Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T00:27:31.308Z Has data issue: false hasContentIssue false

Chapter Three - Global change and Mediterranean forests: current impacts and potential responses

Published online by Cambridge University Press:  05 June 2014

Fernando Valladares
Affiliation:
National Museum of Natural Sciences, Madrid, Spain
Raquel Benavides
Affiliation:
National Museum of Natural Sciences, Madrid, Spain
Sonia G. Rabasa
Affiliation:
National Museum of Natural Sciences, Madrid, Spain
Mario Díaz
Affiliation:
National Museum of Natural Sciences, Madrid, Spain
Juli G. Pausas
Affiliation:
CIDE, CSIC, Valencia, Spain
Susana Paula
Affiliation:
Universidade Austral de Chile
William D. Simonson
Affiliation:
University of Cambridge
David A. Coomes
Affiliation:
University of Cambridge
David F. R. P. Burslem
Affiliation:
University of Aberdeen
William D. Simonson
Affiliation:
University of Cambridge
Get access

Summary

Global change exacerbating Mediterranean stresses

Mediterranean forests have always had to cope with challenging environmental conditions that change across different temporal and spatial scales. However, the rapidity of current environmental change, driven by greater-than-ever human influences on natural processes, is unprecedented and has triggered renewed research endeavour into the impacts on Mediterranean ecosystems (Valladares 2008). The climate of Mediterranean areas is expected to become drier and warmer, with decreasing water availability for plants and increasing evapotranspiration (IPCC 2007). This will result in more acute physiological stress, increased importance of species-specific tolerances, plasticity and thresholds, phenological change and recruitment effects (Montserrat-Martín et al. 2009; Morin et al. 2010; Peñuelas et al. 2004). Several studies have demonstrated how the conditions currently experienced by seedlings and saplings are quite different to those when current adults recruited (Lloret & Siscart 1995; Montoya 1995). The anticipated impacts of such changes have led to a renewed interest in classic ecophysiological research into drought stress and tolerance (Wikelskia & Cooke 2006), as well as population-level studies on phenotypic plasticity and the evolution of tolerance in certain key tree species, such as Holm (Quercus ilex) and cork oaks (Q. suber) (Gimeno et al. 2009; Ramírez-Valiente et al. 2010).

Niche modelling techniques are used to forecast changes to species distributions under future climate scenarios, and the results predict abrupt shifts of dominant tree species in the next decades. Forest diebacks, species migration and displacement, and altitudinal shifts of forest types have already been recorded (Peñuelas & Boada 2003; Allen et al. 2010). For example, in northeast Spain Fagus sylvatica and Calluna vulgaris are being replaced by Quercus ilex at high elevations (Peñuelas & Boada 2003).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, S. (2003) Adapting forest gene resource management to climate change. TICtalk, 14–16.Google Scholar
Allen, C. D., Macalady, A. K., Chenchouni, H. et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660–684.CrossRefGoogle Scholar
Archibald, S., Nickless, A., Govender, N., Scholes, R. J. & Lehsten, V. (2010) Climate and the inter-annual variability of fire in southern Africa: a meta-analysis using long-term field data and satellite-derived burnt area data. Global Ecology and Biogeography, 19, 794–809.CrossRefGoogle Scholar
Atauri, J. A. & de Lucio, J. V. (2001) Modelo de seguimiento ecológico en espacios naturales protegidos. Aplicación a la Reserva Natural de los Galachos de La Alfranca, La Cartuja y el Burgo de Ebro. Diputación General de Aragón.Google Scholar
Badia, A., Saurí, D., Cerdan, R. & Llurdés, J. C. (2002) Causality and management of forest fires in Mediterranean environments: an example from Catalonia. Global Environmental Change Part B: Environmental Hazards, 4, 23–32.CrossRefGoogle Scholar
Baeza, M. J., Santana, V. M., Pausas, J. G. & Vallejo, V. R. (2011) Successional trends in standing dead biomass in Mediterranean basin species. Journal of Vegetation Science, 22, 467–474.CrossRefGoogle Scholar
Balmford, A., Bruner, A., Philip Cooper, P. et al. (2002) Economic reasons for conserving wild nature. Science, 297, 950–953.CrossRefGoogle ScholarPubMed
Bertness, M. D. & Callaway, R. M. (1994) Positive interactions in communities. Trends in Ecology & Evolution, 9, 191–193.CrossRefGoogle ScholarPubMed
