Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T21:48:38.076Z Has data issue: false hasContentIssue false

18 - Targeting Research towards Achieving Food Security in an Era of Climate Change

from Part VI - Future Earth and Food Security

Published online by Cambridge University Press:  22 October 2018

Tom Beer
Affiliation:
IUGG Commission on Climatic and Environmental Change (CCEC)
Jianping Li
Affiliation:
Beijing Normal University
Keith Alverson
Affiliation:
UNEP International Environmental Technology Centre
Get access

Summary

The concept of climate-smart agriculture (CSA) was developed to tackle three of the greatest challenges of our time: food security, climate change adaptation and reducing emissions. Key research thrusts that need to be strengthened include (1) developing foresight and scenario building in terms of climate change and future development pathways; (2) producing and extending stress-tolerant breeds/varieties and practices, with low emissions; (3) improving and delivering seasonal forecasts and advisories; (4) building safety nets because of the inevitability of extreme events, e.g., index-based insurance and productive social safety nets, where assets are built to mitigate extreme events; (5) Devoting more attention to social differentiation and therefore better targeting of solutions; and (6) working on the barriers to technological uptake and policy change. We also argue that research itself needs to change in order to deliver rapid solutions, and we offer ten principles for effective Agricultural Research for Development (AR4D).
Type
Chapter
Information
Global Change and Future Earth
The Geoscience Perspective
, pp. 239 - 246
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: The 2012 revision. ESA Working Paper No. 12–03. Rome: Food and Agriculture Organization of the United Nations, Rome, Italy. www.fao.org/docrep/016/ap106e/ap106e.pdf. Accessed 29.09.16.Google Scholar
ASEAN (2015). ASEAN Regional Guidelines for Promoting Climate Smart Agriculture (CSA) Practices:Endorsed by the 37th AMAF 10 September 2015, Makati City, Philippines. www.asean.org/storage/images/2015/October/ASEAN-Regional-Guidelines-on-Promoting-CSA-Practices/ASEAN%20Regional%20Guidelines%20on%20Promoting%20CSA%20Practices-endorsed%2037th%20AMAF.pdf. Accessed 28.09.16.Google Scholar
Aryal, J. P., Mehrotra, M. B., Jat, M. L., & Sidhu, H. S. (2015). Impacts of laser land leveling in rice–wheat systems of the north-western indo-gangetic plains of India. Food Security, 7(3), 725738. DOI: 10.1007/s12571-015-0460-yCrossRefGoogle Scholar
Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., & Cammarano, D. et al. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143147.CrossRefGoogle Scholar
Campbell, B. M., Beare, D. J., Bennett, E. M., Hall-Spencer, J. Ingram, J. S. I., Jaramillo, F., Ortiz, R., Ramankutty, N., Sayer, J. A., & Shindell, D. (2017). Agriculture production as a major driver of the Earth System exceeding planetary boundaries. Ecology and Society, 22(4).Google Scholar
Campbell, B., & Thornton, P. (2014). How many farmers in 2030 and how many will adopt climate resilient innovations? CCAFS Info Note. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen.Google Scholar
Campbell, B. M., Vermeulen, S. J., Aggarwal, P. K., Corner-Dolloff, C., Girvetz, E., Loboguerrero, A. M., Ramirez-Villegas, J., Rosenstock, T., Sebastian, L., Thornton, P. K., & Wollenberg, E (2016). Reducing risks to food security from climate change. Global Food Security, 11, 3443.CrossRefGoogle Scholar
CCAFS (2016). Cracking patterns in big data saves Colombian rice farmers’ huge losses. Outcome Case. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen.Google Scholar
