Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T08:10:17.784Z Has data issue: false hasContentIssue false

8 - Thermal Properties of Polymer Nanocomposites

from Part Two - Multifunctional Properties and Applications

Published online by Cambridge University Press:  27 January 2017

Joseph H. Koo
Affiliation:
University of Texas, Austin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ellis, T. S. and D’Angelo, J. S. (2003). Thermal and mechanical properties of a polypropylene nanocomposite. Journal of Applied Polymer Science 90, 16391647.CrossRefGoogle Scholar
Sandlera, J., Wernerb, P., Shaffera, M. S. P., Demchukc, V., Altstatd, V., and Windlea, A. H. (2002). Carbon-nanofibre-reinforced poly(ether ketone) composites. Composites: Part A 33, 10331039.CrossRefGoogle Scholar
Lozano, K. and Barrera, E. V. (2000). Nanofiber-reinforced thermoplastic composites: Thermoanalytical and mechanical analyses. Journal of Applied Polymer Science 79, 125133.3.0.CO;2-D>CrossRefGoogle Scholar
Du, F., Fischer, J. E., and Winey, K. I. (2003). Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. Journal of Polymer Science: Part B: Polymer Physics 41, 33333338.CrossRefGoogle Scholar
Kashiwagi, T., Du, F., Winey, K. I., Harris, R. H., Shields, J. R, and Douglas, J. F. (2005). Nanoparticle networks reduce the flammability of polymer nanocomposites. Nature Materials 12(4), 928933.CrossRefGoogle Scholar
Liu, J., Chen, G., and Yang, J. (2008). Preparation and characterization of poly(vinyl chloride)/layered double hydroxide nanocomposites with enhanced thermal stability. Polymer 49, 39233927.CrossRefGoogle Scholar
Piszczyk, Ł., Strankowski, M., Danowska, M., Haponiuk, J. T., and Gazda, M. (2012). Preparation and characterization of rigid polyurethane–polyglycerol nanocomposite foams. European Polymer Journal 48, 17261733.CrossRefGoogle Scholar
Shen, S. Z., Bateman, S., McMahon, P., Dell’Olio, M., Gotama, J., et al. (2010). The effects of clay on fire performance and thermal mechanical properties of woven glass fiber reinforced polyamide 6 nanocomposites. Composites Science and Technology 70, 20632067.CrossRefGoogle Scholar
Wu, J. H., Li, C. H., Wu, Y. T., Leu, M. T., and Tsai, Y. (2010). Thermal resistance and dynamic damping properties of poly(styrene-butadiene-styrene)/thermoplastic polyurethane composites elastomer material. Composite Science and Technology 70, 12581264.CrossRefGoogle Scholar
Kemaloglu, S., Ozkoc, G., and Aytac, A. (2010). Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochimica Acta 499, 4047.CrossRefGoogle Scholar
Barick, A. K. and Tripathy, D. K. (2009). Effect of organoclay on the morphology, mechanical, thermal, and rheological properties of organophillic montmorillonite nanoclay based thermoplastic polyurethane nanocomposites prepared by melt blending. Polymer Engineering & Science 50, 484498.CrossRefGoogle Scholar
Silva, G. G., Rodrigues, M. F., Fantini, C., Borges, R. S., Pimenta, M. A., Carey, B. J., et al. (2010). Thermoplastic polyurethane nanocomposites produced via impregnation of long carbon nanotube forests. Macromolecular Materials and Engineering 296, 5358.Google Scholar
Aurilia, M., Piscitelli, F., Sorrentino, L., Lavorgna, M., and Iannace, S. (2011). Detailed analysis of dynamic mechanical properties of TPU nanocomposite: The role of the interfaces. European Polymer Journal 47, 925936.CrossRefGoogle Scholar
Mishra, A. K., Nando, G. B., and Chattopadhyay, S. (2008). Exploring preferential association of laponite and Cloisite with soft and hard segments in TPU-clay nanocomposite prepared by solution mixing technique. Journal of Polymer Science: Part B: Polymer Physics 46, 23412354.CrossRefGoogle Scholar
Puskas, J. E., Foreman-Orlowski, E. A., Lim, G. T., Porosky, S. E., Evancho-Chapman, M. M., et al. (2009). A nanostructured carbon-reinforced polyisobutylene-based thermoplastic elastomer. Biomaterials 31, 24772488.CrossRefGoogle ScholarPubMed
Haggenmueller, R., Guthy, C., Lukes, J., Fischer, J., and Winey, K. (2007). Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules 40, 24172421.CrossRefGoogle Scholar
