Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T08:17:00.393Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  10 November 2018

Tiberiu Harko
Affiliation:
University College London
Francisco S. N. Lobo
Affiliation:
Universidade de Lisboa
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Extensions of f(R) Gravity
Curvature-Matter Couplings and Hybrid Metric-Palatini Theory
, pp. 422 - 445
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aad, G., et al. [ATLAS and CMS Collaborations]. 2015. Combined measurement of the Higgs Boson mass in pp collisions at and 8 TeV with the ATLAS and CMS experiments. Phys. Rev. Lett., 114, 191803.Google Scholar
Abbott, B. P., et al. [LIGO Scientific and Virgo Collaborations]. 2016. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116, 061102.Google Scholar
Abbott, B. P., et al. [LIGO Scientific and Virgo Collaborations]. 2016. GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett., 116, 241103. arXiv:1606.04855 [gr-qc].Google Scholar
Abbott, B. P., et al. [LIGO Scientific and Virgo Collaborations]. 2017. GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett., 118, 221101.CrossRefGoogle ScholarPubMed
Abbott, B. P., et al. [LIGO Scientific and Virgo Collaborations]. 2017. GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett., 119, 141101.Google ScholarPubMed
Abbott, B. P., et al. [LIGO Scientific and Virgo Collaborations]. 2017. GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett., 119, 161101.Google ScholarPubMed
Abbott, B. P., et al. [LIGO Scientific and Virgo Collaborations]. 2017. GW170608: Observation of a 19-Solar-Mass binary black hole coalescence. Astrophys. J., 851, L35.CrossRefGoogle Scholar
Abebe, A., Abdelwahab, M., de la Cruz-Dombriz, A., and Dunsby, P. K. S. 2012. Covariant gauge-invariant perturbations in multifluid f(R) gravity. Class. Quant. Grav., 29, 135011.Google Scholar
Abramo, L. R., Batista, R. C., Liberato, L., and Rosenfeld, R. 2007. Structure formation in the presence of dark energy perturbations. J. Cosmo. Astropart. Phys., 0711, 012.Google Scholar
Ade, P. A. R., et al. 2014. Planck 2013 results. XXII. Constraints on inflation. Astron. Astrophys., 571, A22. arXiv:1303.5082 [astro-ph.CO].Google Scholar
Ade, P. A. R., et al. 2015. Planck Collaboration, Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys., 594, A13.Google Scholar
Aldrovandi, R., and Pereira, J. G. 2013. Teleparallel Gravity: An Introduction, (Springer: Dordrecht).CrossRefGoogle Scholar
Allemandi, G., Borowiec, A., Francaviglia, M., and Odintsov, S. D. 2005. Dark energy dominance and cosmic acceleration in first order formalism. Phys. Rev. D, 72, 063505.CrossRefGoogle Scholar
Alvarenga, F. G., de la Cruz-Dombriz, A., Houndjo, M. J. S., Rodrigues, M. E., and Sáez-Gómez, D. 2013. Dynamics of scalar perturbations in f(R,T) gravity. Phys. Rev. D, 87, 103526.Google Scholar
Alvarenga, F. G., Houndjo, M. J. S., Monwanou, A. V., and Orou, J. B. C. 2013. Testing some f(R,T) gravity models from energy conditions. J. Mod. Phys., 4, 130.CrossRefGoogle Scholar
Amendola, L. 2000. Coupled quintessence. Phys. Rev. D, 62, 043511.CrossRefGoogle Scholar
Amendola, L., Appleby, S., Bacon, D., Baker, T. M., Baldi, M., and Bartolo, N. 2013. Cosmology and fundamental physics with the Euclid satellite. Living Rev. Rel., 16, 6.CrossRefGoogle ScholarPubMed
Amendola, L., Enqvist, K., and Koivisto, T. 2011. Unifying Einstein and Palatini gravities. Phys. Rev. D, 83, 044016.CrossRefGoogle Scholar
Antoniadis, J., et al. 2013. A massive pulsar in a compact relativistic binary. Science, 340, 448449.Google Scholar
Aoki, K., Maeda, K.-i., and Tanabe, M. 2016. Relativistic stars in bigravity theory. Phys. Rev. D, 93, 064054.Google Scholar
Aramaki, T., et al. 2016. Review of the theoretical and experimental status of dark matter identification with cosmic-ray antideuterons. Phys. Rep., 618, 137.CrossRefGoogle Scholar
Arbuzova, E. V., Dolgov, A. D., and Reverberi, L. 2012. Cosmological evolution in R2 gravity. J. Cosmo. Astropart. Phys., 2012, 049.CrossRefGoogle Scholar
Armendáriz-Picón, C. 2002. Predictions and observations in theories with varying couplings. Phys. Rev. D, 66, 064008.Google Scholar
Arnaud, M. 2005. X-ray observations of clusters of galaxies. In Melchiorri, F. and Rephaeli, Y., eds., Background Microwave Radiation and Intracluster Cosmology, Vol. 159, Proceedings of the International School of Physics “Enrico Fermi”, (Amsterdam: IOS Press), 77.Google Scholar
Arun, K., Gudennavar, S. B., and Sivaram, C. 2017. Dark matter, dark energy, and alternate models: A review. Adv. Space Res., 60, 166186.Google Scholar
Aviles, A., and Cervantes-Cota, J. L. 2011. Dark degeneracy and interacting cosmic components. Phys. Rev. D, 83, 023510.Google Scholar
Ayuso, I., Jimenez, J. B., and de la Cruz-Dombriz, A. 2015. Consistency of universally nonminimally coupled f(R, T, RμνT μν) theories. Phys. Rev. D, 91, 104003.Google Scholar
Babichev, E., Koyama, K., Langlois, D., Saito, R., and Sakstein, J. 2016. Relativistic Stars in Beyond Horndeski Theories. Class. Quant. Grav., 33, 235014.Google Scholar
Baer, H., Choi, K.–Y., Kim, J. E., and Roszkowski, L. 2015. Dark matter production in the early Universe: Beyond the thermal WIMP paradigm. Phys. Rep., 555, 160.Google Scholar
Baez, J., and Muniain, J. P. 2008. Gauge Fields, Knots and Gravity, (New Jersey, London, Hong Kong, Singapore: World Scientific, 2008).Google Scholar
Balaguera-Antolinez, A., Böhmer, C. G., and Nowakowski, M. 2006. Scales set by the cosmological constant. Class. Quant. Grav., 23, 485496.Google Scholar
Balaguera-Antolinez, A., Mota, D. F., and Nowakowski, M. 2007. Astrophysical configurations with background cosmology: Probing dark energy at astrophysical scales. Mon. Not. R. Astron. Soc., 382, 621640.Google Scholar
Baldi, M., Pettorino, V., Robbers, G., and Springel, V. 2010. Hydrodynamical N-body simulations of coupled dark energy cosmologies. Mon. Not. Roy. Astron. Soc., 403, 16841702.Google Scholar
Bamba, K., Capozziello, S., Nojiri, S., and Odintsov, S. D. 2012. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci., 342, 155228.Google Scholar
Bamba, K., Nojiri, S.’i., and Odintsov, S. D. 2008. Inflationary cosmology and the late-time accelerated expansion of the universe in non-minimal Yang-Mills-F(R)gravity and non-minimal vector-F(R) gravity. Phys. Rev. D, 77, 123532.CrossRefGoogle Scholar
Bamba, B., and Odintsov, S. D. 2008. Inflation and late-time cosmic acceleration in non-minimal Maxwell-F (R) gravity and the generation of large-scale magnetic fields. J. Cosmo. Astropart. Phys., 0804, 024.Google Scholar
Bamba, K., and Odintsov, S. D. 2015. Inflationary cosmology in modified gravity theories. Symmetry, 7, 220.CrossRefGoogle Scholar
Bambi, C., and Barausse, E. 2011. Constraining the quadrupole moment of stellar-mass black hole candidates with the continuum fitting method. Astrophys. J., 731, 121.Google Scholar
Barrow, J. D., and Ottewill, A. C. 1983. The stability of general relativistic cosmological theory. J. Phys. A: Math. Gen., 16, 2757.CrossRefGoogle Scholar
Baykal, A., and Delice, O. 2011. A unified approach to variational derivatives of modified gravitational actions. Class. Quant. Grav., 28, 015014.CrossRefGoogle Scholar
Baykal, A., and Delice, O. 2013. Multi-scalar-tensor equivalents for modified gravitational actions. Phys. Rev. D, 88, 084041.CrossRefGoogle Scholar
Bekenstein, J. D. 2004. Relativistic gravitation theory for the modified Newtonian dynamics paradigm. Phys. Rev. D, 70, 083509.CrossRefGoogle Scholar
Bennett, C. L., et al. 2003. First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results. Astrophys. J. Suppl., 148, 1.Google Scholar
Bertolami, O., Boehmer, C. G., Harko, T., and Lobo, F. S. N. 2007. Extra force in f(R) modified theories of gravity. Phys. Rev. D, 75, 104016.Google Scholar
Bertolami, O., and Ferreira, R. Z. 2012. Traversable Wormholes and Time Machines in non-minimally coupled curvature-matter f(R) theories. Phys. Rev. D, 85, 104050.Google Scholar
Bertolami, O., Frazão, P., and Páramos, J. 2010. Accelerated expansion from a non-minimal gravitational coupling to matter. Phys. Rev. D, 81, 104046.CrossRefGoogle Scholar
Bertolami, O., Frazão, P., and Páramos, J. 2011. Reheating via a generalized non-minimal coupling of curvature to matter. Phys. Rev. D, 83, 044010.Google Scholar
Bertolami, O., Frazão, P., and Páramos, J. 2012. Mimicking dark matter in galaxy clusters through a non-minimal gravitational coupling with matter. Phys. Rev. D, 86, 044034.Google Scholar
Bertolami, O., Frazão, P., and Páramos, J. 2013. Cosmological perturbations in theories with non-minimal coupling between curvature and matter. J. Cosmo. Astropart. Phys., 1305, 029.Google Scholar
Bertolami, O., Pedro, F. G., and Le Delliou, M. 2007. Dark energy-dark matter interaction and putative violation of the Equivalence Principle from the Abell Cluster A586. Phys. Lett. B, 654, 165.Google Scholar
Bertolami, O., Gomes, C., and Lobo, F. S. N. 2017. Gravitational waves in theories with a non-minimal curvature-matter coupling. arXiv:1706.06826 [gr-qc].CrossRefGoogle Scholar
Bertolami, O., Harko, T., Lobo, F. S. N., and Páramos, J. 2008. Non-minimal curvature-matter couplings in modified gravity. arXiv:0811.2876 [gr-qc].Google Scholar
Bertolami, O., Lobo, F. S. N., and Páramos, J. 2008. Nonminimal coupling of perfect fluids to curvature. Phys. Rev. D, 78, 064036.CrossRefGoogle Scholar
Bertolami, O., March, R., and Páramos, J. 2013. Solar system constraints to nonminimally coupled gravity. Phys. Rev. D, 88, 064019.CrossRefGoogle Scholar
Bertolami, O., and Martins, A. 2012. On the dynamics of perfect fluids in nonminimally coupled gravity. Phys. Rev. D, 85, 024012.Google Scholar
Bertolami, O., and Páramos, J. 2008. Do f(R) theories matter? Phys. Rev. D, 77, 084018.Google Scholar