Chaudhury, M., Vervoort, J., Kristjanson, P., Ericksen, P., & Ainslie, A. (2013). Participatory scenarios as a tool to link science and policy on food security under climate change in East Africa. Regional Environmental Change, 13(2), 389398.Google Scholar
Cheung, W., Lam, V., Sarmiento, J., Kearney, K., Watson, R., Zeller, D., & Pauly, D. (2010): Large scale redistribution of maximum fisheries catch in the global ocean under climate change. Global Change Biology, 16(1), 2435.Google Scholar
Clarke, D. J., & Kumar, N. (2016). Microinsurance decisions gendered evidence from rural Bangladesh. Gender, Technology and Development, 20(2), 218241.CrossRefGoogle Scholar
de Haas, Y., Davis, S., Reisinger, A., Richards, M. B., Difford, G., & Lassen, J. (2016). Improved ruminant genetics: Implementation guidance for policymakers and investors. Climate-Smart Agriculture Practice Brief. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Copenhagen.Google Scholar
Delerce, S., Dorado, H., Grillon, A., Rebolledo, M. C., Prager, S. D., Patiño, V. H., Varón, G. G., & Jiménez, D. (2016). Assessing weather-yield relationships in rice at local scale using data mining approaches. PloS One, 11(8), e0161620.Google Scholar
De Pinto, A. Loboguerrero, A. M., Londoño, M., Ovalle Sanabria, K., & Suarez Castaño, R. (2018). Informing climate policy through institutional collaboration: Reflections on the preparation of Colombia’s nationally determined contribution. Climate Policy, 18(5), 612626.Google Scholar
Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926929. DOI: 10.1126/science.1156401.CrossRefGoogle ScholarPubMed
ECOWAS (2015). West Africa Climate-Smart Agriculture Declaration: High Level Forum of Climate-Smart Agriculture Stakeholders in West Africa. www.ecowas-agriculture.org/sites/default/files/High%20Level%20Forum%20of%20CSA%20Stakeholders%20in%20WA_Final%20Declaration_eng.pdf. Accessed 28.09.16.Google Scholar
FAO (2013a). The state of food insecurity in the world 2013: The multiple dimensions of food security. Rome: FAO. www.fao.org/docrep/018/i3434e/i3434e.pdf. Accessed 6.11.13.Google Scholar
FAO (2013b). Climate-Smart Agriculture Sourcebook. Food and Agriculture Organization of the United Nations. Rome.Google Scholar
Fisher, M., Abate, T., Lunduka, R. W., Asnake, W., Alemayehu, Y., & Madulu, R. B. (2015). Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: Determinants of adoption in eastern and southern Africa. Climatic Change, 133(2), 283299.Google Scholar
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., & Helkowski, J. H. (2005). Global consequences of land use. Science, 309(5734), 570574. DOI: 10.1126/science.1111772.Google Scholar
GACSA 2016. Webinars of the Enabling Environment Action Group. Global Alliance for Climate-Smart Agriculture. Rome. www.fao.org/gacsa/webinars/en/#c430423. Accessed 28.09.16.Google Scholar
Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., & Sutton, M. A. (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320(5878), 889892. DOI: 10.1126/science.1136674.Google Scholar
Gill, G. (2014). An assessment of the impact of laser-assisted precision land levelling technology as a component of climate-smart agriculture in the state of Haryana, India. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen.Google Scholar
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812818. DOI: 10.1126/science.1185383.CrossRefGoogle ScholarPubMed
Hawley, N. L., & McGarvey, S. T. (2015). Obesity and diabetes in Pacific Islanders: The current burden and the need for urgent action. Current Diabetes Reports, 15(5), 110.Google Scholar
