Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T22:41:46.718Z Has data issue: false hasContentIssue false

12 - Ontogenetic Perspectives on the Neurobiological Basis of Psychopathology Following Abuse and Neglect

Published online by Cambridge University Press:  26 May 2010

Carol M. Worthman
Affiliation:
Emory University, Atlanta
Paul M. Plotsky
Affiliation:
Emory University, Atlanta
Daniel S. Schechter
Affiliation:
Hôpitaux Universitaires de Genève
Constance A. Cummings
Affiliation:
Foundation for Psychocultural Research, California
Get access

Summary

INTRODUCTION

The US Federal Child Abuse Prevention and Treatment Act defines child abuse and neglect as the recent act or failure of parents and caretakers resulting in physical or emotional injury, sexual exploitation, and/or death. According to national statistics on the prevalence of childhood abuse and neglect in the United States, 905,000 people under 18 years of age were victimized during 2006. Of these, 64.1% were neglected; 16.0% were physically abused; and 15.1% suffered abandonment, threats of harm, congenital drug addiction, or other forms of maltreatment. Furthermore, 8.8% were sexually abused; 6.6% were either emotionally or psychologically maltreated; and 2.2% were medically neglected.

Childhood maltreatment is a major risk factor for the development of depression, drug and alcohol abuse, posttraumatic stress disorder (PTSD), bipolar disorder (BPD), personality disorders, and aggression. Depending on an individual's sex, genetic makeup, and age at insult, chronic childhood traumatic stress (CTS) alters the endocrine profile and gene-expression pattern, as well as the functional activity, hemispheric integration, and morphology of the brain. In this chapter, we offer a holistic portrayal of the pathways between maltreatment and adverse psychiatric outcomes, arguing that the impact of abuse and neglect is best understood in the context of normal ontogenetic processes relating to trajectories of brain development.

NEUROPSYCHIATRIC EFFECTS OF TRAUMA

Several studies have documented the consequences of exposure to CTS. One of the most compelling is the Adverse Childhood Experience (ACE) Study, led by Vincent Felitti and Robert Anda (Felitti et al., 1998).

Type
Chapter
Information
Formative Experiences
The Interaction of Caregiving, Culture, and Developmental Psychobiology
, pp. 308 - 330
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anda, R. F., Felitti, V. J., Bremner, J. D., Walker, J. D., Whitfield, C., Perry, B. D., et al. (2006). The enduring effects of abuse and related adverse experiences in childhood: A convergence of evidence from neurobiology and epidemiology. European Archives of Psychiatry and Clinical Neuroscience, 256(3), 174–186.CrossRefGoogle ScholarPubMed
Andersen, S. L. (2003). Trajectories of brain development: Point of vulnerability or window of opportunity?Neuroscience and Biobehavioral Reviews, 27(1–2), 3–18.CrossRefGoogle ScholarPubMed
Andersen, S. L., & Teicher, M. H. (2004). Delayed effects of early stress on hippocampal development. Neuropsychopharmacology, 29(11), 1988–1993.CrossRefGoogle ScholarPubMed
Andersen, S. L., & Teicher, M. H. (2008a). Desperately driven and no brakes: Developmental stress exposure and subsequent risk for substance abuse. Neuroscience and Biobehavioral Reviews, 33(4), 516–524.CrossRefGoogle ScholarPubMed
Andersen, S. L., & Teicher, M. H. (2008b). Stress, sensitive periods and maturational events in adolescent depression. Trends in Neuroscience, 31(4), 183–191.CrossRefGoogle ScholarPubMed
Andersen, S. L., Tomoda, A., Vincow, E. S., Valente, E., Polcari, A., & Teicher, M. H. (2008). Preliminary evidence for sensitive periods in the effect of childhood sexual abuse on regional brain development. Journal of Neuropsychiatry and Clinical Neurosciences, 20(3), 292–301.CrossRefGoogle ScholarPubMed