Bertolami, O., and Páramos, J. 2008. On the non-trivial gravitational coupling to matter. Class. Quant. Grav., 25, 245017.Google Scholar
Bertolami, O., and Páramos, J. 2010. Mimicking dark matter through a non-minimal gravitational coupling with matter. J. Cosmo. Astropart. Phys., 1003, 009.Google Scholar
Bertolami, O., and Páramos, J. 2014. Minimal extension of General Relativity: Alternative gravity model with non-minimal coupling between matter and curvature. Int. J. Geom. Meth. Mod. Phys., 11, 1460003.Google Scholar
Bertolami, O., and Páramos, J. 2014. Modified Friedmann equation from nonminimally coupled theories of gravity. Phys. Rev. D, 89, 044012.Google Scholar
Bertolami, O., and Páramos, J. 2015. Homogeneous spherically symmetric bodies with a nonminimal coupling between curvature and matter: The choice of the Lagrangian density for matter. Gen. Rel. Grav., 47, 1835.Google Scholar
Bertolami, O., Páramos, J., and Turyshev., S. 2008. General theory of relativity: Will it survive the next decade? Astrophys. Space Sci. Libr., 349, 27.Google Scholar
Bertolami, O., and Sequeira, M. C. 2009. Energy conditions and stability in f(R) theories of gravity with non-minimal coupling to matter. Phys. Rev. D, 79, 104010.Google Scholar
Bildhauer, S. 1989. Transport equations for freely propagating photons in curved space-times: A derivation by Wigner transformation. Class. Quant. Grav., 6, 11711187.CrossRefGoogle Scholar
Binney, J., and Tremaine, S. 2008. Galactic Dynamics. (Princeton: Princeton University Press).Google Scholar
Bisabr, Y. 2012. Modified gravity with a non-minimal gravitational coupling to matter. Phys. Rev. D, 86, 044025.Google Scholar
Bisabr, Y. 2013. Non-minimal gravitational coupling of phantom and big rip singularity. Gen. Rel. Grav., 45, 15591566.CrossRefGoogle Scholar
Biswas, T., Gerwick, E., Koivisto, T., and Mazumdar, A. 2012. Towards singularity and ghost free theories of gravity. Phys. Rev. Lett., 108, 031101.Google Scholar
Biswas, T., Koivisto, T., and Mazumdar, A. 2013. Nonlocal theories of gravity: The flat space propagator. arXiv:1302.0532 [gr-qc].Google Scholar
Bodmer, A. R. 1971. Collapsed nuclei. Phys. Rev. D, 4, 16011606.CrossRefGoogle Scholar
Boehmer, C. G., De Risi, G., Harko, T., and Lobo, F. S. N. 2010. Classical tests of general relativity in brane world models. Class. Quant. Grav., 27, 185013.Google Scholar
Boehmer, C. G., and Harko, T. 2007. Can dark matter be a Bose-Einstein condensate? J. Cosmo. Astropart. Phys., 0706, 025.Google Scholar
Boehmer, C. G., and Harko, T. 2008. Physics of dark energy particles. Found. Phys., 38 (2008), 216227.CrossRefGoogle Scholar
Boehmer, C. G., Harko, T., and Lobo, F. S. N. 2008. Dark matter as a geometric effect in f(R) gravity. Astropart. Phys., 29, 386.Google Scholar
Boehmer, C. G., Harko, T., and Lobo, F. S. N. 2008. Generalized virial theorem in f(R) gravity. J. Cosmo. Astropart. Phys., 0803, 024.Google Scholar
Boehmer, C. G., Harko, T., and Lobo, F. S. N. 2008. Solar system tests of brane world models. Class. Quant. Grav., 25, 045015.Google Scholar
Boehmer, C. G., Harko, T., and Lobo, F. S. N. 2012. Wormhole geometries in modified teleparralel gravity and the energy conditions. Phys. Rev. D, 85, 044033.Google Scholar
Boehmer, C. G., Lobo, F. S. N., and Tamanini, N. 2013. Einstein static Universe in hybrid metric-Palatini gravity. Phys. Rev. D, 88, 104019.Google Scholar
Boisseau, B., Esposito-Farese, G., Polarski, D., and Starobinsky, A. A. 2000. Reconstruction of a scalar tensor theory of gravity in an accelerating universe. Phys. Rev. Lett., 85, 2236.Google Scholar
Bojowald, M. 2011. Quantum Cosmology: A Fundamental Description of the Universe, (New York, Dordrecht, Heidelberg, London: Springer).CrossRefGoogle Scholar
Bojowald, M. 2015. Quantum cosmology: A review. Reports on Progress in Physics, 78, 023901.Google Scholar
Bondi, H. 1952. On spherically symmetrical accretion. Mon. Not. R. Acad. Sci., 112, 195204.Google Scholar
Borka, B., Capozziello, S., Jovanovic, P., and Jovanovic, V. B. 2016. Probing hybrid modified gravity by stellar motion around Galactic Center. Astropart. Phys. 79, 41.Google Scholar
Borowiec, A., Capozziello, S., de Laurentis, M., et al. 2015. Invariant solutions and Noether symmetries in hybrid gravity. Phys. Rev. D, 91, 023517.CrossRefGoogle Scholar
Borriello, A., and Salucci, P. 2001. The dark matter distribution in disc galaxies. Mon. Not. R. Astron. Soc., 323, 285.Google Scholar
Boylan-Kolchin, M., Bullock, J. S., and Kaplinghat, M. 2011. Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Mon. Not. R. Astron. Soc., 415, L40–L44.Google Scholar
Boylan-Kolchin, M., Bullock, J. S., and Kaplinghat, M. 2012. The Milky Way’s bright satellites as an apparent failure of ΛCDM. Mon. Not. R. Astron. Soc., 422, 12031218.Google Scholar
Brans, C., and Dicke, R. H. 1961. Mach’s principle and a relativistic theory of gravitation. Phys. Rev., 124, 925935.Google Scholar
Brax, P., van de Bruck, C., Mota, D. F., Nunes, N. J., and Winther, H. A. 2010. Chameleons with field dependent couplings. Phys. Rev. D, 82, 083503.Google Scholar
Brax, P. 2012. Screened modified gravity. Acta Phys. Polon. B, 43, 2307.Google Scholar
Brax, P., Davis, A.-C., Li, B., and Winther, H. A. 2012. A unified description of screened modified gravity. Phys. Rev. D, 86, 044015.Google Scholar
Brihaye, Y., Cisterna, A., and Erices, C. 2016. Boson stars in biscalar extensions of Horndeski gravity. Phys. Rev. D, 93, 124057.CrossRefGoogle Scholar
Brown, J. D. 1993. Action functionals for relativistic perfect fluids. Class. Quant. Grav., 10, 15791606.Google Scholar
Buchdahl, H. A. 1959. General relativistic fluid spheres. Phys. Rev., 116, 1027– 1034.Google Scholar
Buchdahl, H. A. 1970. Non-linear Lagrangians and cosmological theory. Mon. Not. Roy. Astron. Soc., 150, 1.Google Scholar
Cai, Y. F., Capozziello, S., De Laurentis, M., and Saridakis, E. N. 2016. f(T) teleparallel gravity and cosmology. Rept. Prog. Phys., 79, 106901.Google Scholar
Calvao, M. O., Lima, J. A. S., and Waga, I. 1992. On the thermodynamics of matter creation in cosmology. Phys. Lett. A, 162, 223.Google Scholar
Carloni, S., Koivisto, T., and Lobo, F. S. N. 2015. A dynamical system analysis of hybrid metric-Palatini cosmologies. Phys. Rev. D, 92, 064035.CrossRefGoogle Scholar
Capozziello, S. 2002. Curvature quintessence. Int. J. Mod. Phys. D, 11, 483492.CrossRefGoogle Scholar
Capozziello, C., Cardone, V. F., and Troisi, A. 2006. Dark energy and dark matter as curvature effects. J. Cosmo. Astropart. Phys., 0608, 001.Google Scholar
Capozziello, C., Cardone, V. F., and Troisi, A. 2007. Low surface brightness galaxies rotation curves in the low energy limit of Rn gravity: no need for dark matter? Month. Not. R. Astron. Soc., 375, 14231440.Google Scholar
Capozziello, S., Carloni, S., and Troisi, A. 2003. Quintessence without scalar fields. Recent Res. Dev. Astron. Astrophys., 1, 625.Google Scholar
Capozziello, S., and De Laurentis, M. 2011. Extended theories of gravity. Phys. Rept., 509, 167.Google Scholar
Capozziello, S., Harko, T., Koivisto, T. S., Lobo, F. S. N., and Olmo, G. J. 2013. Cosmology of hybrid metric-Palatini f(X)-gravity. J. Cosmo. Astropart. Phys., 1304, 011.Google Scholar
Capozziello, S., Harko, T., Koivisto, T. S., Lobo, F. S. N., and Olmo, G. J. 2013. Galactic rotation curves in hybrid metric-Palatini gravity. Astropart. Phys., 50 52, 6575.Google Scholar
Capozziello, S., Harko, T., Koivisto, T. S., Lobo, F. S. N., and Olmo, G. J. 2013. The virial theorem and the dark matter problem in hybrid metric-Palatini gravity. J. Cosmo. Astropart. Phys., 07, 024.Google Scholar
Capozziello, S., Harko, T., Koivisto, T. S., Lobo, F. S. N., and Olmo, G. J. 2013. Wormholes supported by hybrid metric-Palatini gravity. Phys. Rev. D, 86, 127504.Google Scholar
Capozziello, S., Harko, T., Koivisto, T. S., Lobo, F. S. N., and Olmo, G. J. 2015. Hybrid metric-Palatini gravity. Universe, 1, 199.Google Scholar
Capozziello, S., Harko, T., Lobo, F. S. N., and Olmo, G. J. 2013. Hybrid modified gravity unifying local tests, galactic dynamics and late-time cosmic acceleration. Int. J. Mod. Phys. D, 22, 1342006.Google Scholar
Capozziello, S., Harko, T., Lobo, F. S. N., and Olmo, G. J., and Vignolo, S. 2014. The Cauchy problem in hybrid metric-Palatini f(X)-gravity. Int. J. Geom. Meth. Mod. Phys., 11, 1450042.Google Scholar
Capozziello, S., and Vignolo, S. 2009. The Cauchy problem for metric-affine f(R)-gravity in presence of perfect-fluid matter. Class. Quant. Grav., 26, 175013.Google Scholar
Capozziello, S., and Vignolo, S. 2009. On the well formulation of the initial value problem of metric–affine f(R)-gravity. Int. J. Geom. Meth. Mod. Phys., 6, 985– 1001.Google Scholar
Capozziello, S., and Vignolo, S. 2011. The Cauchy problem for metric-affine f(R)-gravity in presence of a Klein-Gordon scalar field. Int. J. Geom. Meth. Mod. Phys., 8, 167176.Google Scholar
Capozziello, S., and Vignolo, S. 2012. The Cauchy problem for f(R)-gravity: An overview. Int. J. Geom. Meth. Mod. Phys., 9, 1250006.Google Scholar
Cardenas, V. H. 2012. Dark energy, matter creation and curvature. The European Physical Journal C, 72, 2149.CrossRefGoogle Scholar
Carlberg, R. G., Yee, H. K. C., and Ellingson, E. 1997. The average mass and light profiles of galaxy clusters. Astrophys. J., 478, 462475.Google Scholar
Carlip, S. 2008. Is quantum gravity necessary? Class. Quant. Grav., 25, 154010.Google Scholar
Carlson, E. D., Machacek, M. E., and Hall, J. L. 1992. Self-interacting dark matter. Astrophys. J., 398, 4352.Google Scholar
Carroll, S. M. 2014. Spacetime And Geometry: An Introduction To General Relativity, (Harlow, UK: Pearson Education Limited, 2014)Google Scholar
Carroll, S. M., Duvvuri, V., Trodden, M., and Turner, M. S. 2004. Is cosmic speed-up due to new gravitational physics? Phys. Rev. D, 70, 043528.Google Scholar