Benito-Garcón, M., Sánchez de Dios, R. & Sainz Ollero, H. (2008) Effects of climate change on the distribution of Iberian tree species. Applied Vegetation Science, 11, 169–178.CrossRefGoogle Scholar
Blondel, J, Aronson, J., Boudiou, J. Y. & Boeuf, G. (2010) The Mediterranean Basin: Biological Diversity in Space and Time. Oxford: Oxford University Press.Google Scholar
Bond, W. J., Woodward, F. I. & Midgley, G. F. (2005) The global distribution of ecosystems in a world without fire. New Phytologist, 165, 525–538.CrossRefGoogle Scholar
Bonet, A. & Pausas, J. G. (2007) Old field dynamics on the dry side of the Mediterranean Basin: patterns and processes in semiarid SE Spain. In Old Fields: Dynamics and Restoration of Abandoned Farmland (eds. Cramer, V. A. & Hobbs, R. J.), pp. 247–264. Washington: Island Press.Google Scholar
Bowman, D., Balch, J. K., Artaxo, P. et al. (2009) Fire in the Earth system. Science, 324, 481–484.CrossRefGoogle ScholarPubMed
Bravo, F., Bravo-Oviedo, A., Ruiz-Painado, R. & Montero, G. (2008) Selvicultura y cambio climático. Compendio de Selvicultura (eds. Serrada, R., Montero, G. & Reque, J. A.), pp. 981–1004. Madrid: INIA.Google Scholar
Brooker, R. W. (2006) Plant–plant interactions and environmental change. New Phytologist, 171, 271–284.CrossRefGoogle ScholarPubMed
Campos, P., Huntsinger, L., Oviedo, J. L. et al. (eds.) (2013) Mediterranean Oak Woodland Working Landscapes: Dehesas of Spain and Ranchlands of California. New York: Springer.CrossRef
Carvalho, A., Flannigan, M. D., Logan, K. A. et al. (2010) The impact of spatial resolution on area burned and fire occurrence projections in Portugal under climate change. Climatic Change, 98, 177–197.CrossRefGoogle Scholar
Castro, J., Zamora, R. & Hódar, J. A. (2006) Restoring Quercus pyrenaica forests using pioneer shrubs as nurse plants. Applied Vegetation Science, 9, 137–142.CrossRefGoogle Scholar
CBD (Convention on Biological Diversity) (2001) Forest Biological Diversity, Rep. Mo. UNEP/CBD/SBSTTA/7/7. Montreal: UNEP.Google Scholar
Celaya, R., Jáuregui, B. M., Rosa-García, R. et al. (2010) Changes in heathland vegetation under goat grazing: effects of breed and stocking rate. Applied Vegetation of Science, 13, 125–134.CrossRefGoogle Scholar
Certini, G. (2005) Effects of fire on properties of forest soils: a review. Oecologia, 143, 1–10.CrossRefGoogle ScholarPubMed
Christensen, J. H., Hewitson, B., Busuioc, A. et al. (2007) Regional climate projections. In Climate Change 2007: The Physical Science Basis (eds. Solomon, S., Qin, D., Manning, M., , Z. et al.), pp. 847–943. Cambridge and New York: Cambridge University Press.Google Scholar
Cochrane, M. A. (2003) Fire science for rainforests. Nature, 421, 913–919.CrossRefGoogle ScholarPubMed
Concepción, E. D., Díaz, M. & Baquero, R. A. (2008) Effects of landscape complexity on the ecological effectiveness of agri-environment schemes. Landscape Ecology, 23, 135–148.CrossRefGoogle Scholar
Cramer, W., Bondeau, A., Woodward, F. I. et al. (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7, 357–373.CrossRefGoogle Scholar
Cubera, E. & Moreno, G. (2007) Effects of land use on soil water dynamics in dehesas of Central-Western Spain. Catena, 71, 298–308.CrossRefGoogle Scholar
Cuesta, B., Villar-Salvador, P., Puértolas, J., Rey Benayas, J. M. & Michalet, R. (2010) Facilitation of Quercus ilex in Mediterranean shrubland is explained by both direct and indirect interactions mediated by herbs. Journal of Ecology, 98, 687–696.CrossRefGoogle Scholar
Cunningham, S. A. (2000) Effects of habitat fragmentation on the reproductive ecology of four plant species in Malle Woodland. Conservation Biology, 14, 758–768.CrossRefGoogle Scholar
Daily, G. C., Söderqvist, T., Aniyar, S. et al. (2000) The value of nature and the nature of value. Science, 289, 395–396.CrossRefGoogle ScholarPubMed
Damschen, E. I., Brudviga, L. A., Haddadb, N. M. et al. (2008) The movement ecology and dynamics of plant communities in fragmented landscapes. Proceedings of the National Academy of Sciences USA, 105, 19078–19083.CrossRefGoogle ScholarPubMed
Díaz, M., Carbonell, R., Santos, T. & Tellería, J. L. (1998) Breeding bird communities in pine plantations of the Spanish central plateaux: geographic location, fragmentation, and vegetation structure effects. Journal of Applied Ecology, 35, 562–574.CrossRefGoogle Scholar
Diaz, M., Tietje, W. & Barret, R. (2013) Effects of management on biological diversity and endangered species. In Mediterranean Oak Woodland Working Landscapes: Dehesas of Spain and Ranchlands of California (eds. Campos, P., Huntsinger, L., Oviedo, J. L., Diaz, M., Starrs, P., Standiford, R. B. & Montero, G.), pp. 213–243. New York: Springer.CrossRefGoogle Scholar
