Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T08:56:19.163Z Has data issue: false hasContentIssue false

1 - Ants – Individual and Social Cognition

Published online by Cambridge University Press:  30 July 2018

Nereida Bueno-Guerra
Affiliation:
Comillas Pontifical University
Federica Amici
Affiliation:
Universität Leipzig
Get access

Summary

There are about 12 000 ant species on Earth, with different colony sizes (from tens to millions of individuals) and different modes of social life (from single foraging individuals, to highly coordinated groups). Highly social ant species possess sophisticated and flexible communication, and members of these species also demonstrate complex solving problem abilities. In this chapter, I will describe experimental methods for studying individual cognitive skills in highly social ant species. In particular, I will address the following questions: (i) how do ants distinguish their competitors and symbionts in invertebrate species communities, and what key stimuli do they use to do this? (ii) can ants learn to find hidden food through observing more agile and clever species? (iii) are members of an ant community equal in their cognitive abilities, or some ants are more clever than others? (iv) can ants transfer to each other “abstract” information about location? (v) is it possible that ants grasp regularities to optimize their messages? (vi) can ants count and use simple arithmetic rules? In order to answer these questions, we will follow ants in the wild and in laboratory arenas, with our mazes and batteries of tests.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Bitterman, M. E., Menzel, R., Fietz, A., and Schäfer, S. (1983). Classical conditioning of proboscis extension in honeybees (Apis mellifera). Journal of Comparative Psychology, 97, 107119.CrossRefGoogle ScholarPubMed
Guerrieri, F. J., and D’Ettorre, P. (2010). Associative learning in ants: conditioning of the maxilla-labium extension response in Camponotus aethiops. Journal of Insect Physiology, 56, 8892.CrossRefGoogle ScholarPubMed
Muth, F., Cooper, T. R., Bonilla, R. F., and Leonard, A. S. (2018). A novel protocol for studying bee cognition in the wild. Methods in Ecology and Evolution, 9, 7887.CrossRefGoogle Scholar
Perry, C. J., Barron, A. B., and Chittka, L. (2017). The frontiers of insect cognition. Current Opinion in Behavioral Sciences, 16, 111118.CrossRefGoogle Scholar
Riley, J., Smith, A., Reynolds, D., and Edwards, A. (1996). Tracking bees with harmonic radar. Nature, 379, 2930.CrossRefGoogle Scholar
Robinson, E. J. H., Franks, N. R., Ellis, S., Okuda, S., and Marshall, J. A. R. (2011). A simple threshold rule is sufficient to explain sophisticated collective decision-making. PLoS ONE, 6(5), e19981.CrossRefGoogle ScholarPubMed
Sasaki, T., and Pratt, S. C. (2012). Groups have a larger cognitive capacity than individuals. Current Biology, 22, 827829.CrossRefGoogle ScholarPubMed
Seeley, T. D. (2010). Honeybee democracy. Princeton, NJ: Princeton University Press.Google Scholar
Woodgate, J. L., Makinson, J. C., Lim, K. S., Reynolds, A. M., and Chittka, L. (2016). Life-long radar tracking of bumblebees. PLoS ONE, 11(8), e0160333.CrossRefGoogle ScholarPubMed

References

Cheng, D., Lu, Y., Zeng, L., Liang, G., and He, X. (2015). Si-CSP9 regulates the integument and moulting process of larvae in the red imported fire ant, Solenopsis invicta. Scientific Reports, 5, 9245.CrossRefGoogle ScholarPubMed
Pinter-Wollman, N. (2015). Nest architecture shapes the collective behaviour of harvester ants. Biology Letters, 11, 20150695.CrossRefGoogle ScholarPubMed