Anderson, C. M., Kaufman, M. J., Lowen, S. B., Rohan, M., Renshaw, P. F., & Teicher, M. H. (2005). Brain T2 relaxation times correlate with regional cerebral blood volume. Magma, 18(1), 3–6.CrossRefGoogle ScholarPubMed
Anderson, C. M., Teicher, M. H., Polcari, A., & Renshaw, P. F. (2002). Abnormal T2 relaxation time in the cerebellar vermis of adults sexually abused in childhood: Potential role of the vermis in stress-enhanced risk for drug abuse. Psychoneuroendocrinology, 27(1–2), 231–244.CrossRefGoogle ScholarPubMed
Berman, A. J. (1997). Amelioration of aggression: Response to selective cerebellar lesions in the rhesus monkey. International Review of Neurobiology, 41, 111–119.CrossRefGoogle ScholarPubMed
Berrebi, A. S., Fitch, R. H., Ralphe, D. L., Denenberg, J. O., Friedrich, V. L.., & Denenberg, V. H. (1988). Corpus callosum: Region-specific effects of sex, early experience and age. Brain Research, 438(1–2), 216–224.CrossRefGoogle Scholar
Bremner, J. D., Randall, P., Vermetten, E., Staib, L., Bronen, R. A., Mazure, C., et al. (1997). Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse – a preliminary report. Biological Psychiatry, 41(1), 23–32.CrossRefGoogle ScholarPubMed
Bremner, J. D., & Vermetten, E. (2001). Stress and development: Behavioral and biological consequences. Development and Psychopathology, 13(3), 473–489.CrossRefGoogle Scholar
Bremner, J. D., Vythilingam, M., Vermetten, E., Southwick, S. M., McGlashan, T., Staib, L. H., et al. (2003). Neural correlates of declarative memory for emotionally valenced words in women with posttraumatic stress disorder related to early childhood sexual abuse. Biological Psychiatry, 53(10), 879–889.CrossRefGoogle ScholarPubMed
Carrion, V. G., Weems, C. F., Eliez, S., Patwardhan, A., Brown, W., Ray, R. D., et al. (2001). Attenuation of frontal asymmetry in pediatric posttraumatic stress disorder. Biological Psychiatry, 50(12), 943–951.CrossRefGoogle ScholarPubMed
Carter, C. S. (2005). The chemistry of child neglect: Do oxytocin and vasopressin mediate the effects of early experience?Proceedings of the National Academy of Sciences of the United States of America, 102(51), 18247–18248.CrossRefGoogle ScholarPubMed
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297(5582), 851–854.CrossRefGoogle ScholarPubMed
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301(5631), 386–389.CrossRefGoogle ScholarPubMed
Castellanos, F. X., Giedd, J. N., Berquin, P. C., Walter, J. M., Sharp, W., Tran, T., et al. (2001). Quantitative brain magnetic resonance imaging in girls with attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 58(3), 289–295.CrossRefGoogle ScholarPubMed
Choi, J., Jeong, B., Rohan, M. L., Polcari, A. M., & Teicher, M. H. (2009). Preliminary evidence for white matter tract abnormalities in young adults exposed to parental verbal abuse. Biological Psychiatry, 65(3), 227–234.CrossRefGoogle ScholarPubMed
Cooper, I. S., & Upton, A. R. (1985). Therapeutic implications of modulation of metabolism and functional activity of cerebral cortex by chronic stimulation of cerebellum and thalamus. Biological Psychiatry, 20(7), 811–813.CrossRefGoogle ScholarPubMed
Bellis, M. D. (2002). Developmental traumatology: A contributory mechanism for alcohol and substance use disorders. Psychoneuroendocrinology, 27(1–2), 155–170.CrossRefGoogle ScholarPubMed
Bellis, M. D., Baum, A. S., Birmaher, B., Keshavan, M. S., Eccard, C. H., Boring, A. M., et al. (1999). Developmental traumatology. Part I: Biological stress systems. Biological Psychiatry, 45(10), 1259–1270.CrossRefGoogle ScholarPubMed
Bellis, M. D., Keshavan, M. S., Clark, D. B., Casey, B. J., Giedd, J. N., Boring, A. M., et al. (1999). Developmental traumatology. Part II: Brain development. Biological Psychiatry, 45(10), 1271–1284.CrossRefGoogle ScholarPubMed