Dimitrakopoulos, A. P., Vlahou, M., Anagnostopoulou, C. G. & Mitsopoulos, I. D. (2011) Impact of drought on wildland fires in Greece: implications of climatic change?Climatic Change, 109, 331–347.CrossRefGoogle Scholar
Duncan, H. D., Nicotra, A. B., Wood, J. T. & Cunningham, S. A. (2004) Plant isolation reduces outcross pollen receipt in a partially selfcompatible herb. Journal of Ecology, 92, 977–985.CrossRefGoogle Scholar
Ellstrand, N. C. & Elam, D. R. (1993) Population genetic consequences of small size: implications for plant conservation. Annual Review of Ecology, Evolution, and Systematics, 24, 217–242.CrossRefGoogle Scholar
Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34, 487–515.CrossRefGoogle Scholar
Fischer, M. & Matthies, D. (1997) Mating structure and inbreeding and outbreeding depression in the rare plant Gentianella germanica (Gentianaeae). American Journal of Botany, 84, 1685–1692.CrossRefGoogle Scholar
Flannigan, M. D. & Harrington, J. B. (1988) A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada (1953–80). Journal of Applied Meteorology, 27, 441–452.2.0.CO;2>CrossRefGoogle Scholar
Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M. & Gowman, L. M. (2009) Implications of changing climate for global wildland fire. International Journal of Wildland Fire, 18, 483–507.CrossRefGoogle Scholar
Forget, P. M., Lambert, J. E., Hulme, P. E. & Vander Wall, S. B. (2005) Seed Fate: Predation, Dispersal and Seedling Establishment. Wallingford, MA: CAB International.CrossRefGoogle Scholar
Founda, D. & Giannakopoulos, C. (2009) The exceptionally hot summer of 2007 in Athens, Greece – A typical summer in the future climate?Global and Planetary Change, 67, 227–236.CrossRefGoogle Scholar
Freckleton, R. P., Watkinson, A. R. & Rees, M. (2009) Measuring the importance of competition in plant communities. Journal of Ecology, 97, 379–384.CrossRefGoogle Scholar
Fujimori, T. (2001) Ecological and Silvicultural Strategies for Sustainable Forest Management. Amsterdam: Elsevier.Google Scholar
Fulé, P. Z., Ribas, M., Gutiérrez, E., Vallejo, R. & Kaye, M. W. (2008) Forest structure and fire history in an old Pinus nigra forest, eastern Spain. Forest Ecology and Management, 255, 1234–1242.CrossRefGoogle Scholar
Fyllas, N. M. & Troumbis, A. Y. (2009) Simulating vegetation shifts in north-eastern Mediterranean mountain forests under climatic change scenarios. Global Ecology and Biogeography, 18, 64–77.CrossRefGoogle Scholar
García, D. & Chacoff, N. P. (2007) Scale-dependent effects of habitat fragmentation on hawthorn pollination, frugivory and seed predation. Conservation Biology, 21, 400–411.CrossRefGoogle ScholarPubMed
Giannakopoulos, C., Le Sager, P., Bindi, M. et al. (2009) Climatic changes and associated impacts in the Mediterranean resulting from a 2 degrees C global warming. Global and Planetary Change, 68, 209–224.CrossRefGoogle Scholar
Gillett, N. P., Weaver, A. J., Zwiers, F. W. & Flanningan, M. D. (2004) Detecting the effect of climate change on Canadian forest fires. Geophysical Resarch Letters, 31, L18211.CrossRefGoogle Scholar
Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. (2010) A framework for community interactions under climate change. Trends in Ecology & Evolution, 25, 325–331.CrossRefGoogle ScholarPubMed
Gimeno, T. E. (2011) Ecofisiología, interacciones planta-planta y cambio global en dos árboles del Mediterráneo continental. Unpublished PhD thesis, Universidad Rey Juan Carlos, Madrid.Google Scholar
Gimeno, T. E., Pias, B., Lemos-Filho, J. P. & Valladares, F. (2009) Plasticity and stress tolerance override local adaptation in the responses of Mediterranean Holm oak seedlings to drought and cold. Tree Physiology, 29, 87–98.CrossRefGoogle Scholar
Gimeno, T. E. , Pias, B., Martinez-Fernandez, J., et al. (2012a) The decreased competition in expanding versus mature juniper woodlands is counteracted by adverse climatic effects on growth. European Journal of Forest Research, 131, 977–987.CrossRefGoogle Scholar
Gimeno, T. E., Camarero, J. J., Granda, E., Pías, B. & Valladares, F. (2012b). Enhanced growth of Juniperus thurifera under a warmer climate is explained by a positive carbon gain under cold and drought. Tree Physiology, 32, 326–336.CrossRefGoogle Scholar
Gómez, J. M., Puerta-Piñero, C. & Schupp, E. W. (2008) Effectiveness of rodents as local seed dispersers of Holm oaks. Oecologia, 155, 529–537.CrossRefGoogle ScholarPubMed