Cartan, E. 1922. Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion. C. R. Acad. Sci. (Paris), 174, 593601.Google Scholar
Cartan, E. 1925. Sur les variétés à connexion affine et la théorie de la relativité généralisée (deuxième partie). Ann. Ec. Norm. Sup., 42, 1728.Google Scholar
Casas, J. A., García-Bellido, J., and Quiros, M. 1992. Scalar-tensor theories of gravity with Phi-dependent masses. Class. Quant. Grav., 9, 1371.Google Scholar
Castañeda Valle, D., and Mielke, E. W. 2016. Relativistic soliton collisions of axion type dark matter. Phys. Lett. B, 758, 9397.Google Scholar
Castel-Branco, N., Paramos, J., and March, R. 2014. Perturbation of the metric around a spherical body from a nonminimal coupling between matter and curvature. Phys. Lett. B, 735, 25.Google Scholar
Celani, D. C. F., Pinto-Neto, N., and Vitenti, S. D. P. 2017. Particle creation in bouncing cosmologies. Phys. Rev. D, 95, 023523.Google Scholar
Cembranos, J. A. R. 2009. Dark matter from R2 gravity. Phys. Rev. Lett., 102, 141301.CrossRefGoogle ScholarPubMed
Chakraborty, S. 2013. An alternative f(R, T) gravity theory and the dark energy problem. Gen. Rel. Grav., 45, 2039.CrossRefGoogle Scholar
Chakraborty, S. 2014. Is emergent universe a consequence of particle creation process? Phys. Lett. B, 732, 8184.Google Scholar
Charmousis, C., Copeland, E. J., Padilla, A., and Saffin, P. M. 2012. Self-tuning and the derivation of a class of scalar-tensor theories. Phys. Rev. D, 85, 104040.Google Scholar
Chavanis, P. H., and Harko, T. 2012. Bose-Einstein condensate general relativistic stars. Phys. Rev. D, 86, 064011.Google Scholar
Cheng, K. S., Dai, Z. G., and Lu, T. 1998. Strange stars and related astrophysical phenomena. Int. J. Mod. Phys. D, 7, 139176.Google Scholar
Chen, C.-M., Harko, T., and Mak, M. K. 2000. Bianchi type I cosmologies in arbitrary dimensional dilaton gravities. Phys. Rev. D, 62, 124016.Google Scholar
Choquet-Bruhat, Y. 1962. Cauchy problem, in Witten, L., ed., Gravitation: An Introduction to Current Research, (New York: John Wiley & Sons).Google Scholar
Choquet-Bruhat, Y. 2009. General Relativity and the Einstein Equations, (New York: Oxford University Press).Google Scholar
Chudaykin, A., Gorbunov, D., and Tkachev, I. 2016. Dark matter component decaying after recombination: Lensing constraints with Planck data. Phys. Rev. D, 94, 023528.Google Scholar
Ciarlet, P., and Lions, J., eds. 1993. Handbook of Numerical Analysis, Vol. 3, (Amsterdam: Elsevier).Google Scholar
Cisterna, A., Delsate, T., Ducobu, L., and Rinaldi, M. 2016. Slowly rotating neutron stars in the nonminimal derivative coupling sector of Horndeski gravity. Phys. Rev. D, 93, 084046.CrossRefGoogle Scholar
Cisterna, A., Delsate, T., and Rinaldi, M. 2015. Neutron stars in general second order scalar-tensor theory: The case of nonminimal derivative coupling. Phys. Rev. D, 92, 044050.Google Scholar
Copeland, E. J., Sami, M., and Tsujikawa, S. 2006. Dynamics of dark energy. Int. J. Mod. Phys. D, 15, 17531936.Google Scholar
Courteau, S., et al. 2014. Galaxy masses. Rev. Mod. Phys., 86, 47119.Google Scholar
Cui, Y. 2015. A review of WIMP baryogenesis mechanisms. Mod. Phys. Lett. A, A 30, 1530028.Google Scholar
Damour, T. 1996. Testing the equivalence principle: Why and how? Class. Quant. Grav., 13, A33.Google Scholar
Damour, T. 2001. Questioning the equivalence principle. Compt. Rend. Acad. Sci. Ser. IV Phys. Astrophys., 2, 1249.Google Scholar
Damour, T. 2012. Theoretical aspects of the equivalence principle. Class. Quant. Grav., 29, 184001.Google Scholar
Damour, T., and Donoghue, J. F. 2010. Equivalence principle violations and couplings of a light dilaton. Phys. Rev. D, 82, 084033.CrossRefGoogle Scholar
Damour, T., and Esposito-Farese, G. 1992. Tensor multiscalar theories of gravitation. Class. Quant. Grav., 9, 2093.Google Scholar
Damour, T., and Esposito-Farese, G. 1996. Tensor-scalar gravity and binary-pulsar experiments. Phys. Rev. D, 54, 14741491.Google Scholar
Damour, T., Gibbons, G. W., and Gundlach, C. C. 1990. Dark matter, time-varying G, and a dilaton field. Phys. Rev. Lett., 64, 123.Google Scholar
Damour, T., Piazza, F., and Veneziano, G. 2002. Violations of the equivalence principle in a dilaton-runaway scenario. Phys. Rev. D, 66, 046007.Google Scholar
Damour, T., and Polyakov, A. M. 1994. The string dilation and a least coupling principle. Nuc. Phys. B, 423, 532.Google Scholar
Damour, T., and Polyakov, A. M. 1994. String theory and gravity. Gen. Rel. & Grav., 26, 1171.Google Scholar
Damour, T., and A. Vilenkin, A. 1996. String theory and inflation. Phys. Rev. D, 53, 2981.Google Scholar
Danila, B., Harko, T., Lobo, F. S. N., and Mak, M. K. 2017. Hybrid metric-Palatini stars. Phys. Rev. D, 95, 044031.Google Scholar
Das, D., and Banerjee, N. 2008. Brans–Dicke scalar field as a chameleon. Phys. Rev. D, 78, 043512.Google Scholar
Delgaty, M. S. R., and Lake, K. 1998. Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein’s equations. Comput. Phys. Commun., 115, 395415.Google Scholar
De Felice, A., and Tsujikawa, S. 2010. f(R) theories. Living Rev. Rel., 13, 3.CrossRefGoogle Scholar
De la Cruz-Dombriz, A., Dobado, A., and Maroto, A. L. 2008. On the evolution of density perturbations in f(R) theories of gravity. Phys. Rev. D, 2008, 77, 123515.Google Scholar
de Laix, A. A., Scherrer, R. J., and Schaefer, R. K. 1995. Constraints on self-interacting dark matter. Astrophys. J., 452, 495500.Google Scholar
Demorest, P., Pennucci, T., Ransom, S., Roberts, M., and Hessels, J. 2010. A two-solar-mass neutron star measured using Shapiro delay. Nature, 467, 1081– 1083.CrossRefGoogle ScholarPubMed
de Rham, C. 2014. Massive gravity. Living Rev. Rel., 17, 7.Google Scholar
de Rham, C., Hofmann, S., Khoury, J., and Tolley, A. J. 2008. Cascading gravity and degravitation. J. Cosmol. Astropart. Phys., 0802, 011.Google Scholar
De Risi, G., Harko, T., and Lobo, F. S. N. 2012. Solar system constraints on local dark matter density. J. Cosmo. Astropart. Phys., 07, 047.Google Scholar
Deser, S., and Gibbons, G. W. 1998. Born-Infeld-Einstein actions? Class. Quan. Grav., 15, L35.Google Scholar
de Sitter, W. 1917. On the relativity of inertia: Remarks concerning Einstein’s latest hypothesis. Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings, 19, 12171225.Google Scholar
de Sitter, W. 1917. Einstein’s theory of gravitation and its astronomical consequences. Third paper. Mon. Not. Roy. Astron. Soc., 78, 328.Google Scholar
Dewitt, B. S. 1967. Quantum theory of gravity. I. The canonical theory. Phys. Rev., 160, 11131148.Google Scholar
Dewitt, B. S. 1967. Quantum theory of gravity. II. The manifestly covariant theory. Phys. Rev., 162, 11951239.Google Scholar
Dewitt, B. S. 1967. Quantum Theory of Gravity. III. Applications of the covariant theory. Phys. Rev., 162, 12391256.Google Scholar
Dirac, P. A. M. 1996. General Theory of Relativity, (Princeton: Princeton University Press).Google Scholar
Dodelson, S. 2003. Modern Cosmology, (Amsterdam: Elsevier)Google Scholar
Dolgov, A. D., and Kawasaki, M. 2003. Can modified gravity explain accelerated cosmic expansion? Phys. Lett. B, 573, 1.Google Scholar
Drummond, I. T., and Hathrell, S. J. 1980. QED Vacuum polarization in a background gravitational field and its effect on the velocity of photons. Phys. Rev. D, 22, 343.Google Scholar
Dubrovin, B. A., Fomenko, A. T., and Novikov, S. P. 1985. Modern Geometry– Methods and Applications: Part II: The Geometry and Topology of Manifolds, 2nd edition, (New York: Springer Verlag).Google Scholar
Dubrovin, B. A., Fomenko, A. T., and Novikov, S. P. 1990. Modern Geometry– Methods and Applications: Part III: Introduction to Homology Theory, 2nd edition, (New York: Springer Verlag).Google Scholar
Dubrovin, B. A., Fomenko, A. T., and Novikov, S. P. 1992. Modern Geometry– Methods and Applications: Part I: The Geometry of Surfaces, Transformation Groups, and Fields, 2nd edition, (New York: Springer Verlag).Google Scholar
Duruisseau, J. P., Kerner, R., and Eysseric, P. 1983. Non-Einsteinian gravitational Lagrangians assuring cosmological solutions without collapse. Gen. Rel. Grav., 15, 797807.Google Scholar
Dvali, G. R., Gabadadze, G., and Porrati, M. 2000. 4-D gravity on a brane in 5-D Minkowski space. Phys. Lett. B, 485, 208.Google Scholar
Dzhunushaliev, V. 2015. Nonperturbative quantization: Ideas, perspectives, and applications. arXiv:1505.02747.Google Scholar
Dzhunushaliev, V., Folomeev, V., Kleihaus, B., and Kunz, J. 2014. Modified gravity from the quantum part of the metric. Eur. Phys. J. C, 74, 2743.Google Scholar
Dzhunushaliev, V., Folomeev, V., Kleihaus, B., and Kunz, J. 2015. Modified gravity from the nonperturbative quantization of a metric. Eur. Phys. J. C, 75, 157.Google Scholar
Eddington, A. S. 2010. The Mathematical Theory of Relativity, (Cambridge: Cambridge University Press).Google Scholar
Einstein, A. 1917. Kosmologische Betrachtungen zur allgemeinen Rela-tivitätstheorie. Sitzungsberichte der Königlich Preussischen Akademie der Wis-senschaften (Berlin), 1917, 142152.Google Scholar
Einstein, A. 1928. Sitz. Preuss. Akad. Wiss. p. 217; ibid, 224; Unzicker, A., and Case, T. 2005. Translation of Einstein’s attempt of a unified field theory with teleparallelism (transcription).Google Scholar
Einstein, A. 1988. The Meaning of Relativity: Including the Relativistic Theory of the Non-Symmetric Field, 5th edition, (Princeton: Princeton University Press).Google Scholar
Faraoni, V. 2004. Cosmology in Scalar-Tensor Gravity, (Dordrecht: Kluwer Academic Publishers).Google Scholar
Faraoni, V. 2007. De Sitter space and the equivalence between f(R) and scalar-tensor gravity. Phys. Rev. D, 75, 067302.Google Scholar
Faraoni, V. 2007. A viability criterion for modified gravity with an extra force. Phys. Rev. D, 76, 127501.Google Scholar