Bellis, M. D., Keshavan, M. S., Shifflett, H., Iyengar, S., Beers, S. R., Hall, J., et al. (2002). Brain structures in pediatric maltreatment-related posttraumatic stress disorder: A sociodemographically matched study. Biological Psychiatry, 52(11), 1066–1078.CrossRefGoogle ScholarPubMed
Bellis, M. D., Keshavan, M. S., Spencer, S., & Hall, J. (2000). N-Acetylaspartate concentration in the anterior cingulate of maltreated children and adolescents with PTSD. American Journal of Psychiatry, 157(7), 1175–1177.CrossRefGoogle ScholarPubMed
Bellis, M. D., & Kuchibhatla, M. (2006). Cerebellar volumes in pediatric maltreatment-related posttraumatic stress disorder. Biological Psychiatry, 60(7), 697–703.CrossRefGoogle ScholarPubMed
Driessen, M., Herrmann, J., Stahl, K., Zwaan, M., Meier, S., Hill, A., et al. (2000). Magnetic resonance imaging volumes of the hippocampus and the amygdala in women with borderline personality disorder and early traumatization. Archives of General Psychiatry, 57(12), 1115–1122.CrossRefGoogle ScholarPubMed
Dube, S. R., Felitti, V. J., Dong, M., Chapman, D. P., Giles, W. H., & Anda, R. F. (2003). Childhood abuse, neglect, and household dysfunction and the risk of illicit drug use: The adverse childhood experiences study. Pediatrics, 111(3), 564–572.CrossRefGoogle ScholarPubMed
Ducci, F., Enoch, M. A., Hodgkinson, C., Xu, K., Catena, M., Robin, R. W., et al. (2008). Interaction between a functional MAOA locus and childhood sexual abuse predicts alcoholism and antisocial personality disorder in adult women. Molecular Psychiatry, 13(3), 334–347.CrossRefGoogle ScholarPubMed
Duncan, G. L., & Magnuson, K. A. (2003). Off with Hollingshead: Socioeconomic resources, parenting, and child development. In Bornstein, M. H. & Bradley, R. H. (Eds.), Socioeconomic status, parenting, and child development (pp. 83–106). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Farah, M. J., Betancourt, L., Shera, D. M., Savage, J. H., Giannetta, J. M., Brodsky, N. L., et al. (2008). Environmental stimulation, parental nurturance and cognitive development in humans. Developmental Science, 11(5), 793–801.CrossRefGoogle ScholarPubMed
Felitti, V. J., Anda, R. F., Nordenberg, D., Williamson, D. F., Spitz, A. M., Edwards, V., et al. (1998). Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. American Journal of Preventive Medicine, 14(4), 245–258.CrossRefGoogle ScholarPubMed
Ferguson, S. A., & Holson, R. R. (1999). Neonatal dexamethasone on day 7 in rats causes mild hyperactivity and cerebellar stunting. Neurotoxicology and Teratology, 21, 71–76.CrossRefGoogle ScholarPubMed
Fergusson, D. M., Boden, J. M., & Horwood, L. J. (2008). Exposure to childhood sexual and physical abuse and adjustment in early adulthood. Child Abuse and Neglect, 32(6), 607–619.CrossRefGoogle ScholarPubMed
Fields, R. D., & Nelson, P. G. (1992). Activity-dependent development of the vertebrate nervous system. International Review of Neurobiology, 34, 133–214.CrossRefGoogle ScholarPubMed
Fries, A. B., Ziegler, T. E., Kurian, J. R., Jacoris, S., & Pollak, S. D. (2005). Early experience in humans is associated with changes in neuropeptides critical for regulating social behavior. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 17237–17240.CrossRefGoogle Scholar
Giedd, J. N. (2008). The teen brain: Insights from neuroimaging. Journal of Adolescent Health, 42(4), 335–343.CrossRefGoogle ScholarPubMed
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Rajapakse, J. C., Vaituzis, A. C., Liu, H., et al. (1999). Development of the human corpus callosum during childhood and adolescence: A longitudinal MRI study. Progress in Neuropsychopharmacology & Biological Psychiatry, 23(4), 571–588.Google ScholarPubMed