Gómez-Aparicio, L., Zamora, R., Gómez, J. M. et al. (2004) Applying plant facilitation to forest restoration: a meta-analysis of the use of shrubs as nurse plants. Ecological Applications, 14, 1128–1138.CrossRefGoogle Scholar
González-Varo, J. P., Arroyo, J. & Aparicio, A. (2009) Effects of fragmentation on pollinator assemblage, pollen limitation and seed production of Mediterranean myrtle (Myrtus communis). Biological Conservation, 142, 1058–1065.CrossRefGoogle Scholar
Gracia, C. A., Tello, E., Sabaté, S. & Bellot, J. (1999) GOTILWA+: an integrated model of water dynamics and forest growth. In Ecology of Mediterranean Evergreen Oak Forest: Ecological Studies, vol. 137 (eds. Rodá, F., Retana, J., Gracia, C. A. & Bellot, J.), pp. 163–178. Berlin: Springer.CrossRefGoogle Scholar
Granda, E., Escudero, A., De La Cruz, M. & Valladares, F. (2012) Juvenile-adult tree associations in a continental Mediterranean ecosystem: no evidence for sustained and general facilitation at increased aridity. Journal of Vegetation Science, 23, 164–175.CrossRefGoogle Scholar
Hanski, I., Kuussaari, M. & Nieminen, M. (1994) Metapopulation structure and migration in the butterfly Melitea cinxia. Ecology, 75, 747–762.CrossRefGoogle Scholar
Helmuth, B., Kingsolver, J. G. & Carrington, E. (2005) Biophysics, physiological ecology, and climate change: Does mechanism matter?Annual Review of Physiology, 67, 177–201.CrossRefGoogle ScholarPubMed
Hill, J. K., Collingham, Y., Thomas, C. D. et al. (2001) Impacts of landscape structure on butterfly range expansion. Ecology Letters, 4, 313–321.CrossRefGoogle Scholar
Hódar, J. A., Castro, J. & Zamora, R. (2003) Pine processionary caterpillar Thaumetopoea pityiocampa as a new threat for relict Mediterranean Scots pine forests under climatic warming. Biological Conservation, 110, 123–129.CrossRefGoogle Scholar
IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon, S., Qin, D., Manning, M. et al.). Cambridge and New York: Cambridge University Press.Google Scholar
Jauregui, B. M., Rosa-Garcia, R., Garcia, U. et al. (2008) Effects of stocking density and breed of goats on vegetation and grasshopper occurrence in heathlands. Agriculture, Ecosystems & Environment, 123, 219–224.CrossRefGoogle Scholar
Joffre, R. & Rambal, S. (1993) How tree cover influences the water balance of Mediterranean rangelands. Ecology, 74, 570–582.CrossRefGoogle Scholar
Jordano, P., García, C., Godoy, J. A. & García-Castaño, J. L. (2007) Differential contribution of frugivores to complex seed dispersal patterns. Proceedings of the National Academy of Sciences USA, 104, 3278–3282.CrossRefGoogle ScholarPubMed
Jump, A. S. & Peñuelas, J. (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecology Letters, 8, 1010–1020.CrossRefGoogle Scholar
Jump, A. S. & Peñuelas, J. (2006) Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proceedings of the National Academy of Sciences USA, 103, 8096–8100.CrossRefGoogle Scholar
Keeley, J. E., Bond, W. J., Bradstock, R. A., Pausas, J. G. & Rundel, P. W. (2012). Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge: Cambridge University Press.Google Scholar
Keeley, J. E. & Zedler, P. H. (2009). Large, high-intensity fire events in southern California shrublands: debunking the fine-grain age patch model. Ecological Applications, 19, 69–94.CrossRefGoogle ScholarPubMed
Keenan, T., Serra, J. M., Lloret, F., Ninyerola, M. & Sabate, S. (2010) Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters!Global Change Biology, 17, 565–579.CrossRefGoogle Scholar
Kéry, M., Matthies, D. & Fischer, M. (2001) The effect of plant population size on the interactions between the rare plant Gentiana cruciata and its specialized herbivore Maculinea rebeli. Journal of Ecology, 89, 418–427.CrossRefGoogle Scholar
Krawchuk, M. A. & Moritz, M. (2011) Constraints on global fire activity vary across a resource gradient. Ecology, 92, 121–132.CrossRefGoogle ScholarPubMed
Krawchuk, M. A., Moritz, M. A., Parisien, M. A., Van Dorn, J. & Hayhoe, K. (2009) Global pyrogeography: the current and future distribution of wildfire. PloS One, 4, e5102.CrossRefGoogle ScholarPubMed
Lande, R. (1988) Genetics and demography in biological conservation. Science, 241, 1455–1460.CrossRefGoogle ScholarPubMed
Lindner, M. (2000) Developing adaptive forest management strategies to cope with climate change. Tree Physiology, 20, 299–307.CrossRefGoogle Scholar
Lindner, M., Bugmann, H., Lasch, P., Fleichsig, M. & Cramer, W. (1997) Regional impacts of climate change on forests in the state of Brandenburg, Germany. Agricultural and Forest Meteorology, 84, 123–135.CrossRefGoogle Scholar