Pinter-Wollman, N., Fiore, S. M., and Theraulaz, G. (2017). The impact of architecture on collective behaviour. Nature Ecology & Evolution, 1, 111.CrossRefGoogle ScholarPubMed
Ratzka, C., Gross, R., and Feldhaar, H. (2013). Systemic gene knockdown in Camponotus floridanus workers by feeding of dsRNA. Insectes Sociaux, 60, 475484.CrossRefGoogle Scholar
Thomas, M. L., Tsutsui, N. D., and Holway, D. A. (2005). Intraspecific competition influences the symmetry and intensity of aggression in the Argentine ant. Behavioral Ecology, 16, 472481.CrossRefGoogle Scholar
van Wilgenburg, E., Clemencet, J., and Tsutsui, N. D. (2010). Experience influences aggressive behaviour in the Argentine ant. Biology Letters, 6, 152155.CrossRefGoogle ScholarPubMed
Youngsteadt, E., Nojima, S., Haberlein, C., Schulz, S., and Schal, C. (2008). Seed odor mediates an obligate ant–plant mutualism in Amazonian rainforests. Proceedings of the National Academy of Sciences, 105, 45714575.CrossRefGoogle ScholarPubMed

References

Adams, E. S. (2016). Territoriality in ants (Hymenoptera: Formicidae): a review. Myrmecological News, 23, 101118.Google Scholar
Addicott, J. F. (1978). Competition for mutualists: aphids and ants. Canadian Journal of Zoology, 56, 20932096.CrossRefGoogle Scholar
Atsarkina, N., Iakovlev, I., and Reznikova, Z. (2014). Individual behavioural features of scouts and recruits in red wood ants (Hymenoptera: Formicidae). Euroasian Entomology Journal, 13, 209218.Google Scholar
Atsarkina, N., Panteleeva, S., and Reznikova, Z. (2017). Myrmica rubra ants are more communicative when young: do they need experience? Journal of Comparative Psychology, 131, 163.CrossRefGoogle Scholar
Beugnon, G., Chagné, P., and Dejean, A. (2001). Colony structure and foraging behavior in the tropical formicine ant, Gigantiops destructor. Insectes Sociaux, 48, 347351.CrossRefGoogle Scholar
Bos, N., and d’Ettorre, P. (2012). Recognition of social identity in ants. Frontiers in Psychology, 3, 83.CrossRefGoogle ScholarPubMed
Briscoe, A. D., and Chittka, L. (2001). The evolution of color vision in insects. Annual Review of Entomology, 46, 471510.CrossRefGoogle ScholarPubMed
Brown, J. J., and Traniello, J. F. (1998). Regulation of brood-care behavior in the dimorphic castes of the ant Pheidole morrisi (Hymenoptera: Formicidae): effects of caste ratio, colony size, and colony needs. Journal of Insect Behavior, 11, 209219.CrossRefGoogle Scholar
Burger, J., Kolss, M., Pont, J., and Kawecki, T. J. (2008). Learning ability and longevity: a symmetrical evolutionary trade-off in Drosophila. Evolution, 62, 12941304.CrossRefGoogle ScholarPubMed
Cammaerts, M. C., and Cammaerts, R. (2015). The acquisition of cognitive abilities by ants: a study on three Myrmica species (Hymenoptera, Formicidae). Advanced Studies in Biology, 7, 335348.CrossRefGoogle Scholar
Cammaerts Tricot, M. C. (2012). Navigation system of the ant Myrmica rubra (Hymenoptera: Formicidae). Myrmecological News, 16, 111121.Google Scholar
Changizi, M. A. (2003). Relationship between number of muscles, behavioral repertoire size, and encephalization in mammals. Journal of Theoretical Biology, 220, 157168.CrossRefGoogle ScholarPubMed
Chittka, L., and Niven, J. (2009). Are bigger brains better? Current Biology, 19, 9951008.CrossRefGoogle ScholarPubMed
Chittka, A., Wurm, Y., and Chittka, L. (2012). Epigenetics: the making of ant castes. Current Biology, 22, 835838.CrossRefGoogle ScholarPubMed
Czaczkes, T. J., Grüter, C., and Ratnieks, F. L. (2013). Negative feedback in ants: crowding results in less trail pheromone deposition. Journal of the Royal Society Interface, 10, 20121009.CrossRefGoogle ScholarPubMed