Gould, E., & Tanapat, P. (1999). Stress and hippocampal neurogenesis. Biological Psychiatry, 46(11), 1472–1479.CrossRefGoogle ScholarPubMed
Grassi-Oliveira, R., Stein, L. M., Lopes, R. P., Teixeira, A. L., & Bauer, M. E. (2008). Low plasma brain-derived neurotrophic factor and childhood physical neglect are associated with verbal memory impairment in major depression – a preliminary report. Biological Psychiatry, 64(4), 281–285.CrossRefGoogle ScholarPubMed
Harlow, H. F., & Harlow, M. (1966). Learning to love. American Scientist, 54(3), 244–272.Google ScholarPubMed
Heath, R. G. (1972). Electroencephalographic studies in isolation-raised monkeys with behavioral impairment. Diseases of the Nervous System, 33(3), 157–163.Google ScholarPubMed
Heim, C., & Nemeroff, C. B. (2002). Neurobiology of early life stress: Clinical studies. Seminars in Clinical Neuropsychiatry, 7(2), 147–159.CrossRefGoogle ScholarPubMed
Heim, C., Newport, D. J., Mletzko, T., Miller, A. H., & Nemeroff, C. B. (2008). The link between childhood trauma and depression: Insights from HPA axis studies in humans. Psychoneuroendocrinology, 33(6), 693–710.CrossRefGoogle ScholarPubMed
Huizinga, D., Haberstick, B. C., Smolen, A., Menard, S., Young, S. E., Corley, R. P., et al. (2006). Childhood maltreatment, subsequent antisocial behavior, and the role of monoamine oxidase A genotype. Biological Psychiatry, 60(7), 677–683.CrossRefGoogle ScholarPubMed
Ito, Y., Teicher, M. H., Glod, C. A., & Ackerman, E. (1998). Preliminary evidence for aberrant cortical development in abused children: A quantitative EEG study. Journal of Neuropsychiatry and Clinical Neurosciences, 10, 298–307.CrossRefGoogle ScholarPubMed
Ito, Y., Teicher, M. H., Glod, C. A., Harper, D., Magnus, E., & Gelbard, H. A. (1993). Increased prevalence of electrophysiological abnormalities in children with psychological, physical, and sexual abuse. Journal of Neuropsychiatry and Clinical Neurosciences, 5, 401–408.Google ScholarPubMed
Jackowski, A. P., Douglas-Palumberi, H., Jackowski, M., Win, L., Schultz, R. T., Staib, L. W., et al. (2008). Corpus callosum in maltreated children with posttraumatic stress disorder: A diffusion tensor imaging study. Psychiatry Research, 162(3), 256–261.CrossRefGoogle ScholarPubMed
Kaplow, J. B., & Widom, C. S. (2007). Age of onset of child maltreatment predicts long-term mental health outcomes. Journal of Abnormal Psychology, 116(1), 176–187.CrossRefGoogle ScholarPubMed
Kaufman, J., Yang, B. Z., Douglas-Palumberi, H., Houshyar, S., Lipschitz, D., Krystal, J. H., et al. (2004). Social supports and serotonin transporter gene moderate depression in maltreated children. Proceedings of the National Academy of Sciences of the United States of America, 101(49), 17316–17321.CrossRefGoogle ScholarPubMed
Koenen, K. C., Moffitt, T. E., Caspi, A., Taylor, A., & Purcell, S. (2003). Domestic violence is associated with environmental suppression of IQ in young children. Development and Psychopathology, 15(2), 297–311.CrossRefGoogle ScholarPubMed
Lauder, J. M. (1983). Hormonal and humoral influences on brain development. Psychoneuroendocrinology, 8(2), 121–155.CrossRefGoogle ScholarPubMed
Lawson, A., Ahima, R. S., Krozowski, Z., & Harlan, R. E. (1992). Postnatal development of corticosteroid receptor immunoreactivity in the rat cerebellum and brain stem. Neuroendocrinology, 55, 695–707.CrossRefGoogle ScholarPubMed
Lenroot, R. K., & Giedd, J. N. (2006). Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neuroscience and Biobehavioral Reviews, 30(6), 718–729.CrossRefGoogle ScholarPubMed
Lewis, D. O., Pincus, J. H., Bard, B., Richardson, E., Prichep, L. S., Feldman, M., et al. (1988). Neuropsychiatric, psychoeducational, and family characteristics of 14 juveniles condemned to death in the United States. American Journal of Psychiatry, 145(5), 584–589.Google ScholarPubMed
