Jagow, G., Gribble, G. W. & Trumpower, B. L. (1986). Mucidin and strobilurin A are identical and inhibit electron transfer in the cytochrome bc1 complex of the mitochondrial respiratory chain at the same site as myxothiazol. Biochemistry, 25, 775–80.
Vondracek, M., Capkova, J., Slechta, J., Benda, A., Musilek, V. & Cudlin J. Czech Pat 136495 (filed 26. 9. 1969/obtained 15. 5. 1970). Isolierung eines neuen antifungischen Antibiotikums. Bezug: Czech 136492.
Wheeler, I, Hollomon, D. W., Longhurst, C. & Green, E. (2000). Quinoxyfen signals a stop infection by powdery mildews. In The BCPC Conference – Pests & Disease 2000, Abstract 8A–4.