Darwin, C. (1981/1871). The descent of man, and selection in relation to sex. London: Penguin Classics.CrossRefGoogle Scholar
Dornhaus, A. (2008). Specialization does not predict individual efficiency in an ant. PLoS Biology, 6(11), e285.CrossRefGoogle ScholarPubMed
Dornhaus, A., and Franks, N. R. (2008). Individual and collective cognition in ants and other insects (Hymenoptera: Formicidae). Myrmecological News, 11, 215226.Google Scholar
Dorosheva, E. A., Yakovlev, I. K., and Reznikova, Z. I. (2011). An innate template for enemy recognition in red wood ants. Entomological Review, 91, 274280.CrossRefGoogle Scholar
Ehmer, B. (1999). Orientation in the ant Paraponera clavata. Journal of Insect Behavior, 12, 711722.CrossRefGoogle Scholar
Ettershank, G., and Ettershank, J. A. (1982). Ritualised fighting in the meat ant Iridomyrmex purpureus (Smith) (Hymenoptera: Formicidae). Australian Journal of Entomology, 21, 97102.CrossRefGoogle Scholar
Fox, S. F., and Baird, T. A. (1992). The dear enemy phenomenon in the collared lizard, Crotaphytus collaris, with a cautionary note on experimental methodology. Animal Behaviour, 44, 780782.CrossRefGoogle Scholar
Godard, R. (1993). Tit for tat among neighboring hooded warblers. Behavioral Ecology and Sociobiology, 33, 4550.CrossRefGoogle Scholar
Gould, J. L., and Marler, P. (1984). Ethology and the natural history of learning. In The biology of learning (pp. 4774). Berlin: Springer.CrossRefGoogle Scholar
Groh, C., Kelber, C., Grübel, K., and Rössler, W. (2014). Density of mushroom body synaptic complexes limits intraspecies brain miniaturization in highly polymorphic leaf-cutting ant workers. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20140432.Google ScholarPubMed
Gronenberg, W. (2008). Structure and function of ant (Hymenoptera: Formicidae) brains: strength in numbers. Myrmecological News, 11, 2536.Google Scholar
Gronenberg, W., and Hölldobler, B. (1999). Morphologic representation of visual and antennal information in the ant brain. Journal of Comparative Neurology, 412, 229240.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Herman, L. M. (2010). What laboratory research has told us about dolphin cognition. International Journal of Comparative Psychology, 23, 310330.CrossRefGoogle Scholar
Holbrook, C. T. (2009). Marking individual ants for behavioral sampling in a laboratory colony. Cold Spring Harbor Protocols, 7, pdb.prot5240.Google Scholar
Hölldobler, B., and Lumsden, C. J. (1980). Territorial strategies in ants. Science, 210, 732739.CrossRefGoogle ScholarPubMed
Hölldobler, B., and Wilson, E. O. (1990). The ants. Berlin: Springer.CrossRefGoogle Scholar
Hölldobler, B., and Wilson, E. O. (2009). The superorganism: the beauty, elegance, and strangeness of insect societies. New York, NY: W.W. Norton and Company.Google Scholar
Jackson, D. E., and Ratnieks, F. L. (2006). Communication in ants. Current Biology, 16, 570574.CrossRefGoogle ScholarPubMed
Kelber, C., Rössler, W., Roces, F., and Kleineidam, C. J. (2009). The antennal lobes of fungus-growing ants (Attini): neuroanatomical traits and evolutionary trends. Brain, Behavior and Evolution, 73, 273284.CrossRefGoogle ScholarPubMed
Kramer, B. H., Schrempf, A., Scheuerlein, A., and Heinze, J. (2015). Ant colonies do not trade-off reproduction against maintenance. PLoS ONE, 10(9), e0137969.CrossRefGoogle Scholar
Lenoir, A., Depickère, S., Devers, S., Christidès, J. P., and Detrain, C. (2009). Hydrocarbons in the ant Lasius niger: from the cuticle to the nest and home range marking. Journal of Chemical Ecology, 35, 913921.CrossRefGoogle Scholar
