Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-16T19:46:40.978Z Has data issue: false hasContentIssue false

Chapter 3 - Energy and Environment

Published online by Cambridge University Press:  05 September 2012

Lisa Emberson
Affiliation:
Stockholm Environment Institute, University of York
Kebin He
Affiliation:
Tsinghua University
Johan Rockström
Affiliation:
Stockholm Resilience Centre, Stockholm University
Markus Amann
Affiliation:
International Institute for Applied Systems Analysis
Jennie Barron
Affiliation:
Stockholm Environment Institute, University of York
Robert Correll
Affiliation:
Global Environment Technology Foundation
Sara Feresu
Affiliation:
Institute of Environmental Studies, University of Zimbabwe
Richard Haeuber
Affiliation:
United States Environmental Protection Agency)
Kevin Hicks
Affiliation:
Stockholm Environment Institute, University of York
Francis X. Johnson
Affiliation:
Stockholm Environment Institute, Stockholm University
Anders Karlqvist
Affiliation:
Swedish Polar Research Secretariat
Zbigniew Klimont
Affiliation:
International Institute for Applied Systems Analysis
Iyngararasan Mylvakanam
Affiliation:
United Nations Environment Programme
Wei Wei Song
Affiliation:
Tsinghua University
Harry Vallack
Affiliation:
Stockholm Environment Institute, University of York
Qiang Zhang
Affiliation:
Tsinghua University
Jill Jäger
Affiliation:
Sustainable Europe Research Institute
Get access

Summary

Executive Summary

Modern energy systems have been central to the development of human societies. They have perhaps been the single most important determinant of growth of our industrial societies and our modern economy. Unfortunately, they have also been a key driver of many of the negative environmental trends observed in the world today. For example, current energy systems are the predominant source of carbon dioxide (CO2) emissions, accounting for 84% of total global CO2 emissions and 64% of global greenhouse gas (GHG) emissions related to human activities. Past trends suggest that this percentage is likely to increase in the future if our energy needs continue to be met by fossil fuels.

The impact of GHG emissions on climate is arguably the most significant environmental impact associated with our energy systems, as the effects of such emissions are felt globally. However, these effects will not necessarily be equitable. Due to the realities of global and national economics, the areas that may suffer the greatest impacts from climate change may be those that have to date contributed the least in terms of GHG emissions. Our fossil fuel-based energy systems also emit substantial quantities of other atmospheric pollutants, for example sulphur dioxide (SO2), nitrogen oxides (NOx), primary particulate matter (PM), and non-methane volatile organic compounds (NMVOCs), which degrade air quality and cause damage to health and ecosystems through processes such as acidifi cation, eutrophication, and the formation of ground-level ozone (O3) and secondary PM. Biomass-based energy systems can also have substantial impacts on land and water resources.

Type
Chapter
Information
Global Energy Assessment
Toward a Sustainable Future
, pp. 191 - 254
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

,ACIA, 2004: Impacts of a Warming Arctic: Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, UK and New York, NY.Google Scholar
Agoumi, A., 2003: Vulnerability of North African Countries to Climatic Changes: Adaptation and Implementation Strategies for Climate Change. International Institute for Sustainable Development.Google Scholar
Ainsworth, E. A., et al., 2008: Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant Physiology, 147: 13–19.CrossRefGoogle Scholar
Alcamo, J., J. M., Moreno, B., Nováky, M., Bindi, R., Corobov, R. J. N., Devoy, C., Giannakopoulos, E., Martin, J. E., Olesen, and A., Shvidenko, 2007: Climate Change 2007: Impacts, Adaptation and Vulnerability. Chapter 12: Europe. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M. L., Parry, O. F., Canziani, J. P., Palutikof, P. J., van der Linden, and C. E., Hanson (eds.), Cambridge University Press, Cambridge, UK and New York, NY, pp. 541–580.Google Scholar
,AMAP, 2006: AMAP Assessment 2006: Acidifying Pollutants, Arctic Haze and Acidification in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway.Google Scholar
,AMAP, 2007: Arctic Oil and Gas 2007 Oslo. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway.AMAP, 2010: AMAP Assessment 2009: Radioactivity in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway.Google Scholar
Amann, M., I., Bertok, J., Borken-Kleefeld, J., Cofala, C., Heyes, L., Höglund-Isaksson, Z., Klimont, B., Nguyen, M., Posch, P., Rafaj, R., Sandler, W., Schöpp, F., Wagner, and W., Winiwarter, 2011: Cost-effective control of air quality and greenhouse gases in Europe: modeling and policy applications. Environmental Modelling and Software, in press doi 10.1016/j.envsoft.2011.07.012Google Scholar
Archer, D. R. and H. J., Fowler., 2004: Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrology and Earth System Sciences, 8: 47–61.CrossRefGoogle Scholar
Arnell, N.W., 2004: Climate change and global water resources: SRES emissions and socio-economic scenarios. Global Environmental Change, 14: 31–52.Google Scholar
Arnell, N. W., 2006: Global impacts of abrupt climate change: an initial assessment. Working Paper 99, Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, UK, pp. 37.Google Scholar
Ashmore, M., 2005: Assessing the future global impacts of ozone on vegetation. Plant, Cell & Environment, 28 (8): 949–964.CrossRefGoogle Scholar
Bell, J. N. B., 1985: SO2 effects on productivity of grass species, in Effects of SO2 on Plant Productivity, Mooney, and A. H., Goldstein (eds.), Stanford University Press, Palo Alto, CA, pp. 209–266.Google Scholar
Bellwood, D., T., Hughes, C., Folke, and M., Nystrom, 2004: Confronting the coral reef crisis. Nature, 429: 827–833.Google Scholar
Bender, J. and H. J., Weigel, 1993: Crop responses to mixtures of air pollutants, in Air Pollution and Crop Responses in Europe, H. J., Jager et al. (eds.), CEC, Brussels, Belgium, pp. 445–453.Google Scholar
Berndes, G., 2008: Future biomass energy supply: the consumptive water use perspective. International Journal of Water Resources Development. 24: 235–245.CrossRefGoogle Scholar
Betts, R. A., M., Collins, D. L., Hemming, C. D., Jones, J. A., Lowe, and M. G., Sanderson, 2011: When could global warming reach 4 C?Philosophical Transactions of the Royal SocietyA. 369: 67–84.Google Scholar
Bishop, K. and H., Hultberg, 1995: Reversing acidifcation in a forest ecosystem – The Gardsjon covered catchment. Ambio, 24 (2): 85–91.Google Scholar