Lloret, F., Escudero, A., Iriondo, J. M., Martinez-Vilalta, J. & Valladares, F. (2012) Extreme climatic events and vegetation: the role of stabilizing processes. Global Change Biology, 18, 797–805.CrossRefGoogle Scholar
Lloret, F. & López-Soria, L. (1993). Resprouting of Erica multiflora after experimental fire treatments. Journal of Vegetation Science, 4, 367–374.CrossRefGoogle Scholar
Lloret, F., Pausas, J. G. & Vilà, M. (2003) Responses of Mediterranean plant species to different fire frequencies in Garraf Natural Park (Catalonia, Spain): field observations and modelling predictions. Plant Ecology, 167, 223–235.CrossRefGoogle Scholar
Lloret, F. & Siscart, D. (1995) Los efectos demográficos de la sequía en poblaciones de encina. Cuadernos de la Sociedad Española de Ciencias Foresales, 2, 77–81.Google Scholar
Loustau, D., Bosc, A., Colin, A. et al. (2005) Modeling climate change effects on the potential production of French plains forests at the sub-regional level. Tree Physiology, 25, 813–823.CrossRefGoogle ScholarPubMed
Maestre, F., Callaway, R. M., Valladares, F. & Lortie, C. J. (2009) Refining the stress-gradient hypothesis for competition and facilitation in plant communities. Journal of Ecology, 97, 199–205.CrossRefGoogle Scholar
Maestre, F. T. & Cortina, J. (2004) Do positive interactions increase with abiotic stress? A test from a semi-arid steppe. Proceedings of the Royal Society of London B (Supplement) 271: S331–S333.CrossRefGoogle ScholarPubMed
Malkinson, D. & Tielbörger, K. (2010) What does the stress-gradient hypothesis predict? Resolving the discrepancies. Oikos, 119, 1546–1552.CrossRefGoogle Scholar
Marlon, J. R., Bartlein, P. J., Carcaillet, C. et al. (2008) Climate and human influences on global biomass burning over the past two millennia. Nature Geoscience, 1, 697–702.CrossRefGoogle Scholar
Martínez de Aragón, J., Bonet, J. A., Fischer, C. R. & Colinas, C. (2007) Productivity of ectomycorrhizal and selected edible saprotrophic fungi in pine forests of the pre-Pyrenees mountains, Spain: predictive equations for forest management of mycological resources. Forest Ecology and Management, 252, 239–256.CrossRefGoogle Scholar
McKenzie, D., Gedalof, Z. M., Peterson, D. L. & Mote, P. (2004) Climatic change, wildfire, and conservation. Conservation Biology, 18, 890–902.CrossRefGoogle Scholar
Montoya, D., Zavala, M. A., Rodríguez, M. A. & Purves, D. W. (2008) Animal versus wind dispersal and the robustness of tree species to deforestation. Science, 320, 1502–1504.CrossRefGoogle ScholarPubMed
Montoya, R. (1995) Red de seguimiento de daños en los montes. Daños originados por la sequía en 1994. Cuadernos de la Sociedad Españolas de Ciencias Forestales, 2, 83–97.Google Scholar
Montserrat-Martín, G., Camarero, J. J., Palacios, S. et al. (2009) Summer-drought constrains the phenology and growth of two coexisting Mediterranean oaks with contrasting leaf habits: implications for their persistence and reproduction. Tree-Structure and Function, 23, 787–799.CrossRefGoogle Scholar
Moreira, F., Rego, F. C. & Ferreira, P. G. (2001) Temporal (1958–1995) pattern of change in a cultural landscape of northwestern Portugal: implications for fire occurrence. Landscape Ecology, 16, 557–567.CrossRefGoogle Scholar
Moreira, B., Tormo, J., Pausas, J. G. (2012) To resprout or not to resprout: factors driving intraspecific variability in resprouting. Oikos, 121, 1577–1584.CrossRefGoogle Scholar
Morin, X., Roy, J., Sonie, L. & Chuine, I. (2010) Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytologist, 186, 900–910.CrossRefGoogle ScholarPubMed
Moriondo, M., Good, P., Durao, R. et al. (2006) Potential impact of climate change on fire risk in the Mediterranean area. Climate Research, 31, 85–95.CrossRefGoogle Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.CrossRefGoogle ScholarPubMed
Nyberg, J. B. (1998) Statistics and the practice of adaptive management. Statistical Methods for Adaptive Management Studies (eds. Sit, V. & Taylor, B.). Land Management Handbook 42, Victoria, Canada: BC Ministry of Forests.Google Scholar
Opdam, P. & Wascher, D. (2004) Climate change meets habitat fragmentation: linking landscape and biogeographical scale level in research and conservation. Biological Conservation, 117, 285–297.CrossRefGoogle Scholar
Ordóñez, J. L., Molowny-Horas, R. & Retana, J. (2006) A model of the recruitment of Pinus nigra from unburned edges after large wildfires. Ecological Modelling, 197, 405–417.CrossRefGoogle Scholar
Pascual, M. & Dunne, J. A. (eds.) (2006) Ecological Networks: Linking Structure to Dynamics in Food Webs. Oxford: Oxford University Press.