Faraoni, V. 2009. The Lagrangian description of perfect fluids and modified gravity with an extra force. Phys. Rev. D, 80, 124040.Google Scholar
Faraoni, V., and Nadeau, S. 2005. The stability of modified gravity models. Phys. Rev. D, 72, 124005.Google Scholar
Ferraro, R., and Fiorini, F. 2007. Modified teleparallel gravity: Inflation without inflaton. Phys. Rev. D, 75, 084031.Google Scholar
Flanagan, E. E. 2003. Higher order gravity theories and scalar tensor theories. Class. Quant. Grav., 21, 417426.Google Scholar
Fock, V. 1959. The Theory of Space, Time and Gravitation, (Oxford: Pergamon Press).Google Scholar
Fomenko, A. T., and Mishchenko, A. S. 2009. A Short Course in Differential Geometry and Topology, (Cambridge: Cambridge Scientific Publishers)Google Scholar
Fourés-Bruhat, Y. 1958. Bulletin de la Societe Mathematique de France, 86, 155.Google Scholar
Friedman, A. 1922. Über die krümmung des raumes. Zeitschrift für Physik, 10, 377386.Google Scholar
Frieman, J. A., Hill, C. T., Stebbins, A., and Waga, I. 1995. Cosmology with ultra-light pseudo-Nambu-Goldstone bosons. Phys. Rev. Lett., 75, 20772080.Google Scholar
Fujii, Y., and Maeda, K. I.. 2003. The Scalar-Tensor Theory of Gravitation, (Cambridge: Cambridge University Press).Google Scholar
Fulling, S. A. 1989. Aspects of Quantum Field Theory in Curved Space-Time, (Cambridge: Cambridge University Press).Google Scholar
Gariel, J., and le Denmat, G. 1995. Matter creation and bulk viscosity in early cosmology. Physics Letters A, 200, 1116.Google Scholar
Gasperini, M., Piazza, F., Veneziano, G. 2002. Quintessence as a run-away dilaton. Phys. Rev. D, 65, 023508.Google Scholar
Georgiou, A. 2003. A virial theorem for rotating charged perfect fluids in general relativity. Class. Quantum Grav., 20, 359367.Google Scholar
Glendenning, N. K., Compact Stars, Nuclear Physics, Particle Physics and General Relativity, (New York: Springer, 2000).Google Scholar
Goenner, H. F. M. 1984. Theories of gravitation with nonminimal coupling of matter and the gravitational field. Found. Phys., 14, 865881.Google Scholar
Golovnev, A., Karciauskas, M., and Nyrhinen, H. J. 2015. ADM analysis of gravity models within the framework of bimetric variational formalism. J. Cosmo. Astropart. Phys., 2015, 021.Google Scholar
Gorini, V., Kamenshchik, A. Y., Moschella, U., and Pasquier, V. 2004. Tachyons, scalar fields, and cosmology. Phys. Rev. D, 69, 123512.Google Scholar
Gottlober, S., Schmidt, H. J., and Starobinsky, A. A. 1990. Sixth-order gravity and conformal transformations. Class. Quant. Grav., 7, 893.Google Scholar
Gou, L., et al. 2014. Confirmation via the continuum-fitting method that the spin of the black hole in Cygnus X-1 is extreme. Astrophys. J., 790, 29.Google Scholar
Gourgoulhon, E., and Bonazzola, S. 1994. A virial identity applied to relativistic stellar models. Class. Quantum Grav., 11, 17751784.Google Scholar
Grøn, O., and Hervik, S. 2010. Einstein’s General Theory of Relativity: With Modern Applications in Cosmology, (New York: Springer Verlag).Google Scholar
Haghani, Z., Harko, H., Lobo, F. S. N., Sepangi, H. R., and Shahidi, S. 2013. Further matters in space-time geometry: f(R, T, RμνT μν) gravity. Phys. Rev. D, 88, 044023.Google Scholar
Haghani, Z., Harko, H., Sepangi, H. R., and Shahidi, S. 2014. Matter may matter. Int. J. Mod. Phys. D, 23, 1442016.Google Scholar
Haghi, H., Bazkiaei, A. E., Hasani Zonoozi, A., and Kroupa, P. 2016. Declining rotation curves of galaxies as a test of gravitational theory. Mon. Not. Roy. Astron. Soc., 458, 41724187.Google Scholar
Harko, T. 2003. Gravitational collapse of a Hagedorn fluid in Vaidya geometry. Phys. Rev. D, 68, 064005.Google Scholar
Harko, T. 2008. Modified gravity with arbitrary coupling between matter and geometry. Phys. Lett. B, 669, 376.Google Scholar
Harko, T. 2009. Matter accretion by brane-world black holes. Journal of the Korean Physical Society, 54, 25832594.Google Scholar
Harko, T. 2010. Galactic rotation curves in modified gravity with non-minimal coupling between matter and geometry. Phys. Rev. D, 81, 084050.Google Scholar
Harko, T. 2010. The matter Lagrangian and the energy-momentum tensor in modified gravity with non-minimal coupling between matter and geometry. Phys. Rev. D, 81, 044021.Google Scholar
Harko, T. 2011. Evolution of cosmological perturbations in Bose-Einstein condensate dark matter. Mon. Not. Roy. Astron. Soc., 413, 30953104.Google Scholar
Harko, T. 2014. Thermodynamic interpretation of the generalized gravity models with geometry-matter coupling. Phys. Rev. D, 90, 044067.Google Scholar
Harko, T., and Cheng, K. S. 2000. Collapsing strange quark matter in Vaidya geometry. Phys. Lett. A, 266, 249253.Google Scholar
Harko, T., and Cheng, K. S. 2007. The virial theorem and the dynamics of clusters of galaxies in the brane world models. Phys. Rev. D, 76, 044013.Google Scholar
Harko, T., Koivisto, T. S., and Lobo, F. S. N. 2011. Palatini formulation of modified gravity with a nonminimal curvature-matter coupling. Mod. Phys. Lett. A, 26, 14671480.Google Scholar
Harko, T., Koivisto, T. S., Lobo, F. S. N., Olmo, G. J. 2012. Metric-Palatini gravity unifying local constraints and late-time cosmic acceleration. Phys. Rev. D, 85, 084016.Google Scholar
Harko, T., Kovács, Z., and Lobo, F. S. N. 2008. Electromagnetic signatures of thin accretion disks in wormhole geometries. Phys. Rev. D, 78, 084005.Google Scholar
Harko, T., Kovács, Z., and Lobo, F. S. N. 2009. Can accretion disk properties distinguish gravastars from black holes? Class. Quant. Grav., 26, 215006.Google Scholar
Harko, T., Kovács, Z., and Lobo, F. S. N. 2009. Testing Horava-Lifshitz gravity using thin accretion disk properties. Phys. Rev. D, 80, 044021.Google Scholar
Harko, T., Kovács, Z., and Lobo, F. S. N. 2009. Thin accretion disks in stationary axisymmetric wormhole spacetimes. Phys. Rev. D, 79, 064001.Google Scholar
Harko, T., Kovács, Z., and Lobo, F. S. N. 2010. Thin accretion disk signatures in dynamical Chern-Simons modified gravity. Class. Quant. Grav., 27, 105010.Google Scholar
Harko, T., Kovács, Z., and Lobo, F. S. N. 2011. Solar system tests of Horava– Lifshitz gravity. Proc. Roy. Soc. Lond. A Math. Phys. Eng. Sci., 467, 13901407.Google Scholar
Harko, T., Kovács, Z., and Lobo, F. S. N. 2011. Thin accretion disk signatures of slowly rotating black holes in Horava gravity. Class. Quant. Grav., 28, 165001.Google Scholar
Harko, T. and Lake, M. J. 2014. Null fluid collapse in brane world models. Phys. Rev. D, 89, 064038.Google Scholar
Harko, T., and Lobo, F. S. N. 2010. f(R, Lm) gravity. Eur. Phys. J. C, 70, 373.Google Scholar
Harko, T., and Lobo, F. S. N. 2012. Generalized dark gravity. Int. J. Mod. Phys. D, 21, 1242019.Google Scholar
Harko, T., and Lobo, F. S. N. 2012. Geodesic deviation, Raychaudhuri equation, and tidal forces in modified gravity with an arbitrary curvature-matter coupling. Phys. Rev. D, 86, 124034.Google Scholar
Harko, T., and Lobo, F. S. N. 2013. Irreversible thermodynamic description of interacting dark energy-dark matter cosmological models. Phys. Rev. D, 87, 044018.Google Scholar
Harko, T., and Lobo, F. S. N. 2014. Generalized curvature-matter couplings in modified gravity. Galaxies, 2, 410.Google Scholar
Harko, T., Lobo, F. S. N., and Mak, M. K. 2014. Arbitrary scalar field and quintessence cosmological models. Eur. Phys. J. C, 74, 2784.Google Scholar
Harko, T., Lobo, F. S. N., Mak, M. K., and Sushkov, S. V. 2013. Modified-gravity wormholes without exotic matter. Phys. Rev. D, 87, 067504.Google Scholar
Harko, T., Lobo, F. S. N., Mak, M. K., and Sushkov, S. V. 2013. Structure of neutron, quark, and exotic stars in Eddington-inspired Born-Infeld gravity. Phys. Rev. D88, 044032.Google Scholar
Harko, T., Lobo, F. S. N., Mimoso, J. P., and Pavón, D. 2015. Gravitational induced particle production through a nonminimal curvature-matter coupling. Eur. Phys. J. C, 75, 386.Google Scholar
Harko, T., Lobo, F. S. N., and Minazzoli, O. 2013. Extended f(R, Lm) gravity with generalized scalar field and kinetic term dependences. Phys. Rev. D, 87, 047501.Google Scholar
Harko, T., and Lobo, F. S. N., Nojiri, S.’i., and Odintsov, S. D. 2011, . f(R, T) gravity. Phys. Rev. D, 84, 024020.Google Scholar
Harko, T., Lobo, F. S. N., Otalora, G., and Saridakis, E. N. 2014. f(T, T) gravity and cosmology. J. Cosmol. Astropart. Phys., 1412, 021.Google Scholar
Harko, T., Lobo, F. S. N., Otalora, G., and Saridakis, E. N. 2014. Nonminimal torsion-matter coupling extension of f(T) gravity. Phys. Rev. D, 89, 124036.Google Scholar
Harko, T., and Mak, M. K. 1999. Particle creation in varying speed of light cosmological models. Class. Quantum Grav., 16, 27412752.Google Scholar
Harko, T., and Mak, M. K. 2016. Exact power series solutions of the structure equations of the general relativistic isotropic fluid stars with linear barotropic and polytropic equations of state. Astrophysics and Space Science, 361, 119.Google Scholar
Harrison, E. R. 1965. Cosmology without general relativity. Ann. Phys., 35, 437446.Google Scholar
Harvey, D., Massey, R., Kitching, T., Taylor, A., and Tittley, E. 2015. The nongravitational interactions of dark matter in colliding galaxy clusters. Science, 347, 14621465.Google Scholar
Hawking, S. W., and Ellis, G. F. R. 1973. The large scale structure of space-time, (Cambridge: Cambridge University Press).Google Scholar
Hawking, S. W., and Page, D. N. 1986. Operator ordering and the flatness of the universe. Nucl. Phys. B, 264, 185196.Google Scholar
Hayashi, K., and Shirafuji, T. 1979. New general relativity. Phys. Rev. D, 19, 3524. (Addendum: ibid. D 24, 3312 [1982]).Google Scholar
Hinshaw, G., et al. (WMAP Collaboration). 2013. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: The A angular power spectrum. Astrophys. J. Suppl., 148, 135.Google Scholar
Horndeski, G. W. 1974. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys., 10, 363.Google Scholar