Bleeker, A., W. K., Hicks, F., Dentener, J., Galloway, and J. W., Erisman, 2011: N deposition as a threat to the World 's protected areas under the Convention on Biological Diversity. Environmental Pollution (in press).Google Scholar
Bobbink, R., K., Hicks, J., Galloway, T., Spranger, R., Alkemade, M., Ashmore, M., Bustamante, S., Cinderby, E., Davidson, F., Dentener, B., Emmett, J.W., Erisman, M., Fenn, F., Gilliam, A., Nordin, L., Pardo, and W., De Vries, 2010: Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 20 (1): 30–59.CrossRefGoogle ScholarPubMed
Bobbink, R., M., Hornung, and J. G. M., Roelofs, 1998: The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86: 717–738.CrossRefGoogle Scholar
Boko, M., I., Niang, A., Nyong, C., Vogel, A., Githeko, M., Medany, B., Osman-Elasha, R., Tabo, and P., Yanda, 2007: Climate Change 2007: Impacts, Adaptation and Vulnerability. Chapter 9: Africa. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M. L., Parry, O. F., Canziani, J. P., Palutikof, P. J., van der Linden, and C. E., Hanson (eds.), Cambridge University Press, Cambridge, UK and New York, NY, pp. 433–467.Google Scholar
Bond, T., E., Bhardwaj, R., Dong, R., Jogani, S., Jung, C., Roden, D., Streets, and N., Trautmann, 2007: Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Global Biogeochemical Cycles, 21: GB2018.CrossRefGoogle Scholar
Bond, T., D., Streets, K., Yarber, S., Nelson, J-H., Woo, and Z., Kilmont, 2004: A technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research, 109: D14203.CrossRefGoogle Scholar
Bravo, H., A. R., Soto, R., Sosa, P., Sánchez, A. L., Alarcón, J., Kahl, and J., Ruíz, 2006: Effect of acid rain on building material of the El Tajín archaeological zone in Veracruz, Mexico. Environmental Pollution, 144: 655–660.CrossRefGoogle Scholar
Bricker, S., B., Longstaff, W., Dennison, A., Jones, K., Boicourt, C., Wicks, and J., Woerner, 2007: Effects of Nutrient Enrichment In the Nation's Estuaries: A Decade of Change. NOAA Coastal Ocean Program Decision Analysis Series No. 26. National Centers for Coastal Ocean Science, Silver Spring, MD, USA.Google Scholar
Brohan, P., J. J., Kennedy, I., Harris, S. F. B., Tett, and P. D., Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. Journal of Geophysical Research, 111: D12106.CrossRefGoogle Scholar
Casper, K. N., 2009: Oil and gas development in the Arctic: Softening of Ice demands hardening of international law. Natural Resources Journal, 49: 825–881.Google Scholar
Cazenave, A., 2006: How fast are the ice sheets melting?Science, 314, 1250–1252.CrossRefGoogle ScholarPubMed
,CCME, 2003: Climate, Nature, People: Indicators of Canada's Changing Climate. Climate Change Indicators Task Group of the Canadian Council of Ministers of the Environment, Canadian Council of Ministers of the Environment Inc., Winnipeg, Canada.Google Scholar
,CEC, 2009: Taking Stock – 2005 North American Pollutant Releases and Transfers, Commission for Environmental Cooperation, Montreal, Canada.Google Scholar
Chan, C. K. and X., Yao, 2008: Air pollution in mega cities in China. Atmospheric Environment, 42: 1–42.CrossRefGoogle Scholar
Chen, H., Y., Wu, X., Yuan, Y., Gao, N., Wu, and D., Zhu, 2009: Methane emissions from newly created marshes in the drawdown area of the Three Gorges Reservoir, Journal of Geophysical Research, 114: D18301.CrossRefGoogle Scholar
Christensen, J. H. and O. B., Christensen, 2003: Severe summertime flooding in Europe. Nature, 421, 805–806.Google Scholar
Church, J. A. and N. J., White, 2006. A 20th century acceleration in global sea-level rise. Geophysical Research Letters, 33: LO1602.CrossRefGoogle Scholar
Clancy, J. S., 2008: Urban ecological footprints in Africa. African Journal of Ecology, 46 (4): 463–470.CrossRefGoogle Scholar
Clark, P., N., Pisias, T., Stocker, and A., Weaver, 2002: The role of thermohaline circulation in abrupt climate change. Nature, 415: 863–869.Google Scholar
Cofala, J. and S., Syri, 1998: Sulfur Emissions, Abatement Technologies and Related Costs for Europe in the RAINS Model Database. IR-98–035. IIASA, Laxenburg, Austria.Google Scholar
Corbett, J. J., D.A., Lack. J. J., Winebrake, S., Harder, J. A., Silberman, and M., Gold, 2010: Arctic shipping emissions inventories and future scenarios. Atmospheric Chemistry and Physics, 10: 10271–10311.CrossRefGoogle Scholar
Crutzen, P. J., 2002: Geology of mankind the anthropocene. Nature, 415: 23.Google Scholar
Cruz, R. V., H., Harasawa, M., Lal, S., Wu, Y., Anokhin, B., Punsalmaa, Y., Honda, M., Jafari, C., Li, and N. Huu, Ninh, 2007: Climate Change 2007: Impacts, Adaptation and Vulnerability, Chapter 10: Asia. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M. L., Parry, O. F., Canziani, J. P., Palutikof, P. J., van der Linden, and C. E., Hanson, (eds.), Cambridge University Press, Cambridge, UK and New York, NY, pp. 469–506.Google Scholar
Davidson, O., M., Chenene, E., Kituyi, J., Nkomo, C., Turner, and B., SebitosiB., , 2007: Sustainable Energy in sub-Saharan Africa. Draft Science/Work plan, International Council for Science, Regional Office for Africa.Google Scholar
Davison, A.W. and J. D., Barnes, 1998: Effects of ozone on wild plants. New Phytologist, 139 (1): 135–151.CrossRefGoogle Scholar
deFraiture, C., D., Molden, U., Amarasinghe, and I., Makin, 2001: PODIUM: Projecting water supply and demand for food production in 2025. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26 (11–12), 869–876.Google Scholar
de Vries, W., S., Solberg, M., Dobbertin, H., Sterba, D., Laubhahn, G. J., Reinds, G-J., Nabuurs, P., Gundersen, M. A., Sutton, 2007: Ecologically implausible carbon response?Nature, 451: E1-E3.Google Scholar
Denholm, P., 2006: Improving the technical, environmental and social performance of wind energy systems using biomass-based energy storage. Renewable Energy, 1: 1355–1370.Google Scholar
Dentener, F., S., Kinne, T., Bond, O., Boucher, J., Cofala, S., Generoso, P., Ginoux, S., Gong, J. J., Hoelzemann, A., Ito, L., Marelli, J. E., Penner, J. P., Putaud, C., Textor, M., Schulz, G. R., van der Werf, and J., Wilson, 2006: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmospheric Chemistry and Science, 6: 4321–4344.Google Scholar
Devoy, R. J. N., 2007: Coastal vulnerability and the implications of sea-level rise for Ireland. Journal of Coastal Research, 24 (2): 325–341.Google Scholar
Di Iorio, L. and C. W., Clark, 2010: Exposure to seismic survey alters blue whale acoustic communication. Biology Letters, 6 (1): 51–54.CrossRefGoogle ScholarPubMed
Dolman, A. J., G. R., van der Werf, M. K., van der Molen, G., Ganssen, G., , J. W., Erisman, and B., Strengers, 2010: A carbon cycle science update since IPCC AR-4. Ambio, 39: 402–412.CrossRefGoogle ScholarPubMed
Donner, S. D., and C. J., Kucharik, 2008: Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proceedings of the National Academy of Sciences of the United States of America, 105: 4513–4518.CrossRefGoogle ScholarPubMed