Wang, Z., Lu, Y., Liu, J., Dang, Z., Zhang, L., and Wang, W. (2011). Preparation of nano-zinc oxide/EPDM composites with both good thermal conductivity and mechanical properties. Journal of Applied Polymer Science 119, 11441155.CrossRefGoogle Scholar
Liu, C., Huang, H., Wu, Y., and Fan, S. (2004). Thermal conductivity improvement of silicone elastomer with carbon nanotube loading. Applied Physics Letters 84, 8486.CrossRefGoogle Scholar
Ratzke, S. and Kindersberger, J. (2005). Erosion behaviour of nano filled silicone elastomers. Proceedings of the 14th International Symposium for High Voltage Engineering, n. p.Google Scholar
Chatterjee, S., Wangb, J. W., Kuo, W. S., Tai, N. H., Salzmann, C., et al. (2012). Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chemical Physics Letters 531, 610.CrossRefGoogle Scholar
Debelak, B. and Lafdi, K. (2007). Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 45, 17271734.CrossRefGoogle Scholar
Balakrishnan, A. and Saha, M. C. (2011). Tensile fracture and thermal conductivity characterization of toughened epoxy/CNT nanocomposites. Materials Science and Engineering A 528, 906913.CrossRefGoogle Scholar
Nagendiran, S., Alagar, M., and Hamerton, I. (2010). Octasilsesquioxane-reinforced DGEBA and TGDDM epoxy nanocomposites: Characterization of thermal, dielectric, and morphological properties. Acta Materialia 58, 33453356.CrossRefGoogle Scholar
Omrani, A., Afsar, S., and Safarpour, A. (2010). Thermoset nanocomposites using hybrid nano TiO2SiO2. Materials Chemistry and Physics 122, 343349.CrossRefGoogle Scholar
Zabihi, O., Khodabandeh, A., and Mostafavi, S. M. (2012). Preparation, optimization and thermal characterization of a novel conductive thermoset nanocomposites containing polythiophene nanoparticles using dynamic thermal analysis. Polymer Degradation and Stability 97(1), 313.CrossRefGoogle Scholar
Im, H. and Kim, J. (2012). Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite. Carbon 50, 54295440.CrossRefGoogle Scholar
Ganguli, S., Roy, A. K., and Anderson, D. P. (2008). Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46, 806817.CrossRefGoogle Scholar
Abdalla, M., Dean, D., Robinson, P., and Nyairo, E. (2008). Cure behavior of epoxy/MWCNT nanocomposites: The effect of nanotube surface modification. Polymer 49, 33103317.CrossRefGoogle Scholar
Yang, S., Ma, C. M., Teng, C., Huang, Y., Liao, S., et al. (2010). Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon 48, 592603.CrossRefGoogle Scholar
Han, Z., and Fina, A. (2011). Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Progress in Polymer Science 26, 914944.CrossRefGoogle Scholar
Chen, L.-Y., Chen, Y., Fu, J.-F., Shi, L.-Y., and Zhong, Q.-D. (2010). Thermally conductive nanocomposites based on hyperbranched epoxy and nano-Al2O3 particles modified epoxy resin. Polymer Advanced Technologies 22, 10321041.Google Scholar
Hong, L., Li, Y., Wang, T., and Wang, Q. (2012). In-situ synthesis and thermal, tribological properties of thermosetting polyimide/graphene oxide nanocomposites. Journal of Materials Science 47(4), 18671874.Google Scholar
Kushwaha, P. and Kumar, R. (2011). Reinforcing effect of nanoclay in bamboo-reinforced thermosetting resin composites. Polymer-Plastics Technology and Engineering 50, 127135.CrossRefGoogle Scholar
Shojaei, A. and Faghihi, M. (2010). Physico-mechanical properties and thermal stability of thermoset nanocomposites based on styrene-butadiene rubber/phenolic resin blend. Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing 4–5, 917926.CrossRefGoogle Scholar
Zheng, X. and Wilkie, C. (2003). Flame retardancy of polystyrene nanocomposites based on an oligomeric organically-modified clay containing phosphate. Polymer Degradation and Stability 81, 539550.CrossRefGoogle Scholar
Chigwada, G., Jash, P., Jiang, D., and Wilkie, C. (2004). Synergy between nanocomposite formation and low levels of bromine on fire retardancy in polystyrenes. Polymer Degradation and Stability 88, 382393.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×