Horvath, J. E., and Valentim, R. 2017. The masses of neutron stars. In Alsabti, A. W. and Murdin, P., eds., Handbook of Supernovae, (New York: Springer) arXiv:1607.06981.Google Scholar
Houndjo, M. J. S. 2012. Reconstruction of f(R, T) gravity describing matter dominated and accelerated phases. Int. J. Mod. Phys. D, 21, 1250003.Google Scholar
Houndjo, M. J. S., Batista, C. E. M., Campos, J. P., and Piattella, O. F. 2013. Finite-time singularities in f(R, T) gravity and the effect of conformal anomaly. Can. J. Phys., 91, 548. arXiv:1203.6084 [gr-qc].Google Scholar
Houndjo, M. J. S., and Piattella, O. F. 2012. Reconstructing f(R, T) gravity from holographic dark energy. Int. J. Mod. Phys. D, 21, 1250024.Google Scholar
Hu, B. L. 1982. Vacuum viscosity description of quantum processes in the early universe. Phys. Lett. A, 90, 375380.Google Scholar
Hu, W., and Sawicki, I. 2007. Models of f(R) Cosmic acceleration that evade solar-system tests. Phys. Rev. D, 76, 064004.Google Scholar
Huang, R. -N. 2013. The Wheeler–DeWitt equation of f(R, Lm) gravity in minisuperspace. arXiv:1304.5309 [gr-qc].Google Scholar
Hulse, R. A., and Taylor, J. H. 1975. Discovery of a pulsar in a binary system. Astrophys. J. Lett., 195, L51L53.Google Scholar
Ibragimov, N. H. 2015. Tensors and Riemannian Geometry, (Berlin/Boston: Higher Education Press and Walter de Gruyter).Google Scholar
Iorio, L. 2015. Editorial for the Special Issue: 100 Years of Chronogeometrody-namics: The Status of the Einstein’s Theory of Gravitation in Its Centennial Year. Universe, 1, 3881.Google Scholar
Iorio, L. 2015. Gravitational anomalies in the solar system? Int. J. Mod. Phys. D, 24, 1530015.Google Scholar
Itoh, N. 1970. Hydrostatic Equilibrium of Hypothetical Quark Stars. Progress of Theoretical Physics, 44, 291292.Google Scholar
Jackson, J. C. 1970. The dynamics of clusters of galaxies in universes with nonzero cosmological constant, and the virial theorem mass discrepancy. Month. Not. R. Astr. Soc., 148, 249260.Google Scholar
Jamil, M., Momeni, D., Raza, M., and Myrzakulov, R. 2012. Reconstruction of some cosmological models in f(R, T) gravity. Eur. Phys. J. C, 72, 1999.Google Scholar
Jauzac, M., et al. 2016. The extraordinary amount of substructure in the Hubble Frontier Fields cluster Abell 2744. Month. Not. R. Astr. Soc., 463, 38763893.Google Scholar
Jesus, J. F., Oliveira, F. A., Basilakos, S., and Lima, J. A. S. 2011. Newtonian perturbations on models with matter creation. Phys. Rev. D, 84, 063511.Google Scholar
Jimenez, J. B., Golovnev, A., Karciauskas, M., and Koivisto, T. S. 2012. The bimetric variational principle for General Relativity. Phys. Rev. D, 86, 084024.Google Scholar
Jimenez, J. B., and Koivisto, T. S. 2014. Extended Gauss-Bonnet gravities in Weyl geometry. Class. Quant. Grav., 31, 135002.Google Scholar
Joshi, P. S. 1993. Global Aspects in Gravitation and Cosmology, (Oxford: Clarendon Press).Google Scholar
Jou, D., Casas-Vázquez, J., and Lebon, G. 2010. Extended Irreversible Thermodynamics, (Berlin: Springer Verlag).Google Scholar
Joyce, A., Jain, B., Khoury, J., and Trodden, M. 2015. Beyond the Cosmological Standard Model. Phys. Rept. 568, 198.Google Scholar
Karukes, E. V., and Salucci, P. 2017. The universal rotation curve of dwarf disk galaxies. Mon. Not. Roy. Astron. Soc., 465, 47034722.Google Scholar
Katsuragawa, T., Nojiri, S., Odintsov, S. D., and Yamazaki, M. 2016. Relativistic stars in dRGT massive gravity. Phys. Rev. D, 93, 124013.Google Scholar
Kerner, R. 1982. Cosmology without singularity and nonlinear gravitational Lagrangians. Gen. Rel. Grav., 14, 453469.Google Scholar
Khoury, J., and Weltman, A. 2004. Chameleon fields: Awaiting surprises for tests of gravity in space. Phys. Rev. Lett., 93, 171104.Google Scholar
Khoury, J., and Weltman, A. 2004. Chameleon cosmology. Phys. Rev. D, 69, 044026.Google Scholar
Kiani, F., and Nozari, K. 2014. Energy conditions in F (T, Θ) gravity and compatibility with a stable de Sitter solution. Phys. Lett. B, 728, 554.Google Scholar
Kibble, T. W. B., and Randjbar-Daemi, S. 1980. Non-linear coupling of quantum theory and classical gravity. J. Phys. A: Math. Gen., 13, 141148.Google Scholar
Kleihaus, B., Kunz, J., Mojica, S., and Zagermann, M. 2016. Rapidly rotating neutron stars in dilatonic Einstein-Gauss-Bonnet theory. Phys. Rev. D, 93, 064077.Google Scholar
Koivisto, T. 2006. Covariant conservation of energy momentum in modified gravities. Class. Quant. Grav., 23, 42894296.Google Scholar
Koivisto, T. 2006. The matter power spectrum in f(R) gravity. Phys. Rev. D, 73, 083517.Google Scholar
Koivisto, T. S. 2009. Cosmology of modified (but second order) gravity. AIP Conf. Proc., 1206, 7996.Google Scholar
Koivisto, T. S. 2011. On new variational principles as alternatives to the Palatini method. Phys. Rev. D, 83, 101501.Google Scholar
Koivisto, T. S. 2011. The post-Newtonian limit in C-theories of gravitation. Phys. Rev. D, 84, 121502.Google Scholar
Koivisto, T., and Kurki-Suonio, H. 2006. Cosmological perturbations in the Palatini formulation of modified gravity. Class. Quant. Grav., 23, 2355.Google Scholar
Koivisto, T. S., Mota, D. F., and Sandstad, M. 2013. Novel aspects of C-theories in cosmology. Unpublished. arXiv:1305.4754.Google Scholar
Koivisto, T. S., Mota, D. F., and Zumalacarregui, M. 2012. Screening modifications of gravity through disformally coupled fields. Phys. Rev. Lett., 109, 241102.Google Scholar
Koivisto, T. S., Saridakis, E. N., and Tamanini, N. 2015. Scalar fluid theories: Cosmological perturbations and large-scale structure. J. Cosmo. Astropart. Phys., 1509, 047.Google Scholar
Koivisto, T. S., and Tamanini, N. 2013. Ghosts in pure and hybrid formalisms of gravity theories: A unified analysis. Phys. Rev. D, 87, 104030.Google Scholar
Kolb, E. W., and Turner, M. S. 1989. The Early Universe, (Redwood City, CA: Addison-Wesley Company)Google Scholar
Kong, L., Li, Z., and Bambi, C. 2014. Constraints on the spacetime geometry around 10 stellar-mass black hole candidates from the disk’s thermal spectrum. Astrophys. J., 797, 78.Google Scholar
Kovács, Z., Cheng, K. S., and Harko, T. 2009. Can stellar mass black holes be quark stars? Mon. Not. Roy. Astron. Soc., 400, 16321642.Google Scholar
Kovács, Z., Cheng, K. S., and Harko, T. 2009. Thin accretion disks around neutron and quark stars. Astron. Astrophys., 500, 621631.Google Scholar
Kovács, Z., and Harko, T. 2010. Can accretion disk properties observationally distinguish black holes from naked singularities? Phys. Rev. D, 82, 124047.Google Scholar
Kramer, D., Stephani, H., MacCallum, M., and Herlt, E. 1980. Exact Solutions of Einstein’s Field Equations, (Cambridge: Cambridge University Press).Google Scholar
Kubis, S., and Kutschera, M. 1997. Nuclear matter in relativistic mean field theory with isovector scalar meson. Phys. Lett. B, 399, 191195.Google Scholar
Lake, K. 2004. Galactic potentials. Phys. Rev. Lett., 92, 051101.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1994. The Classical Theory of Fields, Fourth Revised English Edition, (Amsterdam: Butterworth-Heinemann).Google Scholar
Landau, L. D., and Lifshitz, E. M. 1998. The Classical Theory of Fields, (Oxford: Butterworth-Heinemann).Google Scholar
Landau, L. D., and Lifshitz, E. M. 2000. Non-relativistic Quantum Mechanics, (Beijing: World Publishing Company).Google Scholar
Leanizbarrutia, I., Lobo, F. S. N., and Saez-Gomez, D. 2017. Crossing SNe Ia and BAO observational constraints with local ones in hybrid metric-Palatini gravity. Phys. Rev. D, 95, 084046.Google Scholar
Lemaître, G. 1931. Expansion of the universe: A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae. Mon. Not. Roy. Astron. Soc., 91, 483490.Google Scholar
Lemos, J. P. S., and Lobo, F. S. N. 2004. Plane symmetric traversable wormholes in an anti-de Sitter background. Phys. Rev. D, 69, 104007.Google Scholar
Lemos, J. P. S., and Lobo, F. S. N. 2008. Plane symmetric thin-shell wormholes: Solutions and stability. Phys. Rev. D, 78, 044030.Google Scholar
Lemos, J. P. S., Lobo, F. S. N., and Quinet de Oliveira, S. 2003. Morris-Thorne wormholes with a cosmological constant. Phys. Rev. D, 68, 064004.Google Scholar
Leray, J. 1953. Hyperbolic Differential Equations, (Princeton: Institute for Advanced Study).Google Scholar
Levkov, D., Rebbi, C., and Rubakov, V. A. 2002. Tunneling in quantum cosmology: Numerical study of particle creation. Phys. Rev. D, 66, 083516.Google Scholar
Li, B., and Barrow, J. D. 2011. N-body simulations for coupled scalar field cosmology. Phys. Rev. D, 83, 024007.Google Scholar
Li, M., Li, X.-D., Wang, S., and Wang, Y. 2013. Dark energy: A brief review. Frontiers of Physics, 8, 828846.Google Scholar
Lima, J. A. S., and Germano, A. S. M. 1992. On the equivalence of bulk viscosity and matter creation. Physics Letters A, 170, 373378.Google Scholar
Lima, J. A. S., Zanchin, V., and Brandenberger, R. 1997. On the Newtonian cosmology equations with pressure. Mon. Not. Roy. Astron. Soc., 291, L1L4.Google Scholar
Lima, N. A. 2014. Dynamics of linear perturbations in the hybrid metric-Palatini gravity. Phys. Rev. D, 89, 083527.Google Scholar
Lima, N. A., and Smer-Barreto, V. 2016. Constraints on hybrid metric-Palatini models from background evolution. Astrophys. J., 818, 186.Google Scholar
Linder, E. V. 2010. Einstein’s other gravity and the acceleration of the universe. Phys. Rev. D, 81, 127301.Google Scholar
Lindquist, R. W. 1966. Relativistic transport theory. Ann. Phys., NY, 37, 487– 518.Google Scholar
Liu, X., Harko, T., and Liang, S.-D. 2016. Cosmological implications of modified gravity induced by quantum metric fluctuations. Eur. Phys. J. C, 76, 420.Google Scholar
Llinares, C., and Mota, D. 2013. Releasing scalar fields: cosmological simulations of scalar-tensor theories for gravity beyond the static approximation. Phys. Rev. Lett., 110, 161101.Google Scholar