Duce, R. A., J., LaRoche, K., Altieri, et al., 2008: Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science, 320 (5878): 893–897.CrossRefGoogle ScholarPubMed
Duncan, B., J., Logan, I., Bey, I., Megretskaia, R., Yantosca, P., Novelli, N., Jones, and C., Rinsland, 2007: Global budget of CO, 1988-1997: Source estimates and validation with a global model. Journal of Geophysical Research, 112: D22301.CrossRefGoogle Scholar
Eckhardt, S., A., Stohl, S., Beirle, N., Spichtinger, P., James, et al., 2003: The north Atlantic Oscillation controls air pollution transport to the Arctic. Atmospheric Chemistry and Physics, 3: 1769–1778.CrossRefGoogle Scholar
,EEA, 2008: Energy and environment indicator fact sheet, EN13 Nuclear waste production. European Environment Agency (EEA), Copenhagen, Denmark.Google Scholar
Emberson, L. D., et al., 2003: Air Pollution Impacts on Crops and Forests-A Global Assessment, edited, Imperial College Press, London, UK.CrossRefGoogle Scholar
Emberson, L. D., P., Bueker, and M. R., Ashmore, 2007: Assessing the risk caused by ground level ozone to European forest trees: A case study in pine, beech and oak across different climate regions. Environmental Pollution, 147: 454–466.CrossRefGoogle ScholarPubMed
Emberson, L. D., P., Büker, M. R., Ashmore, et al., 2009: A comparison of North American and Asian exposure-response data for ozone effects on crop yields. Atmospheric Environment, 43: 1945–1953.CrossRefGoogle Scholar
,ENA, 2011: The European Nitrogen Assessment: Sources, Effects and PolicyPerspectives. Eds. Sutton, M.A., Howard, C.M., Erisman, J.W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H. and Grizzetti, B.Cambridge University Press. Avaialble at: http://www.nine-esf.org/ENA-BookCrossRefGoogle Scholar
,Energy Information Administration, 2000: Sub-Saharan Africa: Environmental Issues, November 2000.Google Scholar
,Environment Canada, 2008: Canadian Environmental Sustainability Indicators.Google Scholar
,Environment Canada 2010: www.ec.gc.ca/acidrain/acidfact.html (accessed 29 March 2010).
,Environment Canada 2010: National Ambient Air Quality Objectives. www.ec.gc.ca (accessed 27 March 2010).Google Scholar
Evans, A., V., Strezov, and T. J., Evans, 2009: Assessment of sustainability indicators for renewable energy technologies. Renewable and Sustainable Energy Reviews, 13: 1082–1088.CrossRefGoogle Scholar
Fang, Y. P., Y., Zeng, and S. M., Li, 2008: Technological influences and abatement strategies for industrial sulphur dioxide in China. International Journal of Sustainable Development and World Ecology, 15: 122–131.CrossRefGoogle Scholar
,FAO, 2004: Seguridad alimentaria como estrategia de Desarrollo rural. Proc. 28ava Conferencia Regional de la FAO para América Latina y el Caribe, Ciudad de Guatemala, Guatemala.Google Scholar
,FAO, 2005: State of the World's Forests 2005. Food and Agriculture Organization of the United Nations (FAO), Rome.Google Scholar
,FAO, 2006: World agriculture: towards 2030/2050. Food and Agriculture Organization of the United Nations (FAO), Rome.Google Scholar
Farman, J. C., R. J., Murgatroyd, A. M., Silnickas, and B. A., Thrush, 1985: Ozone photochemistry in the antarctic stratosphere in summer. Quarterly Journal of the Royal Meteorological Society, 111: 1013–1025.CrossRefGoogle Scholar
Fenn, M. E., J. S., Baron, E. B., Allen, H. M., Reuth, K. R., Nydick, L., Geiser, W. D., Bowman, J. O., Sickman, T., Meixner, D. W., Johnson, and P., Neitlich, 2003: Ecological Effects of Nitrogen Deposition in the Western United States. Bioscience, 53 (4): 404–420.Google Scholar
Fey, M. V. and H.A., Dodds, 1998: Classifying the sensitivity of soils of the South African highveld to acidification. South African Journal of Plant and Soil, 15: 99–103.CrossRefGoogle Scholar
Field, C. B., L. D., Mortsch, M., Brklacich, D. L., Forbes, P., Kovacs, J. A., Patz, S. W., Running, and M. J., Scott., 2007: Climate Change 2007: Impacts, Adaptation and Vulnerability. Chapter 14: North America. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L., Parry, O.F., Canziani, J.P., Palutikof, P.J., van der Linden, and C.E., Hanson, (eds.), Cambridge University Press, Cambridge, UK and New York, NY, pp. 617–652.Google Scholar
Fiki, C., and B., Lee, 2004: Conflict generation, conflict management and self-organizing capabilities in drought-prone rural communities in north-eastern Nigeria: A case study. Journal of Social Development in Africa, 19 (2): 25–48.Google Scholar
Fischer, G., S., Prielera, H., van Velthuizena, S. M., Lensink, M., Londo, and M., de Wit, 2010: Biofuel production potentials in Europe: Sustainable use of cultivated land and pastures, Part I: Land productivity potentials. Biomass and Bioenergy, 34: 159–172.Google Scholar
Fischer, G., M., Shah, and H., vanVelthuizen, 2002: Climate change and agricultural vulnerability. Preprints, World Summit on Sustainable Development, Johannesburg, pp. 160.Google Scholar
Fiscus, E. L., et al., 2005: Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environment, 28: 997–1011.CrossRefGoogle Scholar
Fisher, B., N., Nakicenovic, K., Alfsen, J. Corfee, Morlot, F., de la Chesnaye, J.-C., Hourcade, K., Jiang, M., Kainuma, E., La Rovere, A., Matysek, A., Rana, K., Riahi, R., Richels, S., Rose, D.P., van Vuuren, R., Warren, P., Ambrosi, F., Birol, D., Bouille, C., Clapp, B., Eickhout, T., Hanaoka, M.D., Mastrandrea, Y., Matsuoko, B., O'Neill, H., Pitcher, S., Rao, and F., Toth, 2007: Issues related to mitigation in the longtermc context. In: B., Metz, O., Davidson, P., Bosch, R., Dave, L., Meyer (eds.), Climate change 2007: Mitigation of climate change. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, pp. 169–250.Google Scholar
Fishman, J., et al., 2010: An investigation of widespread ozone damage to the soybean crop in the upper Midwest determined from ground-based and satellite measurements. Atmospheric Environment, 44 (2010): 2248–2256.CrossRefGoogle Scholar
Flörke, M., and J., Alcamo, 2005: European Outlook On Water Use. Prepared for the European Environment Agency, pp. 83.Google Scholar
Foster, J. S., J. W., Winchester, and E. G., Dutton, 1992: The date of snow disappearance on the Arctic tundra as determined from satellite, meteorological station and radiometric in situ observations. IEEE Transactions on Geoscience and Remote Sensing, 30 (4): 793–798.CrossRefGoogle Scholar
Fowler, , et al., 2009: Atmospheric composition change: Ecosystesm-Atmosphere interactions. Atmospheric Environment, 43: 5193–5267.CrossRefGoogle Scholar
Frauenfeld, O. W., T., Zhang, R. G., Barry, and D., Gilichinsky, 2004: Interdecadal changes in seasonal freeze and thaw depths in Russia. Journal of Geophysical Research, 109: D05101.CrossRefGoogle Scholar