Leonhardt, S. D., Menzel, F., Nehring, V., and Schmitt, T. (2016). Ecology and evolution of communication in social insects. Cell, 164, 12771287.CrossRefGoogle ScholarPubMed
Liang, Z. S., Nguyen, T., Mattila, H. R., Rodriguez-Zas, S. L., Seeley, T. D., and Robinson, G. E. (2012). Molecular determinants of scouting behavior in honey bees. Science, 335, 12251228.CrossRefGoogle ScholarPubMed
Loukola, O. J., Perry, C. J., Coscos, L., and Chittka, L. (2017). Bumblebees show cognitive flexibility by improving on an observed complex behavior. Science, 355, 833836.CrossRefGoogle Scholar
McLeman, M. A., Pratt, S. C., and Franks, N. R. (2002). Navigation using visual landmarks by the ant Leptothorax albipennis. Insectes Sociaux, 49, 203208.CrossRefGoogle Scholar
Menzel, R., and Wehner, R. (1970). Augenstrukturen bei verschieden groβen Arbeiterinnen von Cataglyphis bicolor Fabr. (Formicidae, Hymenoptera). Zeitschrift für Vergleichende Physiologie, 68, 446449.CrossRefGoogle Scholar
Merkle, T., and Wehner, R. (2009). Repeated training does not improve the path integrator in desert ants. Behavioral Ecology and Sociobiology, 63, 391.CrossRefGoogle Scholar
Miller, N., Garnier, S., Hartnett, A. T., and Couzin, I. D. (2013). Both information and social cohesion determine collective decisions in animal groups. Proceedings of the National Academy of Sciences, 110, 52635268.CrossRefGoogle ScholarPubMed
Novgorodova, T. A. (2015). Organization of honeydew collection by foragers of different species of ants (Hymenoptera: Formicidae): effect of colony size and species specificity. European Journal of Entomology, 112, 688.CrossRefGoogle Scholar
Ogawa, Y., Falkowski, M., Narendra, A., Zeil, J., and Hemmi, J. M. (2015). Three spectrally distinct photoreceptors in diurnal and nocturnal Australian ants. Proceedings of the Royal Society of London B: Biological Sciences, 282, 20150673.Google ScholarPubMed
Peeters, C., Liebig, J., and Hölldobler, B. (2000). Sexual reproduction by both queens and workers in the ponerine ant Harpegnathos saltator. Insectes Sociaux, 47, 325332.CrossRefGoogle Scholar
Penick, C. A., Brent, C. S., Dolezal, K., and Liebig, J. (2014). Neurohormonal changes associated with ritualized combat and the formation of a reproductive hierarchy in the ant Harpegnathos saltator. Journal of Experimental Biology, 217, 14961503.Google ScholarPubMed
Pepperberg, I. (2009). Alex and me: how a scientist and a parrot discovered a hidden world of animal intelligence and formed a deep bond in the process. London: Harper Collins.Google Scholar
Perry, C. J., Barron, A. B., and Chittka, L. (2017). The frontiers of insect cognition. Current Opinion in Behavioral Sciences, 16, 111118.CrossRefGoogle Scholar
Pie, M. R. (2004). Foraging ecology and behaviour of the ponerine ant Ectatomma opaciventre Roger in a Brazilian savannah. Journal of Natural History, 38, 717729.CrossRefGoogle Scholar
Ramirez-Esquivel, F., Zeil, J., and Narendra, A. (2014). The antennal sensory array of the nocturnal bull ant Myrmecia pyriformis. Arthropod Structure and Development, 43, 543558.CrossRefGoogle ScholarPubMed
Reznikova, J. I. (1982). Interspecific communication between ants. Behaviour, 80, 8495.CrossRefGoogle Scholar
Reznikova, Z. (1974). Mechanism of territorial interaction of colonies in Formica pratensis (Hymenoptera, Formicidae). Zoologicheskii Zhurnal, 53, 212223 (in Russian with English summary).Google Scholar
Reznikova, Z. (1975). Non-antagonistic relationships of ants occupying similar ecological niches. Zoologicheskii Zhurnal, 54, 10201031 (in Russian with English summary).Google Scholar