Mason, W. A., & Berkson, G. (1975). Effects of maternal mobility on the development of rocking and other behaviors in rhesus monkeys: A study with artificial mothers. Developmental Psychobiology, 8(3), 197–211.CrossRefGoogle ScholarPubMed
Navalta, C. P., Polcari, A., Webster, D. M., Boghossian, A., & Teicher, M. H. (2006). Effects of childhood sexual abuse on neuropsychological and cognitive function in college women. Journal of Neuropsychiatry and Clinical Neurosciences, 18(1), 45–53.CrossRefGoogle ScholarPubMed
Nemeroff, C. B. (2004). Neurobiblogical consequences of childhood trauma. Journal of Clinical Psychiatry, 65, 18–28.Google ScholarPubMed
Patel, T. D., Azmitia, E. C., & Zhou, F. C. (1996). Increased 5-HT1A receptor immunoreactivity in the rat hippocampus following 5,7-dihydroxytryptamine lesions in the cingulum bundle and fimbria-fornix. Behavioural Brain Research, 73(1–2), 319–323.CrossRefGoogle ScholarPubMed
Post, R. M., Leverich, G. S., Xing, G., & Weiss, R. B. (2001). Developmental vulnerabilities to the onset and course of bipolar disorder. Development and Psychopathology, 13(3), 581–598.CrossRefGoogle ScholarPubMed
Prescott, J. W. (1980). Somatosensory affectional deprivation (SAD) theory of drug and alcohol use. NIDA Research Monograph, 30, 286–296.Google ScholarPubMed
Putnam, F. W. (2003). Ten-year research update review: Child sexual abuse. Journal of the American Academy of Child and Adolescent Psychiatry, 42(3), 269–278.CrossRefGoogle ScholarPubMed
Richert, K. A., Carrion, V. G., Karchemskiy, A., & Reiss, A. L. (2006). Regional differences of the prefrontal cortex in pediatric PTSD: An MRI study. Depression and Anxiety, 23(1), 17–25.CrossRefGoogle ScholarPubMed
Sanchez, M. M., Young, L. J., Plotsky, P. M., & Insel, T. R. (2000). Distribution of corticosteroid receptors in the rhesus brain: Relative absence of glucocorticoid receptors in the hippocampal formation. Journal of Neuroscience, 20(12), 4657–4668.CrossRefGoogle ScholarPubMed
Sapolsky, R. M., Uno, H., Rebert, C. S., & Finch, C. E. (1990). Hippocampal damage associated with prolonged glucocorticoid exposure in primates. Journal of Neuroscience, 10, 2897–2902.CrossRefGoogle ScholarPubMed
Schiffer, F., Teicher, M. H., & Papanicolaou, A. C. (1995). Evoked potential evidence for right brain activity during the recall of traumatic memories. Journal of Neuropsychiatry and Clinical Neurosciences, 7, 169–175.Google ScholarPubMed
Snider, S. R., & Snider, R. S. (1982). Structural and functional relationships betwen cerebellum and catecholamine systems: An overview. Experimental Brain Research (Suppl 6).CrossRefGoogle Scholar
Spence, S. H., Najman, J. M., Bor, W., O'Callaghan, M. J., & Williams, G. M. (2002). Maternal anxiety and depression, poverty and marital relationship factors during early childhood as predictors of anxiety and depressive symptoms in adolescence. Journal of Child Psychology and Psychiatry, 43(4), 457–469.CrossRefGoogle ScholarPubMed
Stein, M. B. (1997). Hippocampal volume in women victimized by childhood sexual abuse. Psychological Medicine, 27(4), 951–959.CrossRefGoogle ScholarPubMed
Sternberg, K. J., Lamb, M. E., Guterman, E., & Abbott, C. B. (2006). Effects of early and later family violence on children's behavior problems and depression: A longitudinal, multi-informant perspective. Child Abuse and Neglect, 30(3), 283–306.CrossRefGoogle ScholarPubMed
Teicher, M. H., Andersen, S. L., Dumont, N. L., Ito, Y., Glod, C. A., Vaituzis, C., et al. (2000). Childhood neglect attentuates development of the corpus callosum. Society for Neuroscience Abstract, 26, 549.Google Scholar