Fuhrer, J., 2003: Agroecosystern responses to combinations of elevated CO2, ozone, and global climate change. Agriculture, Ecosystems and Environment, 97: 1–20.CrossRefGoogle Scholar
Fuhrer, J., 2009: Ozone risk for crops and pastures in present and future climates. Naturwissenschaften, 96: 173–194.CrossRefGoogle ScholarPubMed
Fuhrer, J. and F., Booker, 2003: Ecological Issues related to ozone: agricultural issues. Environment International, 29 (2–3): 141–154.CrossRefGoogle ScholarPubMed
Fuhrer, J., L., Skärby, and M. R., Ashmore, 1997. Critical levels for ozone effects on vegetation in Europe. Environmental Pollution, 97: 91–106.CrossRefGoogle Scholar
Fujino, J., R., Nair, M., Kainuma, T., Masui, and Y., Matsuoka, 2006: Multigas mitigation analysis on stabilization scenarios using AIM global model. Energy Journal, 27: 343–354.Google Scholar
Galloway, J., A., Townsend, J. W., Erisman, Z., Cai, F., Martinelli, S., Seitzinger, and M., Sutton, 2008: Transformation of the nitrogen cycle: Recent trends, questions and potential solutions. Science, 320: 889–892.CrossRefGoogle ScholarPubMed
Galloway, J. N., J. D., Aber, J. W., Erisman, S. P., Seitzinger, R. W., Howarth, E. B., Cowling, and B. J., Cosby, 2003: The Nitrogen Cascade. BioScience, 53 (4): 341–356.CrossRefGoogle Scholar
Garrett, T. J., L. F., Radke, and P. V., Hobbs, 2002: Aerosol effects on the cloud emissivity and surface longwave heating in the Arctic. Journal of the Atmospheric Sciences, 59: 769–778.2.0.CO;2>CrossRefGoogle Scholar
Geerben-Leenes, W., A. Y., Hoekstra, and T. H., van der Meer, 2009: The water footprint of bioenergy. Proceedings of the National Academy of Sciences of the United States of America, 106 (25): 10219–10223.Google Scholar
Global Biodiversity Outlook 3, 2010: Secretariat of the Convention on Biological Diversity, Montreal. www.cbd.int/gbo3/ebook/ (accessed 14 March 2010).
Gordon, L. J., G. D., Peterson, and E. B., Bennett, 2008: Agricultural modifications of hydrological flows create ecological surprises. Trends in Ecology and Evolution, 23 (4): 211–219.CrossRefGoogle ScholarPubMed
Gordon, L., W., Steffen, B. F., Jönsson, C., Folke, M., Falkenmark, and Å., Johannessen, 2005: Human modification of global water vapour flows from the land surface. PNAS, 105: 7612–7617.Google Scholar
Gosnell, H., Kelly, K., 2010: Peace on the river? Social-ecological restoration and large dam removal in the Klamath basin, USA. Water Alternatives, 3 (2): 362–383.Google Scholar
Grennfelt, P. and Ø., Hov, 1995: Regional Air Pollution at a turning point. Ambio, 34 (1): 2–10.Google Scholar
Gruber, N. and J. N., Galloway, 2008: An Earth-System perspective of the global nitrogen cycle. Nature, 451: 293–296.Google Scholar
Guerin, F., G., Abril, S., Richard, B. B., Burban, C., Reynouard, P., Seyler, and R., Delmas, 2006: Methane and carbon dioxide emissions from tropical reservoirs: significance of downstream rivers. Geophysical Research Letters, 33: L21407.CrossRefGoogle Scholar
Hansen, J., R., Ruedy, M., Sato, M., Imhoff, W., Lawrence, D., Easterling, T., Peterson, and T., Karl, 2001: A closer look at United States and global surface temperature changes. Journal of Geophysical Research, 106: 947–963.CrossRefGoogle Scholar
Hansen, J., M., Sato, P., Kharecha, D., Beerling, R., Berner, V., Masson-Delmotte, M., Pagani, M., Raymo, D. L., Royer, and J. S., Zachos, 2008: Target atmospheric CO2: Where should humanity aim?Open Atmospheric Science Journal, 2: 217–231.CrossRefGoogle Scholar
Hansen, J., R., Reudy, M., Sato, and K., Lo, 2010: Global surface temperature change. Reviews of Geophysics, 48: RG4004.CrossRefGoogle Scholar
Hanson, C. E, J. P., Palutikof, A., Dlugolecki, and C., Giannakopoulos, 2006: Bridging the gap between science and the stakeholder: the case of climate change research. Climate Research, 13: 121–133.Google Scholar
Hare, B. And M., Meinshausen, 2006: How much warming are we committed to and how much can be avoided?Climatic Change, 75 (1–2): 111–149.CrossRefGoogle Scholar
Harris, G., 2002: Integrated assessment and modelling: an essential way of doing science. Environmental Modelling & Software, 17 (3): 201–207.Google Scholar
Hassan, I., M., Ashmore, and J., Bell, 1995: Effect of ozone on radish and turnip under Egyptian field conditions. Environmental Pollution, 89 (1): 107–114.CrossRefGoogle Scholar
Heck, W. W, O. C., Taylor, and D. T., Tingey (eds.), 1988: Assessment of Crop Loss from Air Pollutants. Barking, UK: Elsvier Applied Science.CrossRef
Hernandez, T., and L. I., de Bauer, 1984: Evolucion del daño por gases oxidantes en Pinus hartwegii P. montezumae var. Lindleyi en el Ajusco. D. F. Agrociencia, 56: 183–194.Google Scholar
Hernandez, T., and L. I., de Bauer 1986: Photochemical oxidant damage on Pinus hartwegii at the Desierto de los Leones, D. F. Phytopathology, 76 (3): 377.Google Scholar
Hettelingh, F.-P., M., Posch, J., Slootweg, G. J., Reinds, T., Spranger, and L., Tarrason, 2007: Critical loads and dynamic modelling to assess Eruopean areas at risk of acidification and eutrophication. Water, Air and Soil Pollution Focus, 7: 379–384.CrossRefGoogle Scholar
Hettelingh, J. P., M., Posch, and J., Slootweg, 2008: Critical Load, Dynamic Modelling and Impact Assessment in Europe: CCE Status Report 2008. Coordination Centre for Effects, Netherlands Environmental Assessment Agency, Bilthoven, Netherlands.Google Scholar
Hicks, W. K., J. C. I., Kuylenstierna, A., Owen, F., Dentener, H. M., Seip, and H., Rodhe, 2008: Soil sensitivity to acidification in Asia: Status and prospects. Ambio, 37: 295–303.CrossRefGoogle ScholarPubMed
Hoelzle, M., W., Haeberli, M., Dischl, and W., Peschke, 2003: Secular glacier mass balances derived from cumulative glacier length changes. Global and Planetary Change, 36: 295–306.CrossRefGoogle Scholar
Holland, M, C., Bitz, and B., Tremblay, 2006: Future abrupt reductions in the summer Arctic sea ice. Geophysical Research Letters, 33 (L23503): 1–5.CrossRefGoogle Scholar
Howarth, R., D., Anderson, J., Cloern, C., Elfring, C., Hopkinson, B., Lapointe, T., Malone, N., Marcus, K., McGlathery, A., Sharpley, and D., Walker, 2000: Nutrient pollution of coastal rivers, bays, and seas. Ecological Society of America, 7: 2–15.Google Scholar
Huang, J., C., Zhang, and J. M., Prospero, 2009: Large-scale effect of aerosols on precipitation in the West African Monsoon region. Quarterly Journal of the Royal Meteorological Society, 135: 581–594.CrossRefGoogle Scholar
Hungate, B. A., et al., 2009: Nitrogen and climate change. Science, 203: 1512–1513.Google Scholar
,IEA, 2009: World energy outlook 2009. International Energy Agency, OECD Publication Service, OECD, Paris.Google Scholar
,IJC, 2010: US and Canada Air Quality Agreement Progress Report. International Joint Commission (IJC).Google Scholar
,International Rivers, 2011: www.internationalrivers.org/ (accessed 24 March 2011).
