Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T07:52:09.828Z Has data issue: false hasContentIssue false

3 - Laser energy absorption in matter

Published online by Cambridge University Press:  05 November 2013

Jeff Colvin
Affiliation:
Lawrence Livermore National Laboratory, Livermore
Jon Larsen
Affiliation:
Cascade Applied Sciences, Inc., Boulder
Get access

Summary

We learned in Chapter 1 that there are two principal ways to add energy to matter to bring the matter up to high temperature and pressure: via absorption of energy from an incident particle or photon beam, or via high-velocity collision with other matter. As for the first mechanism – absorption of energy from an incident particle or photon beam – we also learned in Chapter 1 that it is much easier to focus a photon beam to very high energy density since photons, being electrically neutral, are not subject to the Coulomb forces that act to push apart the charged particles making up an electron or ion beam. Accordingly, lasers are commonly used to create extreme conditions in matter. Indeed, lasers can create a very wide range of extreme conditions. They can also create extreme conditions which cannot be created any other way outside astrophysical objects, except by nuclear detonations.

In this chapter we discuss the physical mechanisms by which the energy in a laser beam is absorbed in matter. The physical mechanisms are different for different laser intensities. We also discuss how the absorbed energy gets converted into material pressure. It is the pressure gradient created in the material by the laser energy absorption that drives the material motions that we discuss in much more detail in the next two chapters.

Type
Chapter
Information
Extreme Physics
Properties and Behavior of Matter at Extreme Conditions
, pp. 60 - 87
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×