Lobo, F. S. N. 2004. Surface stresses on a thin shell surrounding a traversable wormhole. Class. Quant. Grav., 21, 4811.Google Scholar
Lobo, F. S. N. 2005. Energy conditions, traversable wormholes and dust shells. Gen. Rel. Grav., 37, 2023.Google Scholar
Lobo, F. S. N. 2009. The dark side of gravity: Modified theories of gravity. In Dark Energy: Current Advances and Ideas, (Kerala: Research Signpost), 173204.Google Scholar
Lobo, F. S. N. 2008. Exotic solutions in General Relativity: Traversable wormholes and “warp drive” spacetimes. Class. Quant. Grav., 1–78, arXiv:0710.4474 [gr-qc].Google Scholar
Lobo, F. S. N., and Crawford, P. 2004. Linearized stability analysis of thin shell wormholes with a cosmological constant. Class. Quant. Grav., 21, 391.Google Scholar
Lobo, F. S. N., and Crawford, P. 2005. Stability analysis of dynamic thin shells. Class. Quant. Grav., 22, 4869.Google Scholar
Lobo, F. S. N., and Harko, T. 2012. Extended f(R, Lm) theories of gravity. Proceedings of the Thirteenth Marcel Grossmann Meeting, Stockholm University, Sweden. arXiv:1211.0426 [gr-qc].Google Scholar
Lobo, F. S. N., and Oliveira, M. A. 2009. Wormhole geometries in f(R) modified theories of gravity. Phys. Rev. D, 80, 104012.Google Scholar
Logunov, A. A. 2001. The Theory of Gravity, (Moscow: Nauka).Google Scholar
Ludwick, K. J. 2017. The viability of phantom dark energy: A review. Mod. Phys. Lett. A, 32, 1730025.Google Scholar
Ma, C.-P., and Bertschinger, E. 1995. Cosmological perturbation theory in the synchronous and conformal Newtonian gauges. Astrophys. J., 455, 725.Google Scholar
Maartens, R. 1996. Causal thermodynamics in relativity. Lectures given at the Hanno Rund Workshop on Relativity and Thermodynamics, South Africa. arXiv:astro-ph/9609119.Google Scholar
Maartens, R. 2004. Brane world gravity. Living Rev. Rel., 7, 7.Google Scholar
Maartens, R., and Maharaj, S. D. 1990. Collision-free gases in spatially homogeneous space-times. J. Math. Phys., 22, 595607Google Scholar
Maartens, R, and Mendez, V. 1997. Nonlinear bulk viscosity and inflation. Phys. Rev. D, 55, 19371942.Google Scholar
Mak, M. K., Dobson, P. N. Jr., and Harko, T. 2000. Maximum mass-radius ratio for compact general relativistic objects in Schwarzschild–de Sitter geometry. Mod. Phys. Lett. A, 15, 21532158.Google Scholar
Mak, M. K., and Harko, T. 1999. Cosmological particle production in five-dimensional Kaluza-Klein theory. Class. Quantum Grav., 16, 40854099.Google Scholar
Mak, M. K., and Harko, T. 2004. Can the galactic rotation curves be explained in brane world models? Phys. Rev. D, 70, 024010.Google Scholar
Maluf, J. W. 2013. The teleparallel equivalent of general relativity. Annalen Phys., 525, 339.Google Scholar
Mamon, G. A., and Lokas, E. L. 2005. Dark matter in elliptical galaxies – II. Estimating the mass within the virial radius. Mon. Not. R. Astron. Soc., 363, 705.Google Scholar
Martín-Moruno, P., Nunes, N. J., and Lobo, F. S. N. 2015. Horndeski theories self-tuning to a de Sitter vacuum. Phys. Rev. D, 91, 8, 084029.Google Scholar
Mashhoon, B. 1973. Tidal gravitational radiation. Astrophys. J., 185, 83.Google Scholar
Mashhoon, B. 1975. On tidal phenomena in a strong gravitational field. Astrophys. J., 197, 705.Google Scholar
Mashhoon, B., and Theiss, D. S. 1982. Relativistic tidal forces and the possibility of measuring them. Phys. Rev. Lett., 49, 1542.Google Scholar
Massey, R., et al. 2007. Dark matter maps reveal cosmic scaffolding. Nature, 445, 286290.Google Scholar
Matsumoto, S., Mukhopadhyay, S., and Sming Tsai, Y.-L. 2016. Effective theory of WIMP dark matter supplemented by simplified models: Singlet-like Majorana fermion case. Phys. Rev. D, 94, 065034.Google Scholar
McCrea, W. H. 1951. Relativity theory and the creation of matter. Proc. Roy. Soc. Lond. A Math. Phys. Eng. Sci., 206, 562575.Google Scholar
McCrea, W. H., and Milne, E. A. 1934. Newtonian universes and the curvature of space. Quart. J. Math. Oxford, 5, 7380.Google Scholar
Mehdizadeh, M. R., Zangeneh, M. K., and Lobo, F. S. N. 2015. Einstein-Gauss-Bonnet traversable wormholes satisfying the weak energy condition. Phys. Rev. D, 91, 084004.Google Scholar
Michel, F. C. 1972. Accretion of matter by condensed objects. Astrophys. Space Science, 15, 153160.Google Scholar
Milgrom, M. 1983. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J., 270, 365.Google Scholar
Milne, E. A. 1934. A Newtonian expanding universe. Quart. J. Math. Oxford, 5, 6472.Google Scholar
Minamitsuji, M., and Silva, H. O. 2016. Relativistic stars in scalar-tensor theories with disformal coupling. Phys. Rev. D, 93, 124041.Google Scholar
Minazzoli, O. 2012. The γ parameter in Brans-Dicke-like (light-)Scalar-Tensor theory with a universal scalar/matter coupling and a new decoupling scenario. eprint, arXiv:1208.2372.Google Scholar
Minazzoli, O. 2013 Conservation laws in theories with universal gravity/matter coupling. Phys. Rev. D, 88, 027506.Google Scholar
Minazzoli, O., and Harko, T. 2012. New derivation of the Lagrangian of a perfect fluid with a barotropic equation of state. Phys. Rev. D, 86, 087502.Google Scholar
Mitra, A. and Glendenning, N. K. 2010. Likely formation of general relativistic radiation pressure supported stars or “eternally collapsing objects”. Mon. Not. Roy. Astron. Soc. Lett., 404, L50L54.Google Scholar
Modak, S. K., and Singleton, D. 2012. Inflation with a graceful exit and entrance driven by Hawking radiation. Phys. Rev. D, 86, 123515.Google Scholar
Mohseni, M. 2009. Non-geodesic motion in f(G) gravity with non-minimal coupling. Phys. Lett. B, 682, 89.Google Scholar
Möller, C. 1961. Conservation laws and absolute parallelism in General Relativity. Mat. Fys. Skr. Dan. Vid. Selsk., 1, 10.Google Scholar
Morris, M. S., and Thorne, K. S. 1988. Wormholes in spacetime and their use for interstellar travel: A tool for teaching General Relativity. Am. J. Phys., 56, 395.Google Scholar
Pellegrini, C., and Plebanski, J. 1963. Tetrad fields and gravitational fields. Mat. Fys. Skr. Dan. Vid. Selsk., 2, 4.Google Scholar
Montelongo Garcia, N., and Lobo, F. S. N. 2010. Wormhole geometries supported by a nonminimal curvature-matter coupling. Phys. Rev. D, 82, 104018.Google Scholar
Montelongo Garcia, N., and Lobo, F. S. N. 2011. Nonminimal curvature-matter coupled wormholes with matter satisfying the null energy condition. Class. Quant. Grav., 28, 085018.Google Scholar
Montelongo Garcia, N., Lobo, F. S. N., and Visser, M. 2012. Generic spherically symmetric dynamic thin-shell traversable wormholes in standard general relativity. Phys. Rev. D, 86, 044026.Google Scholar
Moraes, P. H. R. S., Arbañil, J. D. V., and Malheiro, M. 2016. Stellar equilibrium configurations of compact stars in f(R, T) theory of gravity. J. Cosmo. Astropart. Phys., 06, 005.Google Scholar
Mortonson, M. J., Weinberg, D. H., and White, M. 2014. Dark energy: A short review. In K. A. Olive et al. (Particle Data Group), eds., 2014 Review of Particle Physics. arXiv: 1401.0046.Google Scholar
Mukhanov, V. F., and Winitzki, S. 2010. Introduction to Quantum Effects in Gravity, (Cambridge: Cambridge University Press).Google Scholar
Muller, V., Schmidt, H. J., and Starobinsky, A. A. 1990. Power-law inflation as an attractor solution for inhomogeneous cosmological models. Class. Quant. Grav., 7, 11631168.Google Scholar
Multamaki, T., and Vilja, I. 2006. Spherically symmetric solutions of modified field equations in f(R) theories of gravity. Phys. Rev. D, 74, 064022.Google Scholar
Muñoz, J. B., Kovetz, E. D., Dai, L, and Kamionkowski, M. 2016. Lensing of fast radio bursts as a probe of compact dark matter. Phys. Rev. Lett., 117, 091301.Google Scholar
Murphy, G. L. 1973. Big-bang model without singularities. Phys. Rev. D, 8, 42314233.Google Scholar
Naidu, R. L., Reddy, D. R. K., Ramprasad, T., and Ramana, K. V. 2013 . Bianchi type-V bulk viscous string cosmological model in f(R, T) gravity. Astrophys. Space Sci., 348, 247.Google Scholar
Navarro, J. F., Frenk, C. S., and White, S. D. M. 1996. The structure of cold dark matter halos. Astrophys. J., 462, 563575.Google Scholar
Nesseris, S. 2009. Matter density perturbations in modified gravity models with arbitrary coupling between matter and geometry. Phys. Rev. D, 79, 044015.Google Scholar
Nojiri, S., and Odintsov, S. D. 2003. Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration. Phys. Rev. D, 68, 123512.Google Scholar
Nojiri, S., and Odintsov, S. D. 2003. Where new gravitational physics comes from: M theory? Phys. Lett. B, 576, 5.Google Scholar
Nojiri, S., and Odintsov, S. D. 2004. Dark energy and cosmic speed-up from consistent modified gravity. PoS WC, 2004, 024.Google Scholar
Nojiri, S., and Odintsov, S. D. 2004. Gravity assisted dark energy dominance and cosmic acceleration. Phys. Lett. B, 599, 137.Google Scholar
Nojiri, S., and Odintsov, S. D. 2004. Modified gravity with ln R terms and cosmic acceleration. Gen. Rel. Grav., 36, 1765.Google Scholar
Nojiri, S., and Odintsov, S. D. 2007. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Mod. Phys., 4, 115146.Google Scholar
Nojiri, S., and Odintsov, S. D. 2011. Unified cosmic history in modified gravity: from F (R) theory to Lorentz non-invariant models. Phys. Rept., 505, 59.Google Scholar
Nojiri, S., and Odintsov, S. D. 2007. Unifying inflation with LambdaCDM epoch in modified f(R) gravity consistent with solar system tests. Phys. Lett. B, 657, 238. arXiv:0707.1941 [hep-th].Google Scholar
Nojiri, S., Odintsov, S. D., and Oikonomou, V. K. 2017. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rept., 692, 1104.Google Scholar
Nojiri, S., Odintsov, S. D., and Sasaki, M. 2005. Gauss-Bonnet dark energy. Phys. Rev. D, 71, 123509.Google Scholar
Nucamendi, U., Salgado, M., and Sudarsky, D. 2001. Alternative approach to the galactic dark matter problem. Phys. Rev. D, 63, 125016.Google Scholar