Paula, S. & Pausas, J. G. (2008) Burning seeds: germinative response to heat treatments in relation to resprouting ability. Journal of Ecology, 96, 543–552.CrossRefGoogle Scholar
Pausas, J. G. (2004) Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Climatic Change, 63, 337–350.CrossRefGoogle Scholar
Pausas, J. G., Bonet, A., Maestre, F. T. & Climent, A. (2006) The role of the perch effect on the nucleation process in Mediterranean semi-arid oldfields. Acta Oecologica, 29, 346–352.CrossRefGoogle Scholar
Pausas, J. G. & Bradstock, R. A. (2007) Fire persistence traits of plants along a productivity and disturbance gradient in Mediterranean shrublands of south-east Australia. Global Ecology and Biogeography, 16, 330–340.CrossRefGoogle Scholar
Pausas, J. G. & Fernández-Muñoz, S. (2012) Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110, 215–226.CrossRefGoogle Scholar
Pausas, J. G. & Keeley, J. E. (2009) A burning story: the role of fire in the history of life. BioScience, 59, 593–601.CrossRefGoogle Scholar
Pausas, J. G., Llovet, J., Rodrigo, A. & Vallejo, R. (2008) Are wildfires a disaster in the Mediterranean basin? A review. International Journal of Wildland Fire, 17, 713–723.CrossRefGoogle Scholar
Pausas, J. G., Ouadah, N., Ferrán, A., Gimeno, T. & Vallejo, R. (2003) Fire severity and seedling establishment in Pinus halepensis woodlands, eastern Iberian Peninsula. Plant Ecology, 169, 205–213.CrossRefGoogle Scholar
Pausas, J. G. & Paula, S. (2012) Fuel shapes the fire–climate relationship: evidence from Mediterranean ecosystems. Global Ecology and Biogeography, 21, 1074–1082.CrossRefGoogle Scholar
Pausas, J. G. & Ribeiro, E. (2013) The global fire–productivity relationship. Global Ecology and Biogeography, 22, 728–736.CrossRefGoogle Scholar
Pausas, J. G. & Vallejo, R. (2008) Bases ecológicas para convivir con los incendios forestales en la Región Mediterránea – decálogo. Ecosistemas, 17, 128–129.Google Scholar
Pausas, J. G. & Verdú, M. (2005) Plant persistence traits in fire-prone ecosystems of the Mediterranean basin: a phylogenetic approach. Oikos, 109, 196–202.CrossRefGoogle Scholar
Pechony, O. & Shindell, D. T. (2010) Driving forces of global wildfires over the past millennium and the forthcoming century. Proceedings of the National Academy of Sciences USA, 107, 19167–19170.CrossRefGoogle ScholarPubMed
Peñuelas, J. & Boada, M. (2003) A global change-induced biome shift in Montseny mountains (NE Spain). Global Change Biology, 9, 131–140.CrossRefGoogle Scholar
Peñuelas, J., Filella, I., Zhang, W. Y., Llorens, L. & Ogaya, R. (2004) Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytologist, 161, 837–846.CrossRefGoogle Scholar
Pereira, M. G., Trigo, R. M., da Camara, C. C., Pereira, J. & Leite, S. M. (2005) Synoptic patterns associated with large summer forest fires in Portugal. Agricultural and Forest Meteorology, 129, 11–25.CrossRefGoogle Scholar
Piñol, J., Terradas, J. & Lloret, F. (1998) Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Climatic Change, 38, 345–357.CrossRefGoogle Scholar
Puettmann, K. J., Coates, K. D. & Messier, C. (2008) A Critique of Silviculture. Washington: Island Press.Google Scholar
Pulido, F. J. & Díaz, M. (2005) Regeneration of a Mediterranean oak: a whole-cycle approach. EcoScience, 12, 92–102.CrossRefGoogle Scholar
Purves, D. W., Zavala, M. A., Ogle, K., Prieto, F. & Rey, J. M. (2006) Environmental heterogeneity, bird-mediated directed dispersal, and oak woodland dynamics in Mediterranean Spain. Ecological Monographs, 77, 77–97.CrossRefGoogle Scholar
Rabasa, S. G., Gutiérrez, D. & Escudero, A. (2007) Metapopulation structure and habitat quality in modelling dispersal in the butterfly Iolana iolas. Oikos, 116, 793–806.CrossRefGoogle Scholar
Rabasa, S. G., Gutiérrez, D. & Escudero, A. (2009) Temporal variation in the effects of habitat fragmentation on reproduction of a Mediterranean shrub Colutea hispanica. Plant Ecology, 200, 241–254.CrossRefGoogle Scholar
Ramírez, J. A. & Díaz, M. (2008) The role of temporal shrub encroachment for the maintenance of Spanish holm oak Quercus ilex dehesas. Forest Ecology and Management, 255, 1976–1983.CrossRefGoogle Scholar
Ramírez-Valiente, J. A., Sanchez-Gomez, D., Aranda, I. & Valladares, F. (2010) Phenotypic plasticity versus local adaptation for leaf ecophysiological traits in thirteen contrasting cork oak populations under varying water availabilities. Tree Physiology, 30, 618–627.CrossRefGoogle Scholar
Resco de Dios, V., Fischer, C. & Colinas, C. (2007) Climate change effects on Mediterranean forests and preventive measures. New Forests, 33, 29–40.CrossRefGoogle Scholar