,IPCC, 1990: First Assessment Report (FAR) – Climate Change 1990. Cambridge University Press, Cambridge, UK and New York, NY.Google Scholar
,IPCC, 1995a: Second Assessment Report (SAR) – Climate Change 1995. Cambridge University Press, Cambridge, UK and New York, NY.Google Scholar
,IPCC, 1995b: The Science of climate change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. J. T., Houghton, L. G. Meira, Filho, B. A., Callander, N., Harris, A., Kattenberg and K., Maskell (eds.), Cambridge University Press, Cambridge, UK, New York, NY, and Melbourne, Australia, pp. 531.Google Scholar
,IPCC, 2000a: Emission scenarios. N., Nakicenovic, and R., Swart, (eds.). The Science of climate change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, pp. 570. Cambridge University Press, Cambridge, UK and New York, NY.Google Scholar
,IPCC, 2000b: Methodological and technological issues in technology transfer. Metz, B., Davidson, O., Martens, J.-W., Van Rooijen, S. and Van Wie Mcgrory, L. (eds.), The Science of climate change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, NY, pp. 432.Google Scholar
,IPCC, 2001a: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Houghton, J. T., Y., Ding, D. J., Griggs, M., Noguer, P. J., van der Linden, X., Dai, K., Maskell, and C. A., Johnson (eds.), Cambridge University Press, Cambridge, UK and New York, NY, pp. 881.Google Scholar
,IPCC, 2001b: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. J. J., McCarthy, O. F., Canziana, N. A., Leary, D. J., Dokken, K. S., White, (eds.), Cambridge University Press, Cambridge, UK and New York, NY, pp. 976.Google Scholar
,IPCC, 2005: Carbon dioxide capture and storage, B., Metz, O., Davidson, H., de Coninck, M., Loos, L., Meyer, (eds.), Cambridge University Press, Cambridge, UK and New York, NY. pp. 431.Google Scholar
,IPCC, 2007a: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S., Solomon, D., Qin, M., Manning, Z., Chen, M., Marquis, K. B., Averyt, M., Tignor, H. L., Miller (eds.), Cambridge University Press, Cambridge, UK and New York, NY.Google Scholar
,IPCC, 2007b: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M. L., Parry, O. F., Canziani, J. P., Palutikof, P. J., van der Linden, and C. E., Hanson (eds.), Cambridge University Press, Cambridge, UK and New York, NY.Google Scholar
,IPCC, 2007c: Mitigation of climate change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, B., Metz, O., Davidson, P., Bosch, L. A., Meyer, (eds.), Cambridge University Press, Cambridge, UK and New York, NY, USA.Google Scholar
Jackson, R. B, G. J., Esteban, A., Roni, S. B., Roy, D. J., Barrett, C. W., Cook, K. A., Farley, D. C., le Maitre, B. A., McCarl, and B. C., Murray, 2005: Trading water for carbon with biological carbon sequestration. Science, 310 (5756): 1944–1947.CrossRefGoogle ScholarPubMed
Jackson, C., 2009: Parallel pursuit of near-term and long-term climate mitigation. Science, 326 (5952): 526–527.CrossRefGoogle ScholarPubMed
Janssens, I. A. and S., Luyssaert, 2009: Carbon cycle: Nitrogen's carbon bonus. Nature Geoscience, 2: 318–319.CrossRefGoogle Scholar
Johannessen, O. M., 2008: Decreasing Artic Sea Ice mirrors increasing CO2 on Decadal time scale. Atmospheric and Oceanic Science Letters, 1: 51–56.Google Scholar
Johnson, F. X. and I., Virgin, 2010: Future Trends in biomass resources for food and fuel. In Food versus Fuel: an informed introduction. F., Rosillo-Calle and F. X., Johnson (eds.), ZED books, London.Google Scholar
Jones, P. D., and A., Moberg, 2003: Hemispheric and large scale surface air temperature variations: an extensive revision and an update to 2001. Journal of Climate, 16, 206–223.2.0.CO;2>CrossRefGoogle Scholar
Josipovic, M., H. J., Annegarn, M. A., Kneen, J. J., Pienaar, and S. J., Piketh, 2010: Concentrations, distributions and critical level exceedance assessment of SO2, NO2 and O3 in South Africa. Environmental Monitoring and Assessment, 171: 181–196.CrossRefGoogle ScholarPubMed
Karlsson, P. E., et al., 2007: Risk assessments for forest trees: The performance of the ozone flux versus the AOT concepts. Environmental Pollution, 146, 608–616.CrossRefGoogle ScholarPubMed
Karnosky, D. F., and K. C., Steiner, 1981: Provenance variation in response of Fraxinus americana and Fraxinus pennsylvanica to sulfur dioxide and ozone. Phytopathology, 71: 804–807.CrossRefGoogle Scholar
Karnosky, D. F., K. S., Pregitzer, D. R., Zak, M. E., Kubiske, G. R., Hendrey, D., Weinstein, M., Nosal, and K. E., Percy, 2005: Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant, Cell and Environment, 28: 965–981.CrossRefGoogle Scholar
Karnosky, D. F., et al., 2007: Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. Environmental Pollution, 147: 489–506.CrossRefGoogle ScholarPubMed
Keeling, C. D. and T. P., Whorf, 2005: Atmospheric CO2 records from sites in the SIO air sampling network. In Trends: A compendium of data on global change. Carbon Dioxide Information Analysis Centre, Oak Ridge National Laboratory, US Dept. of Energy, Oak Ridge, TN.Google Scholar
King, J. S., et al., 2005: Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2. New Phytologist, 168: 623–636.CrossRefGoogle Scholar