Nunes, R. C., and Pan, S. 2016. Cosmological consequences of an adiabatic matter creation process. Mon. Not. Roy. Astron. Soc., 459, 673682.Google Scholar
Obukhov, Y. N., and Puetzfeld, D. 2013. Conservation laws in gravitational theories with general nonminimal coupling. Phys. Rev. D, 87, 081502.Google Scholar
Odintsov, S. D., and Sáez-Gómez, D. 2013. f(R, T, RμνT μν) gravity phenomenology and ΛCDM universe. Phys. Lett. B, 725, 437.Google Scholar
Ohanian, H. C. 1976. Gravitation and Spacetime, (New York: Norton).Google Scholar
Olmo, G. J. 2005. The gravity Lagrangian according to solar system experiments. Phys. Rev. Lett., 95, 261102.Google Scholar
Olmo, G. J. 2005. Post-Newtonian constraints on f(R) cosmologies in metric and Palatini formalism. Phys. Rev. D, 72, 083505.Google Scholar
Olmo, G. J. 2007. Violation of the Equivalence Principle in modified theories of gravity. Phys. Rev. Lett., 98, 061101.Google Scholar
Olmo, G. J. 2008. Hydrogen atom in Palatini theories of gravity. Phys. Rev. D, 77, 084021.Google Scholar
Olmo, G. J. 2011. Palatini approach to modified gravity: f(R) theories and beyond. Int. J. Mod. Phys. D, 20, 413462.Google Scholar
Olmo, G. J., and Sanchis-Alepuz, H. 2011. Hamiltonian formulation of Palatini f(R) theories a la Brans-Dicke. Phys. Rev. D, 83, 104036.Google Scholar
Olmo, G. J., and Rubiera-Garcia, D. 2015. Brane-world and loop cosmology from a gravity-matter coupling perspective. Phys. Lett. B, 740, 73.Google Scholar
Overduin, J. M., and Wesson, P. S. 1997. Kaluza-Klein gravity. Phys. Repts., 283, 303.Google Scholar
Overduin, J. M., and Wesson, P. S. 2004. Dark matter and background light. Phys. Repts., 402, 267406.Google Scholar
Ozel, F., and Freire, P. 2016. Masses, radii, and equation of state of neutron stars. Astron. Astrophys., 54, 401440.Google Scholar
Pace, F., Waizmann, J.-C., and Bartelmann, M. 2010. Spherical collapse model in dark energy cosmologies. Mon. Not. Roy. Astron. Soc., 406, 18651874.Google Scholar
Padmanabhan, T. 2003. Cosmological constant – the weight of the vacuum. Phys. Rept., 380, 235320.Google Scholar
Page, D. N., and Thorne, K. S. 1974. Disk-accretion onto a black hole: Time-averaged structure of accretion disk. Astrophys. J., 191, 499506.Google Scholar
Parker, L. 1968. Particle creation in expanding universes. Phys. Rev. Lett., 21, 562564.Google Scholar
Parker, L. 2009. Quantized fields and particle creation in expanding universes. II. Phys. Rev. D, 3, 346356.Google Scholar
Parker, L. E., and Toms, D. J. 2009. Quantum Field Theory in Curved Spacetime-Quantized Fields and Gravity, (Cambridge: Cambridge University Press).Google Scholar
Pauli, W. 1958. Theory of Relativity, (London: Pergamon Press).Google Scholar
Peebles, P. J. E. 1993. Principles of Physical Cosmology, (Princeton: Princeton University Press).Google Scholar
Peebles, P. J. E., and Ratra, B. 2003. The cosmological constant and dark energy. Rev. Mod. Phys., 75, 559606.Google Scholar
Penzias, A. A., and Wilson, R. W. 1965. A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J., 142, 419.Google Scholar
Perlmutter, S., Turner, M. S., White, M. J. 1999. Constraining dark energy with SNe Ia and large scale structure. Phys. Rev. Lett., 83, 670673.Google Scholar
Perlmutter, S., et al. 1999. Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J., 517, 565586.Google Scholar
Persic, M., Salucci, P., and Stel, F. 1996. The universal rotation curve of spiral galaxies – I. The dark matter connection. Mon. Not. R. Astron. Soc., 281, 2747.Google Scholar
Pigozzo, C., Carneiro, S., Alcaniz, J. S., Borges, H. A., Fabris, J. C. 2016. Evidence for cosmological particle creation? J. Cosmo. Astropart. Phys., 1605, 022.Google Scholar
Pogosian, L., and Silvestri, A. 2008. Pattern of growth in viable f(R) cosmologies. Phys. Rev. D, 77, 023503.Google Scholar
Poisson, E., and Visser, M. 1995. Thin-shell wormholes: Linearization stability. Phys. Rev. D, 52, 7318.Google Scholar
Poplawski, N. J. 2006. A Lagrangian description of interacting dark energy. arXiv:gr-qc/0608031.Google Scholar
Prigogine, I., and Géhéniau, J. 1986. Entropy, matter, and cosmology. Proc. Natl. Acad. Sci. USA, 83, 62456249.Google Scholar
Prigogine, I., and Géhéniau, J., Gunzig, E., and Nardone, P. 1988. Thermodynamics of cosmological matter creation. Proc. Natl. Acad. Sci. USA, 85, 7428– 7432.Google Scholar
Pritchard, J. R., and Loeb, A. 2012. 21-cm cosmology. Rept. Prog. Phys., 75, 086901.Google Scholar
Puetzfeld, D., and Obukhov, Y. N. 2008. On the motion of test bodies in theories with non-minimal coupling. Phys. Rev. D, 78, 121501.Google Scholar
Puetzfeld, D., and Obukhov, Y. N. 2013. Covariant equations of motion for test bodies in gravitational theories with general nonminimal coupling. Phys. Rev. D, 87, 044045.Google Scholar
Puetzfeld, D., and Obukhov, Y. N. 2013. Equations of motion in gravity theories with nonminimal coupling: a loophole to detect torsion macroscopically? Phys. Rev. D, 88, 064025.Google Scholar
Pun, C. S. J., Kovács, Z., and Harko, T. 2008. Thin accretion disks in f(R) modified gravity models. Phys. Rev. D, 78, 024043.Google Scholar
Pun, C. S. J., Kovács, Z., and Harko, T. 2008. Thin accretion disks onto brane world black holes. Phys. Rev. D, 78, 084015.Google Scholar
Raigorodski, L. D., Stavrions, P. C., and Balan, V. 1999. Introduction to the Physical Principles of Differential Geometry, (Athens: University of Athens).Google Scholar
Ram, S., and Priyanka, . 2013. Some Kaluza-Klein cosmological models in f(R, T) gravity theory. Astrophys. Space Sci., 347, 389.Google Scholar
Ramos, R. O., dos Santos, M. V., and Waga, I. 2014. Matter creation and cosmic acceleration. Phys. Rev. D, 89, 083524.Google Scholar
Ratra, B., and Peebles, P. J. E. 1988. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D, 37, 34063427.Google Scholar
Read, J. I., Iorio, G., Agertz, O., and Fraternali, F. 2016. Understanding the shape and diversity of dwarf galaxy rotation curves in ΛCDM. Mon. Not. Roy. Astron. Soc., 462, 36283645.Google Scholar
Reiprich, T. H., and Boehringer, H. 2002. The Mass function of an X-ray flux-limited sample of galaxy clusters. Astrophys. J., 567, 716.Google Scholar
Reis, R. R. 2003. Domain of validity of the evolution of perturbations in Newtonian cosmology with pressure. Phys. Rev. D, 67, 087301.Google Scholar
Resco, M.A., de la Cruz-Dombriz, A., Llanes-Estrada, F. J., and Zapatero Castrillo, V. 2016. On neutron stars in f(R) theories: Small radii, large masses and large energy emitted in a merger. Phys. Dark Univ., 13, 147161.Google Scholar
Rhoades, C. E., and Ruffini, R. 1974. Maximum mass of a neutron star. Phys. Rev. Lett., 32, 324327.Google Scholar
Riess, A. G., et al. 1998. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J., 116, 10091038.Google Scholar
Riess, A. G., et al. 2001. The farthest known supernova: Support for an accelerating universe and a glimpse of the epoch of deceleration. Astrophys. J., 560, 4971.Google Scholar
Riess, A. G., et al. (Supernova Search Team Collaboration). 2004. Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J., 607, 665687.Google Scholar
Robertson, H. P. 1935. Kinematics and world-structure. Astrophys. J., 82, 284.Google Scholar
Rosa, J. L., Carloni, S., Lemos, J. P. S., and Lobo, F. S. N. 2017. Cosmological solutions in generalized hybrid metric-Palatini gravity. Phys. Rev. D, 95, 124035.Google Scholar
Rubin, V. C., Thonnard, N., and Ford, W. K. Jr. 1980. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/. Astrophys. J., 238, 471487.Google Scholar
Salgado, M. 2006. The Cauchy problem of scalar tensor theories of gravity. Class. Quant. Grav., 23, 47194742.Google Scholar
Salopek, D. S., and Bond, J. R. 1990. Nonlinear evolution of long-wavelength metric fluctuations in inflationary models. Phys. Rev. D, 42, 39363962.Google Scholar
Salucci, P., et al. 2007. The universal rotation curve of spiral galaxies. II The dark matter distribution out to the virial radius. Mon. Not. Roy. Astron. Soc., 378, 4147.Google Scholar
Salucci, P., and Persic, M. 1997. Dark halos around galaxies. In Persic, M. and Salucci, P., eds., Dark and Visible Matter in Galaxies, ASP Conference Series, 117, 1.Google Scholar
Sandstad, M., Koivisto, T. S., and Mota, D. F. 2013. Non-locality of the C- and D-theories. Class. Quant. Grav., 30, 155005.Google Scholar
Santos, A. F. 2013. Gödel solution in f(R, T) gravity. Mod. Phys. Lett. A, 28, 1350141.Google Scholar
Saxton, C. J., and Ferreras, I. 2010. Polytropic dark haloes of elliptical galaxies. Mon. Not. Roy. Astron. Soc., 405, 7790.Google Scholar
Saxton, C. J. 2013. Galaxy stability within a self-interacting dark matter halo. Mon. Not. Roy. Astron. Soc., 430, 15781598.Google Scholar
Sawicki, I., and Bellini, E. 2015. Limits of quasistatic approximation in modified-gravity cosmologies. Phys. Rev. D, 92, 084061.Google Scholar
Schmidt, H.-J. 1990. New exact solutions for power-law inflation Friedmann models. Astron. Nachr., 311, 165168.Google Scholar
Seliger, R. L., and Whitham, G. B. 1968 . Variational principles in continuum mechanics. Proc. R. Soc. (London), A 305, 125.Google Scholar
Schmidt, H.-J., and Homann, F. 2000. Photon stars. Gen. Rel. Grav., 32, 919931.Google Scholar
Schrödinger, E. 1939. The proper vibrations of the expanding universe. Physica, 6, 899912.Google Scholar
Schrödinger, E. 1950. Space-Time Structure, (Cambridge: Cambridge University Press).Google Scholar
Schuecker, P., Boehringer, H., Arzner, K., and Reiprich, T. H. 2001. Cosmic mass functions from Gaussian stochastic diffusion processes. Astron. Astrophys., 370, 715728.Google Scholar
Schutz, B. 1970. Perfect fluids in General Relativity: Velocity potentials and a variational principle. Phys. Rev. D, 2, 27622773.Google Scholar
Schwabe, B., Niemeyer, J. C., and Engels, J. F. 2016. Simulations of solitonic core mergers in ultralight axion dark matter cosmologies. Phys. Rev. D, 94, 043513.Google Scholar