Rodrigo, A., Retana, J. & Picó, F. X. (2004) Direct regeneration is not the only response of Mediterranean forests to large fires. Ecology, 85, 716–729.CrossRefGoogle Scholar
Sabaté, S., Gracia, C. A. & Sánchez, A. (2002) Likely effects of climate change on growth of Quercus ilex, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forest in the Mediterranean region. Forest Ecology and Management, 162, 23–37.CrossRefGoogle Scholar
Sala, O. E., Chapin III, F. S., Armesto, J. J. et al. (2000) Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774.CrossRefGoogle ScholarPubMed
Santos, T. & Tellería, J. L. (1994) Influence of forest fragmentation on seed consumption and dispersal of Spanish juniper Juniperus thurifera. Biological Conservation, 70,129–134.CrossRefGoogle Scholar
Santos, T. & Telleria, J. L. (1997) Vertebrate predation on Holm oak, Quercus ilex, acorns in a fragmented habitat: effects on seedling recruitment. Forest Ecology and Management, 98, 181–187.CrossRefGoogle Scholar
Santos, T., Telleria, J. L.Diaz, M. & Carbonell, R. (2006) Evaluating the environmental benefits of CAP reforms: can afforestations restore forest bird communities in Mediterranean Spain?Basic and Applied Ecology, 7, 483–495.CrossRefGoogle Scholar
Scholze, M., Knorr, W., Arnell, N. W. & Prentice, I. C. (2006) A climate-change risk analysis for world ecosystems. Proceedings of the National Academy of Sciences USA, 103, 13116–13120.CrossRefGoogle ScholarPubMed
Schupp, E. W., Jordano, P. & Gómez, J. M. (2010) Seed dispersal effectiveness revisited: a conceptual review. New Phytologists,188, 333–353.CrossRefGoogle ScholarPubMed
Smit, C., den Ouden, J. & Díaz, M. (2008) Facilitation of Holm oak recruitment by shrubs in Mediterranean open woodlands. Journal of Vegetation Science, 19, 193–200.CrossRefGoogle Scholar
Smit, C., Vandenberghe, C., den Ouden, J. & Müller-Schärer, H. (2007) Nurse plants, tree saplings and grazing pressure: changes in facilitation along a biotic environmental gradient. Oecologia, 152, 265–273.CrossRefGoogle ScholarPubMed
Soliveres, S., DeSoto, L., Maestre, F. T. & Olano, J. M. (2010) Spatio-temporal heterogeneity in abiotic factors modulate multiple ontogenetic shifts between competition and facilitation. Perspectives in Plant Ecology, Evolution and Systematics, 12, 227–234.CrossRefGoogle Scholar
Stefanescu, C., Herrando, S. & Páramo, F. (2004) Butterfly species richness in the north-west Mediterranean Basin: the role of natural and human-induced factors. Journal of Biogeography, 31, 905–915.CrossRefGoogle Scholar
Stephens, S. L., Millar, C. I. & Collins, B. (2010) Operational approaches to managing forests of the future in Mediterranean regions within a context of changing climates. Environmental Research Letters, 5, 9pp.CrossRefGoogle Scholar
Svenning, J. C. & Skov, F. (2007) Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation?Ecology Letters, 10, 453–460.CrossRefGoogle ScholarPubMed
Tainer, F. H. & Baker, F. A. (1996) Principles of Forest Pathology. New York: John Wiley and Sons.Google Scholar
Tello, E., Sabaté, S., Bellot, J. & Gracia, C. (1994) Modelling responses of Mediterranean forest to climate change: the role of canopy in water flux. Noticiero Biología, 2, 55.Google Scholar
Templeton, A. R. (1986) Coadaptation and outbreeding depression. Conservation Biology: The Science of Scarcity and Diversity (ed. Soulé, M. E.), pp. 105–116. Sunderland, UK: Sinauer.Google Scholar
Thomas, C. D., Cameron, A., Green, R. E. et al. (2004) Extinction risk from climate change. Nature, 427, 145–148.CrossRefGoogle ScholarPubMed
Thuiller, W., Albert, C., Araujo, M. B. et al. (2008) Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 9, 137–152.CrossRefGoogle Scholar
Thuiller, W., Lavergne, S., Roquet, C. et al. (2011) Consequences of climate change on the tree of life in Europe. Nature, 470, 531–534.CrossRefGoogle Scholar
Trabaud, L. & Campant, C. (1991) Difficulté de recolonisation naturelle du pin de Salzmann Pinus nigra Arn. spp. Salzmanii (Dunal) Franco après incendie. Biological Conservation, 58, 329–343.CrossRefGoogle Scholar
Travis, J. M. J. (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proceedings of the Royal Society B, 270, 467–473.CrossRefGoogle ScholarPubMed
Trigo, R. M., Pereira, J. M. C., Pereira, M. G. et al. (2006) Atmospheric conditions associated with the exceptional fire season of 2003 in Portugal. International Journal of Climatology, 26, 1741–1757.CrossRefGoogle Scholar
Tuset, J. J. & Sánchez, G. (eds.) (2004) La Seca: decaimiento de encinas, alcornoques y otros Quercus en España. Madrid: MMA Organismo Autónomo de Parques Nacionales Serie Técnica.