Klein Tank, A. M. G., J. B., Wijngaard, G. P., Konnen, R., Bohm, G., Demaree, A., Gocheva, M., Mileta, S., Pashiardis, L., Hejkrlik, C., Kern-Hansen, R., Heino, P., Bessemoulin, G., Muller-Westermeier, M., Tzanakou, S., Szalai, T., Palsdottir, D., Fitzgerald, S., Rubin, M., Capaldo, M., Maugeri, A., Leitass, A., Bukantis, R., Aberfeld, A.F.V., VanEngelen, E., Forland, M., Mietus, F., Coelho, C., Mares, V., Razuvaev, E., Nieplova, T., Cegnar, J.A., López, B., Dahlstrom, A., Moberg, W., Kirchhofer, A., Ceylan, O., Pachaliuk, L.V., Alexander, and P., Petrovic, 2002: Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. International Journal of Climatology, 22: 1441–1453.CrossRefGoogle Scholar
Klein, R. J. T., R. J., Nicholls, and F., Thomalla., 2002: The resilience of coastal megacities to weather-related hazards. Building Safer Cities: The Future of Disaster Risk, A., Kreimer, M., Arnold and A., Carlin, Eds., The World Bank Disaster Management Facility, Washington, DC, 101–120.Google Scholar
Klimont, Z. Z., Cofala, J., Xing, J., Wei, W., Zhang, C., Wang, S., Bhandari, P., Mathur, R., Purohit, P., Rafaj, P., Chambers, A., Amann, M., Hao, J., 2009: Projections of SO2, NOx and carbonaceaous aerosols emissions in Asia. Tellus, 61: 602–617.Google Scholar
Klimont, Z., Streets, D. G., Gupta, S., Cofala, J., Fu, L., Ichikawa, Y., 2002: Anthropogenic emissions of non-methane volatile organic compounds in China. Atmospheric Environment, 36 (8): 1309–1322CrossRefGoogle Scholar
Koch, D., T. C., Bond, D., Streets, N., Unger, 2007: Linking future aerosol radiative forcing to shifts in source activities. Geophysical Research Letters, 34, L05821CrossRefGoogle Scholar
Kriegler, E., J. W., Hall, H., Held, R., Dawson, H. J., Schellnhuber, 2009: Imprecise probability assessment of tipping points in the climate system. Proceedings of the National Academy of Sciences of the United States of America, USA, 106: 5041–5046.CrossRefGoogle ScholarPubMed
Krupa, S. V., et al., 2004: Effects of ozone on plant nutritive quality characteristics for ruminant animals. The Botanica, 54: 1–12.Google Scholar
Kuylenstierna J. C., I, H., Rodhe, S., Cinderby, and K., Hicks, 2001: Acidification in developing countries: Ecosystem sensitivity and the critical load approach on a global scale. Ambio, 30: 20–28.CrossRefGoogle ScholarPubMed
Law, K. S., A., Stohl, 2007: Arctic air pollution: Origins and impacts. Science, 315: 1537–1540.CrossRefGoogle ScholarPubMed
Le Quéré, C., M., Raupach, J., Canadell, G., Marland, et al., 2009: Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2: 831–836.CrossRefGoogle Scholar
Le Quéré, C., C., Rodenbeck, E., Buitenhaus, T., Conway, R., Lagenfelds, A., Gomez, C., Labuschagne, M., Ramonet, T., Nakazawa, N., Metzl, N., Gillett, M., Heimann, 2007: Saturation of the southern ocean CO2 sink due to recent climate change. Science, 316: 1735–1738.CrossRefGoogle ScholarPubMed
Lehner, B., G., Czisch, and S., Vassolo, 2005: The impact of global change on the hydropower potential of Europe: a model-based analysis. Energy Policy, 33: 839–855.CrossRefGoogle Scholar
Leiva, J. C., 2006: Assesment climate change impacts on the water resources at the northern oases of Mendoza province, Argentina. Global Change in Mountain Regions, M. F., Price (ed.), Sapiens Publishing, Kirkmahoe, Dumfriesshire, 81–83.Google Scholar
Lenton, T. M., H., Held, E., Kriegler, J. W., Hall, W., Lucht, S., Rahmstorf, and H. J., Schellnhuber, 2008: Tipping elements in the Earth's climate system. Proc Natl Acad Sci USA, 105: 1786–1793.CrossRefGoogle ScholarPubMed
Levin, L. A., W., Ekau, A. J., Gooday, F., Jorissen, J. J., Middelburg, S. W., Naqvi, C., Neira, N. N., Rabalais, and J., Zhang, 2009: Effects of natural and human- induced hypoxia on coastal benthos. Biogeosciences, 6 (10): 2063–2098.CrossRefGoogle Scholar
Living Planet Report, 2010: Biodiversity, biocapacity and development, WWF. wwf.panda.org/about_our_earth/all_publications/living_planet_report/ (accessed 26 March 2011).
Locatelli, B. and R., Vignola, 2009: Managing watershed services of tropical forests and plantations: can meta-analyses help?Forest Ecology and Management, 258: 1664–1870.CrossRefGoogle Scholar
Long, S. P., E. A., Ainsworth, A. D. B., Leakey, and P. B., Morgan, 2005: Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields. Philosophical Transactions of the Royal SocietyB, 360: 2011–2020.Google Scholar
Lu, Z., D. G., Streets, Q., Zhang, S., Wang, G. R., Carmichael, Y. F., Cheng, C., Wei, M., Chin, T., Diehl, and Q., Tan, 2010: Sulfur dioxide emissions in China and sulphur trends in East Asia since 2000. Atmospheric Chemistry and Physics, 10: 6311–6331.CrossRefGoogle Scholar
Lugina, K. M., et al., 2005: Monthly surface air temperature time series area-averaged over the 30-degree latitudinal belts of the globe, 1881–2004. In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN, cdiac.esd.ornl.gov/trends/temp/lugina/lugina.html (accessed 3 April 2011).Google Scholar
MacKay, , 2008: Sustainable Energy – without the hot air. UIT, Cambridge, UK. www.withouthotair.com/ (accessed 22 January 2011).Google Scholar
Magnani, F., M., Mencuccini, P., Borghetti, P., Berbigier, F., Berninger, S., Delzon, et al., 2007: The human footprint in the carbon cycle of temperate and boreal forests. Nature, 447: 849–851.Google Scholar
Magrin, G., C. Gay, García, D. Cruz, Choque, J. C., Giménez, A. R., Moreno, G. J., Nagy, C., Nobre, and A., Villamizar, 2007: Climate Change 2007: Impacts, Adaptation and Vulnerability. Chapter 13: Latin America. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M. L., Parry, O. F., Canziani, J. P., Palutikof, P. J., van der Linden, and C. E., Hanson (eds.), Cambridge University Press, Cambridge, UK and New York, NY, 581–615.Google Scholar