Reznikova, Z. (1980). Interspecific hierarchy in ants. Zoologicheskii Zhurnal, 59, 11681176 (in Russian with English summary).Google Scholar
Reznikova, Z. (1999). Ethological mechanisms of population density control in coadaptive complexes of ants. Russian Journal of Ecology, 30, 187192.Google Scholar
Reznikova, Z. (2003). A new form of interspecies relations in ants: hypothesis of interspecies social control. Zoologicheskii Zhurnal, 82, 816824 (in Russian with English summary).Google Scholar
Reznikova, Z. (2007a). Animal intelligence: from individual to social cognition. Cambridge: Cambridge University Press.Google Scholar
Reznikova, Z. (2007b). Dialog with black box: using Information Theory to study animal language behaviour. Acta Ethologica, 10, 112.CrossRefGoogle Scholar
Reznikova, Z. (2008). Experimental paradigms for studying cognition and communication in ants (Hymenoptera: Formicidae). Myrmecological News, 11, 201214.Google Scholar
Reznikova, Zh. I. (2009). Methods for field studies of behaviour and interspecies relations in ants. Euroasian Entomological Journal, 8, 265278 (in Russian with English summary).Google Scholar
Reznikova, Z. (2012). Altruistic behavior and cognitive specialization in animal communities. In Encyclopedia of the Sciences of Learning (pp. 205208). New York, NY: Springer US.CrossRefGoogle Scholar
Reznikova, Z. (2017). Studying animal languages without translation: an insight from ants. Berlin: Springer.CrossRefGoogle Scholar
Reznikova, Z., and Bogatyreva, O. (1984). Individual behavior of ants of different species in the feeding habitat. Zoologicheskii Zhurnal, 63, 14941503 (in Russian with English summary).Google Scholar
Reznikova, Z., and Dorosheva, E. (2013). Catalog learning: Carabid beetles learn to manipulate with innate coherent behavioral patterns. Evolutionary Psychology, 11, 513537.CrossRefGoogle Scholar
Reznikova, Z., and Novgorodova, T. (1998). The importance of individual and social experience for interaction between ants and symbiotic aphids. Doklady Biological Sciences, 359, 173175.Google Scholar
Reznikova, Z., and Panteleeva, S. (2008). An ant’s eye view of culture: propagation of new traditions through triggering dormant behavioural patterns. Acta Ethologica, 11, 7380.CrossRefGoogle Scholar
Reznikova, Z., and Ryabko, B. (1990). Information Theory approach to communication in ants. In Sensory Systems and Communication in Arthropods (pp. 305307). Basel: Birkhäuser.CrossRefGoogle Scholar
Reznikova, Z., and Ryabko, B. (1994). Experimental study of the ants’ communication system with the application of the Information Theory approach. Memorabilia Zoologica, 48, 219236.Google Scholar
Reznikova, Z., and Ryabko, B. (2011). Numerical competence in animals, with an insight from ants. Behaviour, 148, 405434.CrossRefGoogle Scholar
Reznikova, Z., and Ryabko, B. (2012). Ants and bits. IEEE Information Theory Society Newsletter, 62, 1720.Google Scholar
Rosengren, R., and Fortelius, W. (1986). Ortstreue in foraging ants of the Formica rufa group – hierarchy of orienting cues and long-term memory. Insectes Sociaux, 33, 306337.CrossRefGoogle Scholar
Ryabko, B., and Reznikova, Z. (1996). Using Shannon entropy and Kolmogorov complexity to study the communicative system and cognitive capacities in ants. Complexity, 2, 3742.3.0.CO;2-K>CrossRefGoogle Scholar
Ryabko, B., and Reznikova, Z. (2009). The use of ideas of information theory for studying ‘language’ and intelligence in ants. Entropy, 11, 836853.CrossRefGoogle Scholar