Valiente-Banuet, A., Rumebe, A. V., Verdu, M. & Callaway, R. M. (2006) Modern Quaternary plant lineages promote diversity through facilitation of ancient Tertiary lineages. Proceedings of the National Academy of Sciences USA, 103, 16812–16817.CrossRefGoogle ScholarPubMed
Valladares, F. (ed.) (2004) Ecología del Bosque Mediterráneo en un mundo cambiante. Naturaleza y Parques Nacionales. Madrid: Ministerio de Medio Ambiente.
Valladares, F., Zaragoza-Castells, J., Sánchez-Gómez, D. et al. (2008) Is shade beneficial for Mediterranean shrubs experiencing periods of extreme drought and late-winter frosts?Annals of Botany, 102, 923–933.CrossRefGoogle ScholarPubMed
Valladares, F. (2008) A mechanistic view of the capacity of forests to cope with climate change. In Managing Forest Ecosystems: The Challenge of Climate Change (eds. Bravo, F., May, V. L, Jandl, R. & von Gadow, K.). Berlin: Springer-Verlag.Google Scholar
Vallecillo, S., Brotons, L. & Thuiller, W. (2009) Dangers of predicting bird species distributions in response to land-cover changes. Ecological Applications, 19, 538–549.CrossRefGoogle ScholarPubMed
Verdú, M. & Pausas, J. G. (2007) Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. Journal of Ecology, 95, 1316–1323.CrossRefGoogle Scholar
Viegas, D. X. (2004) Cercados pelo fogo: os incêndios florestais em Portugal em 2003 e os acidentes mortais com eles relacionados. Coimbra: MinervaCoimbra.Google Scholar
Viegas, D. X. & Viegas, M. T. (1994) A relationship between rainfall and burned area for Portugal. International Journal of Wildland Fire, 4, 11–16.CrossRefGoogle Scholar
Warren, M. S., Hill, J. K., Thomas, J. A. et al. (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature, 400, 65–69.CrossRefGoogle Scholar
Wenny, D. G. & Levey, D. J. (1998) Directed seed dispersal by bellbirds in a tropical cloud forest. Proceedings of the National Academy of Sciences USA, 95, 6204–6207.CrossRefGoogle Scholar
Westerling, A. L. & Bryant, B. P. (2008) Climate change and wildfire in California. Climatic Change, 87, 231–249.CrossRefGoogle Scholar
Whitlock, C., Higuera, P. E., McWethy, D. B. & Briles, C. E. (2010) Paleoecological perspectives on fire ecology: Revisiting the fire-regime concept. The Open Ecology Journal, 3, 6–23.CrossRefGoogle Scholar
Wikelskia, M. & Cooke, S. J. (2006) Conservation physiology. Trends in Ecology & Evolution, 21, 38–46.CrossRefGoogle Scholar
Wilson, R. J., Davies, Z. G. & Thomas, C. D. (2010) Linking habitat use to range expansion rates in fragmented landscapes: a metapopulation approach. Ecography, 33, 73–82.CrossRefGoogle Scholar
Young, A., Boyle, T. & Brown, T. (1996) The population genetic consequences of habitat fragmentation for plants. Trends in Ecology & Evolution, 11, 413–418.CrossRefGoogle ScholarPubMed
Zamora, R., García-Fayos, P. & Gómez, L. (2004) Las interacciones planta–planta y planta–animal en el contexto de la sucesión ecológica. In Ecología del bosque mediterráneo en un mundo cambiante. (ed. Valladares, F.), pp. 309–334. Madrid: Organismo Autónomo de Parques Nacionales.Google Scholar
Zamora, R., Hódar, J. A., Matías, I. & Mendoza, I. (2010) Positive adjacency effects mediated by seed disperser birds in pine plantations. Ecological Applications, 20, 1053–1060.CrossRefGoogle ScholarPubMed
Zavala, M. A., Zamora, R., Pulido, F. et al. (2004) Nuevas perspectivas en la conservación, restauración y gestión sostenible del bosque mediterráneo. In Ecología del bosque mediterráneo en un mundo cambiante (ed. Valladares, F.), pp. 509–529. Madrid: Organismo Autónomo de Parques Nacionales.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×