Huyer, S. 2016. Introduction: Gender, climate change and agriculture. Gender, Technology and Development, 20(2). DOI: 10.1007/s11892-015-0594-5.Google Scholar
IFPRI (2015). Global Nutrition Report: Actions and Accountability to Advance Nutrition and Sustainable Developmen. International Food Policy Research Institute, Washington DC.Google Scholar
Jost, C., Kyazze, F., Naab, J., Neelormi, S., Kinyangi, J., Zougmore, R., Aggarwal, P., Bhatta, G., Chaudhury, M., Tapio-Bistrom, M., Nelson, S., & Kristjanson, P. (2015). Understanding gender dimensions of agriculture and climate change in smallholder farming communities. Climate and Development, 0(0), 112. article. http://doi.org/10.1080/17565529.2015.1050978.Google Scholar
Kelley, C. P., Mohtadi, S., Cane, M. A., Seager, R., & Kushnir, Y. (2015). Climate change in the fertile crescent and implications of the recent Syrian drought. Proceedings of the National Academy of Sciences, 112(11), 32413246.CrossRefGoogle ScholarPubMed
Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., Caron, P., Cattaneo, A., Garrity, D., Henry, K., Hottle, R., Jackson, L., Jarvis, A., Kossam, F., Mann, W., McCarthy, N., Meybeck, A., Neufeldt, H., Remington, T., Sen, P. T., Sessa, R., Shula, R., Tibu, A., & Torquebiau, E. F., (2014). Climate-smart agriculture for food security. Nature Climate Change, 4(12), 10681072.CrossRefGoogle Scholar
Lobell, D. B., & Field, C. B. (2007). Global scale climate–crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2(1), 014002.Google Scholar
Mason-D'Croz, D., Vervoort, J., Palazzo, A., Islam, S., Lord, S., Helfgott, A., Havlík, P., Peou, R., Sassen, M., Veeger, M., van Soesbergen, A., Arnell, A. P., Stuch, B., Arslan, A., & Lipper, L. (2016). Multi-factor, multi-state, multi-model scenarios: Exploring food and climate futures for Southeast Asia. Environmental Modelling and Software, 83, 255270.Google Scholar
Murray, U., Gebremedhin, Z., Brychkova, G., & Spillane, C. (2016). Smallholder farmer and climate smart agriculture: Technology and labour-productivity constraints among women smallholders in Malawi. Gender, Technology and Development, 20(2), 117148.CrossRefGoogle Scholar
NACSAA (2015). North American Climate Smart Agriculture Alliance: Statement at COP21. www.sfldialogue.net/files/NACSAA_cop21_statement.pdf. Accessed 28.09.16.Google Scholar
Nelson, V. (2011). Gender, Generations, Social Protection and Climate Change: A Thematic Review. Overseas Development Institute (ODI), London.Google Scholar
Neufeldt, H., Jahn, M., Campbell, B. M., Beddington, J. R., DeClerck, F., De Pinto, A., Gulledge, J., Hellin, J., Herrero, M., Jarvis, A., LeZaks, D., Meinke, H., Rosenstock, T., Scholes, M., Scholes, R., Vermeulen, S., Wollenberg, E., & Zougmoré, R. (2013). Beyond climate-smart agriculture: Toward safe operating spaces for global food systems. Agriculture & Food Security, 2, 12.Google Scholar
Porter, J. R., Xie, L., Challinor, A., Cochrane, K., Howden, M., Iqbal, M. M., Lobell, D., & Travasso, M. I. (2014). Food security and food production systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. www.ipcc-wg2.gov.Google Scholar
Ramirez-Villegas, J., Challinor, A. J., Thornton, P. K., & Jarvis, A. (2013). Implications of regional improvement in global climate models for agricultural impact research. Environ. Res. Lett. 8, 24018. http://dx.doi.org/10.1088/1748-9326/8/2/024018.Google Scholar
Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6, 5989.Google Scholar
Rippke, U., Ramirez-Villegas, J., Jarvis, A., Vermeulen, S. J., Parker, L., Mer, F., Diekkrüger, B., Challinor, A. J., & Howden, M. (2016). Timescales of transformational climate change adaptation in sub-Saharan African agriculture. Nature Climate Change. 6(6), 605.Google Scholar