Maslanik, J., C., Fowler, J., Stroeve, S., Drobot, J., Zwally, D., Yi, and W., Emery, 2007: A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss. Geophysical Research Letters, 34: L24501.CrossRefGoogle Scholar
Matyssek, R., and H. J., Sandermann, 2003: Impact of ozone on trees: An ecophysiological perspective. Progress in Botany, 64: 349–404.Google Scholar
McDonald, R. I., J., Fargione, J., Kiesecker, W. M., Miller, and J., Powell, 2009: Energy Sprawl or Energy Efficiency: Climate Policy Impacts on Natural Habitat for the United States of America. PLoS ONE, 4 (8): e6802.CrossRefGoogle ScholarPubMed
Meadows, D. H., and D. L., Meadows, 1972: The Limits to Growth. New American Library, New York, NY.Google Scholar
Meadows, D. H., D. L., Meadows, and J., Randers, 1992: Beyond the limits: Confronting global collapse-envisioning a sustainable future. Chelsea Green Publishing Company, Post Mills, VT.Google Scholar
Meadows, D. H., J., Randers, and D. L., Meadows, 2004: Limits to Growth – the 30 year update. Earthscan, London.Google Scholar
Meehl, G. A. et al., 2007: Global climate projections. In Climate change 2007: the physical science basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. S., Solomon, D., Qin, M., Manning, Z., Chen, M., Marquis, K. B., Averyt, M., Tignor, and H. L., Miller (eds.), Cambridge University Press, Cambridge, UK and New York, NY.Google Scholar
Meinshausen, M., N., Meinshausen, W., Hare, S. C. B., Raper, K., Frieler, R., Knutti, D. J., Frmae, M. R., Allen, 2009: Greenhouse-gas emission targets for limiting global warming to 2°C. Nature, 458: 1158–1162.Google Scholar
Mendelsohn, R., A., Dinar, and A., Dalfelt, 2000: Climate change impacts on African agriculture. Preliminary analysis prepared for the World Bank, Washington, DC.Google Scholar
Menz, F. C. and H. M., Seip, 2004: Acid rain in Europe and the United states: an update. Environmental Science and Policy, 7 (4): 253–265.CrossRefGoogle Scholar
Menzel, A., T. H., Sparks, N., Estrella, E., Koch, A., Aasa, R., Ahas, K., Alm-Kübler, P., Bissoli, O., Braslavska, A., Briede, F. M., Chmielewski, Z., Crepinsek, Y., Curnel, Å., Dalh, C., Defila, A., Donnelly, Y., Filella, K., Jatczak, F., Måge, A., Mestre, Ø., Nordli, J., Peñuelas, P., Pirinen, V., Remišová, H., Scheifinger, M., Striz, A., Susnik, A., VanVliet, F.-E., Wielgolaski, S., Zach, and A., Zust, 2006: European phenological response to climate change matches the warming pattern. Glob. Change Biol., 12: 1969–1976.CrossRefGoogle Scholar
Metzger, M. J., R., Leemans, D., Schröter, W., Cramer, and the ATEAM consortium, 2004: The ATEAM Vulnerability Mapping Tool. Quantitative Approaches in System Analysis No. 27. Wageningen, C.T. de Witt Graduate School for Production Ecology and Resource Conservation, Wageningen, CD ROM.Google Scholar
Meybeck, , 2003: M. Global analysis of river systems: from earth system controls to Anthropocene controls. Philosophical Transactions of the Royal Academy, LondonB, 358: 1935–1955.Google Scholar
,MEA (Millennium Ecosystem Assessment) 2005: Millennium Ecosystem Assessment 2005, Synthesis, Island Press, Washington, DC, USA.Google Scholar
Miller, P. and J., McBride (eds.), 1999: Oxidant air pollution impacts in the Montane forests of Southern California: The San Bernardino Mountain Case Study. Springer-Verlag, New York, USA.CrossRef
Miller, S., 2009: Minimizing Land Use and Nitrogen Intensity of Bio-energy. Environmental Science & Technology, 44: 3932–3939.Google Scholar
Mills, G., et al., 2007: A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops, Atmospheric Environment, 41: 2630–2643.CrossRefGoogle Scholar
Mills, G., et al., 2011: Evidence of widespread effects of ozone on crops and (semi-) natural vegetation in Europe (1990–2006) in relation to AOT40 and flux-based risk maps, Global Change Biology, 17: 592–613.CrossRefGoogle Scholar
Milly, P. C. D., R. T., Wetherald, K. A., Dunne, and T. L., Delworth, 2002: Increasing risk of great floods in a changing climate. Nature, 415: 514–517.Google Scholar
Molden, D. (ed.), 2007. Water for food, water for life: A Comprehensive Assessment of Water Management in Agriculture, Earthscan, London, and IWMI, Colombo.
Molina, M. J. and F. S., Rowland, 1974: Stratospheric sink for chlorofluoromethanes: chlorine atomc-atalysed destruction of ozone. Nature, 249 (5460): 810–812.CrossRefGoogle Scholar
Morgan, P. B., et al., 2006, Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean. New Phytologist, 170: 11.CrossRefGoogle ScholarPubMed
Moriondo, M., P., Good, R., Durao, M., Bindi, C., Gianakopoulos, and J., Corte-Real, 2006: Potential impact of climate change on fire risk in the Mediterranean area. Climate Research, 31: 85–95.CrossRefGoogle Scholar
Muller, N. Z. and R., Mendelsohn, 2007: Measuring the damages of air pollution in the United States. Journal of Environmnetal Economics and Management, 54: 1–14.Google Scholar
Mylona, S., 1996: Sulphur dioxide emissions in Europe 1880–1991, Tellus, 48B: 662–689.Google Scholar
Mylona, S., 1997: Corrigendum to Sulphur dioxide emissions in Europe 1880–1991, Tellus, 49B: 447–448.Google Scholar
Nabuurs, G. J., et al., 2003: Temporal evolution of the European forest sector carbon sink from 1950 to 1999, Global Change Biology, 9: 152–160.CrossRefGoogle Scholar
Nakicenovic, N. and R., Swart (eds.), 2000: Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY.
Nakicenovic, N. and K., Riahi (eds.), 2007: Integrated assessment of uncertainties in greenhouse gas emissions and their mitigation, Technological Forecasting and Social Change, 74 (2007): 873–886.