Teicher, M. H., Andersen, S. L., Polcari, A., Anderson, C. M., & Navalta, C. P. (2002). Developmental neurobiology of childhood stress and trauma. Psychiatric Clinics of North America, 25(2), 397–426.CrossRefGoogle ScholarPubMed
Teicher, M. H., Andersen, S. L., Polcari, A., Anderson, C. M., Navalta, C. P., & Kim, D. M. (2003). The neurobiological consequences of early stress and childhood maltreatment. Neuroscience and Biobehavioral Reviews, 27(1–2), 33–44.CrossRefGoogle ScholarPubMed
Teicher, M. H., Glod, , Surrey, C. A., Swett, J., Jr, C.. (1993). Early childhood abuse and limbic system ratings in adult psychiatric outpatients. Journal of Neuropsychiatry & Clinical Neurosciences, 5(3), 301–306.Google ScholarPubMed
Teicher, M. H., Ito, Y., Glod, C. A., Andersen, S. L., Dumont, N., & Ackerman, E. (1997). Preliminary evidence for abnormal cortical development in physically and sexually abused children using EEG coherence and MRI. Annals of the New York Academy of Sciences, 821, 160–175.CrossRefGoogle ScholarPubMed
Teicher, M. H., Samson, J. A., Polcari, A., & Andersen, S. L. (2009). Length of time between onset of childhood sexual abuse and emergence of depression in a young adult sample. Journal of Clinical Psychiatry, 70(5), 684–691.CrossRefGoogle Scholar
Teicher, M. H., Samson, J. A., Polcari, A., & McGreenery, C. E. (2006). Sticks, stones, and hurtful words: Relative effects of various forms of childhood maltreatment. American Journal of Psychiatry, 163(6), 993–1000.CrossRefGoogle ScholarPubMed
Teicher, M. H., Tomoda, A., & Andersen, S. L. (2006). Neurobiological consequences of early stress and childhood maltreatment: Are results from human and animal studies comparable?Annals of the New York Academy of Sciences, 1071, 313–323.CrossRefGoogle ScholarPubMed
Thatcher, R. W., Walker, R. A., & Giudice, S. (1987). Human cerebral hemispheric development at different rates and ages. Science, 236, 1110–1113.CrossRefGoogle Scholar
Vermetten, E., Schmahl, C., Lindner, S., Loewenstein, R. J., & Bremner, J. D. (2006). Hippocampal and amygdalar volumes in dissociative identity disorder. American Journal of Psychiatry, 163(4), 630–636.CrossRefGoogle ScholarPubMed
Volkow, N. D., Wang, G. J., Ma, Y., Fowler, J. S., Zhu, W., Maynard, L., et al. (2003). Expectation enhances the regional brain metabolic and the reinforcing effects of stimulants in cocaine abusers. Journal of Neuroscience, 23(36), 11461–11468.CrossRefGoogle ScholarPubMed
Vythilingam, M., Heim, C., Newport, J., Miller, A. H., Anderson, E., Bronen, R., et al. (2002). Childhood trauma associated with smaller hippocampal volume in women with major depression. American Journal of Psychiatry, 159(12), 2072–2080.CrossRefGoogle ScholarPubMed
Wallace, G. L., Eric Schmitt, J., Lenroot, R., Viding, E., Ordaz, S., Rosenthal, M. A., et al. (2006). A pediatric twin study of brain morphometry. Journal of Child Psychology and Psychiatry, 47(10), 987–993.CrossRefGoogle ScholarPubMed
Weder, N., Yang, B. Z., Douglas-Palumberi, H., Massey, J., Krystal, J. H., Gelernter, J., et al. (2008). MAOA genotype, maltreatment, and aggressive behavior: The changing impact of genotype at varying levels of trauma. Biological Psychiatry, 65(5), 417–424.CrossRefGoogle ScholarPubMed
Widom, C. S., & Brzustowicz, L. M. (2006). MAOA and the “cycle of violence”: Childhood abuse and neglect, MAOA genotype, and risk for violent and antisocial behavior. Biological Psychiatry, 60(7), 684–689.CrossRefGoogle ScholarPubMed
Wilens, T. E., Biederman, J., & Mick, E. (1998). Does ADHD affect the course of substance abuse? Findings from a sample of adults with and without ADHD. American Journal of Addictions, 7(2), 156–163.Google ScholarPubMed
Yurgelun-Todd, D. (2007). Emotional and cognitive changes during adolescence. Current Opinion in Neurobiology, 17(2), 251–257.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×