Rosenstock, T. S., Rufino, M. C., Butterbach-Bahl, K., Wollenberg, E., & Richards, M. (eds.) 2016. Methods for Measuring Greenhouse Gas Balances and Evaluating Mitigation Options in Smallholder Agriculture. Springer Open, London.CrossRefGoogle Scholar
Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R. et al. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347 (6223), 1259855. DOI:10.1126/science.1259855.Google Scholar
Swaney, D. P., Hong, B., Ti, C., Howarth, R. W., & Humborg, C. (2012). Net anthropogenic nitrogen inputs to watersheds and riverine N export to coastal waters: A brief overview. Current Opinion in Environmental Sustainability, 4(2), 203211.CrossRefGoogle Scholar
Thornton, P. K., Van de Steeg, J., Notenbaert, A., & Herrero, M. (2009). The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know. Agricultural Systems, 101(3), 113127.Google Scholar
Thornton, P. K., Jones, P. G., Alagarswamy, G., Andresen, J., & Herrero, M. (2010). Adapting to climate change: agricultural system and household impacts in East Africa. Agricultural Systems, 103(2), 7382.Google Scholar
Thornton, P. K., Ericksen, P. J., Herrero, M., & Challinor, A. J. (2014). Climate variability and vulnerability to climate change: a review. Global Change Biology, 20(11), 33133328.Google Scholar
Tuan, D. M., Elisabeth, S., & Hai, L. (2016). Participatory identification of climate-smart agriculture priorities. CGIAR Climate Change, Agriculture and Food Security Program, Copenhagen.Google Scholar
UN (2014). Climate Summit 2014 – Agriculture Annex. United Nations, New York.Google Scholar
UNEP (2015). Africa’s Adaptation Gap 2: Technical Report. United Nations Environment Programme, Nairobi.Google Scholar
Van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., & van Leeuwen, T. T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10(23), 1170711735.CrossRefGoogle Scholar
WHO (2016). Obesity and overweight. Fact sheet No. 311. World Health Organization. Geneva.: WHO. www.who.int/mediacentre/factsheets/fs311/en/. Accessed 3.10.2016.Google Scholar
Vermeulen, S. J. (2014). Climate change, food security and small-scale producers. CCAFS Info Brief. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Copenhagen.Google Scholar
Vermeulen, S., & Campbell, B. (2015). Ten principles for effective AR4D programs. CCAFS Info Note. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen.Google Scholar
Vervoort, J. M., Thornton, P. K., Kristjanson, P., Förch, W., Ericksen, P. J., Kok, K., Ingram, J. S. I., Herrero, M., Palazzo, A., Helfgott, A. E., & Wilkinson, A. (2014). Challenges to scenario-guided adaptive action on food security under climate change. Global Environmental Change, 28, 383394.Google Scholar
Waters-Bayer, A., Kristjanson, P., Wettasinha, C., van Veldhuizen, L., Quiroga, G., Swaans, K., & Douthwaite, B. (2015). Exploring the impact of farmer-led research supported by civil society organisations. Agriculture & Food Security, 4, 17. http://doi.org/10.1186/s40066-015-0023-7.Google Scholar
Wollenberg, E., Richards, M., Smith, P., Havlík, P., Obersteiner, M., Tubiello, F. N., Herold, M., Gerber, P., Carter, S., Reisinger, A., van Vuuren, D., Dickie, A., Neufeldt, H., Sander, B. O., Wassmann, R., Sommer, R., Amonette, J. E., Falcucci, A., Herrero, M., Opio, C., Roman-Cuesta, R., Stehfest, E., Westhoek, H., Ortiz-Monasterio, I., Sapkota, T., Rufino, M. C., Thornton, P. K., Verchot, L., West, P. C., Soussana, J. F., Baedeker, T., Sadler, M., Vermeulen, S. J., & Campbell, B. M. (2016). Reducing emissions from agriculture to meet the 2° C target. Global Change Biology. 22(12), 38593864.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×