Sham, Y.-H., Lin, L.-M., and Leung, P. T. 2014. Testing universal relations of neutron stars with a nonlinear matter-gravity coupling theory. Astrophys. J., 781, 66.Google Scholar
Shapiro, I. I., Smith, W. B., Ash, M. E., and Herrick, S. 1971 General Relativity and the orbit of Icarus. Astron. J., 76, 588.Google Scholar
Shapiro, I. I., Counselman, C. C., and King, R. W. 1976. Verification of the Principle of Equivalence for massive bodies. Phys. Rev. Lett., 36, 555558.Google Scholar
Shapiro, S. L., and Teukolsky, S. A. 1983. Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects, (New York: John Wiley & Sons).Google Scholar
Sharif, M., Rani, S., and Myrzakulov, R. 2013. Analysis of F (R, T) gravity models through energy conditions. Eur. Phys. J. Plus., 128, 123.Google Scholar
Sharif, M., and Zubair, M. 2012. Thermodynamics in f(R, T) Theory of Gravity. J. Cosmo. Astropart. Phys., 1203, 028. (Erratum-ibid. 05, E01 [2013].)Google Scholar
Sharif, M., and Zubair, M. 2013. Energy conditions constraints and stability of power law solutions in f(R, T) gravity. J. Phys. Soc. Jap., 82, 014002.Google Scholar
Sharif, M., and Zubair, M. 2014. Reconstruction and stability of f(R, T) gravity with Ricci and modified Ricci dark energy. Astrophys. Space Sci., 349, 529.Google Scholar
Sharif, M., and Zubair, M. 2014. Study of Bianchi I anisotropic model in f(R, T) gravity. Astrophys. Space Sci., 349, 457.Google Scholar
Sotiriou, T. P. 2007, . Modified actions for gravity: Theory and phenomenology. PhD thesis. arXiv:0710.4438 [gr-qc].Google Scholar
Sotiriou, T. P. 2008. The viability of theories with matter coupled to the Ricci scalar. Phys. Lett. B, 664, 225.Google Scholar
Sotiriou, T. P., and Faraoni, V. 2008. Modified gravity with R-matter couplings and (non-)geodesic motion. Class. Quant. Grav., 25, 205002.Google Scholar
Sotiriou, T. P., and Faraoni, V. 2010. f(R) theories of gravity. Rev. Mod. Phys., 82, 451.Google Scholar
Sotiriou, T. P., and Liberati, S. 2007. Metric-affine f(R) theories of gravity. Annals Phys., 322, 935.Google Scholar
Spergel, D. N., et al. 2007. Wilkinson Microwave Anisotropy Probe (WMAP) three year results: Implications for cosmology. Astrophys. J. Suppl., 170, 377408.Google Scholar
Starobinsky, A. A. 1980. A new type of isotropic cosmological models without singularity. Phys. Lett. B, 91, 99102.Google Scholar
Steigl, R., and Hinterleitner, F. 2006. Factor ordering in standard quantum cosmology. Class. Quant. Grav., 23, 38793893.Google Scholar
Strigari, L. E. 2013. Galactic searches for dark matter. Phys. Rept., 531, 188.Google Scholar
Tamanini, N., and Boehmer, C. G. 2013. Generalized hybrid metric-Palatini gravity. Phys. Rev. D, 87, 084031.Google Scholar
Tamanini, N., and Koivisto, T. S. 2013. Consistency of nonminimally coupled f(R) gravity. Phys. Rev. D, 88, 064052.Google Scholar
Teyssandier, P., and Tourrenc, Ph. 1983. The Cauchy problem for the R + R2 theories of gravity without torsion. J. Math. Phys., 24, 2793.Google Scholar
Thakur, S., Sen, A. A. 2013. Can structure formation distinguish ΛCDM from nonminimal f(R) gravity?,” Phys. Rev. D, 88, 044043.Google Scholar
Thakur, S., Sen, A. A., and Seshadri, T. R. 2011. Non-minimally coupled f(R) cosmology. Phys. Lett. B, 696, 309.Google Scholar
Thorne, K. S. 1974. Disk-accretion onto a black hole. II. Evolution of the hole. Astrophys. J., 191, 507520.Google Scholar
Tian, D. W., and Booth, I. 2014. Lessons from gravity: smooth Gauss-Bonnet limit, energy-momentum conservation and nonminimal coupling. Phys. Rev. D, 90, 024059.Google Scholar
Torres, D. 2002. Accretion disc onto a static non-baryonic compact object. Nucl. Phys. B, 626, 377394.Google Scholar
Vakili, B. 2010. Classical and quantum dynamics of a perfect fluid scalar-metric cosmology. Physics Letters B, 688, 129136.Google Scholar
Vakili, B. 2010. Quadratic quantum cosmology with Schutz’ perfect fluid. Class. Quant. Grav., 27, 025008.Google Scholar
Van Kerkwijk, M. H., Breton, R. P., and Kulkarni, S. R. 2011. Evidence for a massive neutron star from a radial-velocity study of the companion to the black-widow pulsar PSR B1957+20. Astrophys. J., 728, 95.Google Scholar
Vargas dos Santos, M., Alcaniz, J. S., Mota, D. F., and S. Capozziello, S. 2017. Screening mechanisms in hybrid metric-Palatini gravity. Phys. Rev. D, 97, 104010. arXiv:1712.03831 [gr-qc].Google Scholar
Velten, H., and Wamba, E. 2012. Power spectrum for the Bose-Einstein condensate dark matter. Phys. Lett. B, 709, 15.Google Scholar
Visser, M. 1989. Traversable wormholes: Some simple examples. Phys. Rev. D, 39, 3182.Google Scholar
Visser, M. 1989. Traversable wormholes from surgically modified Schwarzschild space-times. Nucl. Phys. B, 328, 203.Google Scholar
Visser, M. 1995. Lorentzian Wormholes: From Einstein to Hawking, (New York: Springer).Google Scholar
Wald, R. M. 1984. General Relativity, (Chicago: Chicago University Press).Google Scholar
Walker, A. G. 1937. On Milne’s theory of world-structure. Proc. Lon. Math. Soc., 42, 90127.Google Scholar
Wands, D. 1994. Extended gravity theories and the Einstein–Hilbert action. Class. Quant. Grav., 11, 269.Google Scholar
Wang, J., and Liao, K. 2012. Energy conditions in f(R, L(m)) gravity. Class. Quant. Grav., 29, 215016.Google Scholar
Wang, J., Wu, Y.-B., Guo, Y.-X., Yang, W.-Q., and Wang, L. 2010. Energy conditions and stability in generalized f(R) gravity with arbitrary coupling between matter and geometry. Phys. Lett. B, 689, 133.Google Scholar
Wang, J., Wu, Y.-B., Guo, Y.-X., Qi, F., Zhao, Y.-Y., and Sun, X.-Y. 2010. Conditions and instability in f(R) gravity with non-minimal coupling between matter and geometry. Eur. Phys. J. C, 69, 541.Google Scholar
Watson, G. N. 1922. A Treatise on the Theory of Bessel Functions, (Cambridge: Cambridge University Press).Google Scholar
Wegg, C., Gerhard, O., and Portail, M. 2016. MOA-II galactic microlensing constraints: The inner Milky Way has a low dark matter fraction and a near maximal disk. Mon. Not. Roy. Astron. Soc., 463, 557570.Google Scholar
Weinberg, S. 1972. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, (New York: Wiley).Google Scholar
Weinberg, S. 1989. The cosmological constant problem. Rev. Mod. Phy., 61, 123.Google Scholar
Weinberg, S. 1996. The Quantum Theory of Fields, Vol. II, (Cambridge: Cambridge University Press).Google Scholar
Weinberg, D. H., et al. 2013. Observational probes of cosmic acceleration. Phys. Rep., 530, 87255.CrossRefGoogle Scholar
Wetterich, C. 1988. Cosmology and the fate of dilatation symmetry. Nucl. Phys. B, 302, 668696.Google Scholar
Wetterich, C. 1995. An asymptotically vanishing time-dependent cosmological “constant”. Astron. Astrophys., 301, 321.Google Scholar
Weyl, H. 1952. Space, Time, Matter, (New York: Dover Publications).Google Scholar
Whitt, B. 1984. Fourth-order gravity as general relativity plus matter. Phys. Lett. B, 145, 176.Google Scholar
Will, C. M. 2014. The Confrontation between General Relativity and experiment. Living Rev. Rel., 17, 4.Google Scholar
Witten, E. 1984. Cosmic separation of phases. Phys. Rev D, 30, 272285.Google Scholar
Woodard, R. P. 2007. Avoiding dark energy with 1/r modifications of gravity. Lect. Notes Phys., 720, 403433.Google Scholar
Wu, Y.-B., Zhao, Y.-Y., Lu, J.-W., Zhang, X., Zhang, C.-Y., and Qiao, J.-W. 2014. Five-dimensional generalized f(R) gravity with curvature-matter coupling. Eur. Phys. J. C, 74, 2791.Google Scholar
Xu, M.-X., Harko, T., and Liang, S.-D. 2016. Quantum cosmology of f(R, T) gravity. Eur. Phys. J. C, 76, 449.Google Scholar
Yang, R.-J. 2016. Effects of quantum fluctuations of metric on the universe. Phys. Dark Univ., 13, 8791.Google Scholar
Yuan, Y. F., Narayan, R., and Rees, M. J. 2004. Constraining alternate models of black holes: Type I X-ray bursts on accreting fermion-fermion and boson-fermion stars. Astrophys. J., 606, 11121124.Google Scholar
Zakharov, V. I. 1970. Linearized gravitation theory and the graviton mass. JETP Lett., 12, 312.Google Scholar
Zangeneh, M. K., Lobo, F. S. N., and Dehghani, M. H. 2015. Traversable wormholes satisfying the weak energy condition in third-order Lovelock gravity. Phys. Rev. D, 92, 124049.Google Scholar
Zangeneh, M. K., Lobo, F. S. N., and Riazi, N. 2014. Higher-dimensional evolving wormholes satisfying the null energy condition. Phys. Rev. D, 90, 024072.Google Scholar
Zeldovich, Ya. B. 1970. Particle production in cosmology. Sov. Phys. JETP Lett., 12, 307312; JETP Letters, 12 (1970), 307–310.Google Scholar
Zhang, S. N., Cui, W., and Chen, W. 1997. Black hole spin in X-ray binaries: Observational consequences. Astrophys. J., 482, L155L158.Google Scholar
Zlatev, I., Wang, L., and Steinhardt, P. J. 1999. Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett., 82, 896899.Google Scholar
Zurek, K. M. 2014. Asymmetric dark matter: Theories, signatures, and constraints. Phys. Rep., 537, 91121.Google Scholar
Zwillinger, D. 1989. Handbook of Differential Equations, 3rd edition, (San Diego: Academic Press).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Tiberiu Harko, University College London, Francisco S. N. Lobo, Universidade de Lisboa
  • Book: Extensions of f(R) Gravity
  • Online publication: 10 November 2018
  • Chapter DOI: https://doi.org/10.1017/9781108645683.028
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Tiberiu Harko, University College London, Francisco S. N. Lobo, Universidade de Lisboa
  • Book: Extensions of f(R) Gravity
  • Online publication: 10 November 2018
  • Chapter DOI: https://doi.org/10.1017/9781108645683.028
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Tiberiu Harko, University College London, Francisco S. N. Lobo, Universidade de Lisboa
  • Book: Extensions of f(R) Gravity
  • Online publication: 10 November 2018
  • Chapter DOI: https://doi.org/10.1017/9781108645683.028
Available formats
×