Savage-Rumbaugh, E. S., and Lewin, R. (1994). Kanzi: the ape at the brink of the human mind. New York, NY: John Wiley & Sons.Google Scholar
Savolainen, R., Vepsäläinen, K., and Wuorenrinne, H. (1989). Ant assemblages in the taiga biome: testing the role of territorial wood ants. Oecologia, 81, 481486.CrossRefGoogle ScholarPubMed
Schmid-Hempel, P. (1984). Individually different foraging methods in the desert ant Cataglyphis bicolor (Hymenoptera, Formicidae). Behavioral Ecology and Sociobiology, 14, 263271.CrossRefGoogle Scholar
Seid, M. A., Castillo, A., and Wcislo, W. T. (2011). The allometry of brain miniaturization in ants. Brain, Behavior and Evolution, 77, 513.CrossRefGoogle ScholarPubMed
Sempo, G., and Detrain, C. (2010). Social task regulation in the dimorphic ant, Pheidole pallidula: the influence of caste ratio. Journal of Insect Science, 10, 3.CrossRefGoogle ScholarPubMed
Soroker, V., Vienne, C., and Hefetz, A. (1995). Hydrocarbon dynamics within and between nestmates in Cataglyphis niger (Hymenoptera: Formicidae). Journal of Chemical Ecology, 21, 365378.CrossRefGoogle Scholar
Stebaev, I. V., and Reznikova, J. I. (1972). Two interaction types of ants living in steppe ecosystem in South Siberia, USSR. Ecologia Polska, 20, 103109.Google Scholar
Strausfeld, N. J., Hansen, L., Li, Y., Gomez, R. S., and Ito, K. (1998). Evolution, discovery, and interpretations of arthropod mushroom bodies. Learning and Memory, 5, 1137.CrossRefGoogle ScholarPubMed
Stuble, K. L., Jurić, I., Cerda, X., and Sanders, N. (2017). Dominance hierarchies are a dominant paradigm in ant ecology (Hymenoptera: Formicidae), but should they be? And what is a dominance hierarchy anyways? Myrmecological News, 24, 7181.Google Scholar
Tautz, J. (2008). The buzz about bees: biology of a superorganism. Berlin: Springer.CrossRefGoogle Scholar
Tibbetts, E. A. (2002). Visual signals of individual identity in the wasp Polistes fuscatus. Proceedings of the Royal Society of London B: Biological Sciences, 269, 14231428.CrossRefGoogle ScholarPubMed
Vepsäläinen, K., and Pisarski, B. (1982). Assembly of island ant communities. In Annales Zoologici Fennici (pp. 327335). Helsinki: Finnish Academy of Sciences, Societas Scientiarum Fennica, Societas pro Fauna et Flora Fennica and Societas Biologica Fennica Vanamo.Google Scholar
Villet, M. (1990). Qualitative relations of egg size, egg production and colony size in some ponerine ants (Hymenoptera: Formicidae). Journal of Natural History, 24, 13211331.CrossRefGoogle Scholar
Walter, B., and Heinze, J. (2015). Queen–worker ratio affects reproductive skew in a socially polymorphic ant. Ecology and Evolution, 5, 56095615.CrossRefGoogle Scholar
Wehner, R. (2003). Desert ant navigation: how miniature brains solve complex tasks. Journal of Comparative Physiology A, 189, 579588.CrossRefGoogle ScholarPubMed
Wehner, R., and Müller, M. (2006). The significance of direct sunlight and polarized skylight in the ant’s celestial system of navigation. Proceedings of the National Academy of Sciences, 103, 1257512579.CrossRefGoogle ScholarPubMed
van Wilgenburg, E., Lieshout, E., and Elgar, M. A. (2005). Conflict resolution strategies in meat ants (Iridomyrmex purpureus): ritualised displays versus lethal fighting. Behaviour, 142, 701716.Google Scholar
Wilson, E. O. (1976). A social ethogram of the neotropical arboreal ant Zacryptocerus varians (Fr. Smith). Animal Behaviour, 24, 354363.CrossRefGoogle Scholar
Wilson, E. O. (1980). Caste and division of labor in leaf-cutter ants. II. The ergonomic organization of leaf cutting. Behavioral Ecology and Sociobiology, 7, 157165.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×