,NRC (National Research Council), 2002: Defining the mandate of proteomics in the post-genomics era: Workshop report. Molecular and Cellular Proteomics, 1 (10): 763–780.Google Scholar
,NRC (National Research Council), 2000: Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution. National Academy Press, Washington, DC.Google Scholar
,NEA (National Ecosystem Assessment), 2011: The UK National Ecosystem Assessment: Synthesis of the Key Findings. UNEP-WCMC, Cambridge, UK.Google Scholar
Nicholls, R., and R, Tol, 2006: Impacts and responses to sea-level rise: a global analysis of the SRES scenarios over the twenty-first century. Philosophical Transactions of the Royal SocietyA, 364: 1073–1095.Google Scholar
Nicholls, R. J., 2004: Coastal flooding and wetland loss in the 21st century: changes under the SRES climate and socio-economic scenarios. Global Environmental Change-Human and Policy Dimensions, 14 (1): 69–86.CrossRefGoogle Scholar
Nilsson, C., C. A., Reidy, M., Dynesius, and C., Revenga, 2005: Fragmentation and flow regulation of the world's large river systems. Science, 308 (5720): 405–408.CrossRefGoogle ScholarPubMed
Ohara, T., H., Akimoto, J., Kurokawa, N., Horii, K., Yamaji, X., Yan, and T., Hayasaka, 2007: An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmospheric Chemistry and Physics, 7: 4419–4444.CrossRefGoogle Scholar
Okello, B. D., T. G., O'Connor, and T. P., Young, 2001: Growth, biomass estimates, and charcoal production of Acacia drepanolobium in Laikipia, Kenya. Forest Ecology and Management, 142: 143–153.CrossRefGoogle Scholar
Olesen, J. E., T. R., Carter, C. H., Díaz-Ambrona, S., Fronzek, T., Heidmann, T., Hickler, T., Holt, M. I., Mínguez, P., Morales, J., Palutikof, M., Quemada, M. Ruiz-, Ramos, G., Rubsk, F., Sau, B., Smith, and M., Sykes, 2007: Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Climatic Change, 81: S123-S143.CrossRefGoogle Scholar
Olivier, J., J., Van Aardenne, F., Dentener, L., Ganzeveld, and J., Peters, 2005: Recent trends in global greenhouse gas emissions: regional trends and spatial distribution of key sources, in: Non-CO2 Greenhouse Gases (NCGG-4). A., van Amstel (ed.), Millpress, Rotterdam, the Netherlands. pp. 325–330.Google Scholar
Pacnya, E., and J., Pacnya, 2002: Global emission of mercury from anthropogenic sources in 1995. Water, Air & Soil Pollution, 137 (1–4): 149–165.Google Scholar
Pacnya, E., J., Pacyna, F., Steenhuisen, and S., Wilson, 2006: Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40 (22): 4048–4063.Google Scholar
Peng, S., J., Huang, J. E., Sheehy, R. E., Laza, R. M., Visperas, X., Zhong, G. S., Centeno, G. S., Khush, and K. G., Cassman, 2004: Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Science of the United States of America, 101: 9971–9975.CrossRefGoogle ScholarPubMed
Penner, J. E., M. J., Prather, I. S. A., Isaksen, J. S., Fuglestvedt, Z., Klimont, and D. S., Stevenson, 2010: Short-lived uncertainty?Nature Geoscience, 3 (2010): 587–588.CrossRefGoogle Scholar
Perovich, D., T., Grenfell, and P., Hobbs, 2002: Seasonal evolution of the albedo of multi-year Arctic sea-ice. Journal of Geophysical Research-Oceans, 107: SHE20-21.CrossRefGoogle Scholar
Phoenix, G. K., W. K., Hicks, S., Cinderby, J. C. I., Kuylenstierna, W. D., Stock, F. J., Dentener, K. E., Giller, A. T., Austin, R. D. B., Lefroy, B. S., Gimeno, M. R., Ashmore, and P., Ineson, 2006: Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Global Change Biology, 12: 470–476.CrossRefGoogle Scholar
Pirrone, N., and R., Mason, 2008: Mercury Fate and Transport in the Global Atmosphere, Measurements, Models and Policy Implications, Interim Report of the UNEP Global Mercury Partnership, Mercury Air Transport and Fate Research Partnership Area.Google Scholar
Pleijel, H. et al., 1999: Grain protein accumulation in relation to grain yield of spring wheat (Triticum aestivum L.) grown in open-top chambers with different concentrations of ozone, carbon dioxide and water availability. Agriculture, Ecosystems & Environment, 72 (3): 265–270.CrossRefGoogle Scholar
Postel, S. L., 1998: Water for food production: will there be enough in 2025?BioScience, 48: 629–638.CrossRefGoogle Scholar
Prather, M., R., Derwent, D., Ehhalt, P., Fraser, E., Sanheuza, and X., Zhou, 1995: Other trace gases and atmospheric chemistry. In: Climate change 1994: Radiative forcing and climate change and an evaluation of the IPCC IS92 Emission Scenarios. J. T., Houghton, et al. (eds.) Cambridge University Press, Cambridge, UK and New York, NY, pp. 73–126.Google Scholar
Pu, J. C., T. D., Yao, N. L., Wang, Z., Su, and Y. P., Shen, 2004: Fluctuations of the glaciers on the Qinghai-Tibetan Plateau during the past century. Journal of Glaciology and Geocryology, 26: 517–522.Google Scholar
Quinn, P. K., Shaw, G., Andrews, E., Dutton, E. G., Ruoho-Airola, T., Gong, L., 2007: Arctic Haze: Current trends and knowledge gaps. Tellus, 59B: 99–114.Google Scholar
Raatz, K. A., 1984: Observations of Arctic haze during the Ptarmigan weather reconnaissance flights 1948–1961. Tellus, 36B: 126–136.Google Scholar
Rabalais, N. N., 2002: Nitrogen in aquatic ecosystems. Ambio, 31 (2): 102–112.CrossRefGoogle ScholarPubMed
Raes, F., and J. H., Seinfeld, 2009: New Directions: Climate change and air pollution abatement: a bumpy road. Atmospheric Environment, 43: 5132–5133.CrossRefGoogle Scholar
Rahn, K. A., R. D., Borys, and G. E., Shaw, 1981: Asian desert dust over Alaska: anatomy of an Arctic haze Episode, Desert Dust. In: Origin, Characteristic and Effect on Man, T., Pewe (ed.), Special paper No. 186, The Geological Society of America, Boulder, Colorado, pp. 37–70.Google Scholar
Ramanathan, V. and G., Carmichael, 2008: Global and regional climate changes due to black carbon. Nature Geoscience, 1: 221–227.CrossRefGoogle Scholar
Ramanathan, V. and Y., Feng, 2008: On avoiding dangerous anthropogenic interference with the climate system: Formidable challenges ahead. Proceedings of the National Academy of Sciences of the United States of America, 105 (38): 14245–14250.CrossRefGoogle ScholarPubMed
Ramanathan, V. and Y., Xu, 2010: The Copenhagen Accord for limiting global warming: Criteria, constraints and available avenues. Proceedings of the National Academy of Sciences of the United States of America, 107 (18): 8055–8062.CrossRefGoogle ScholarPubMed
Ramaswamy, V., et al., 2001: Radiative forcing of climate change. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. J. T., Houghton, et al., (eds.), Cambridge University Press, Cambridge, UK and New York, NY, pp. 349–416.Google Scholar
Ramírez, C. A. and E., Worrell, 2006: Feeding fossil fuels to the soil: An analysis of energy embedded and technological learning in the fertilizer industry. Resources, Conservation and Recycling, 46: 75–93.CrossRefGoogle Scholar
Reason, C. J. C., and M., Rouault, 2005: Links between the Antarctic Oscillation and winter rainfall over western South Africa. Geophysical Research Letters, 32 (L07705).CrossRefGoogle Scholar
Reay, D., F., Dentener, P., Smith, J., Grace, and R., Feely, R., , 2008: Global nitrogen deposition and carbon sinks. Nature Geoscience, 1: 430–437.CrossRefGoogle Scholar
,Republic of Kenya, 2002: First National Communication of Kenya to the Conference of Parties to the United Nations Framework Convention on Climate Change. Ministry of Environment and Natural Resources, Nairobi.Google Scholar
,République de Côte d'Ivoire, 2000: Communication Initiale de la Côte d'Ivoire. Ministère de l'Environnement, de l'Eau et de la Forêt, Abidjan.Google Scholar
,République de Guinée, 2002: Communication Initiale de la Guinée à la Convention Cadre des Nations Unies sur les Changements Climatiques. Ministère des Mines, de la Géologie et de l'Environnement, Conakry.Google Scholar
Riahi, K., A., Grübler, and N., Nakicenovic, 2007: Scenarios of long-term socioeconomic and environmental development under climate stabilization. Technological Forecasting and Social Change, 74: 887–935.CrossRefGoogle Scholar
Richardson, K., W., Steffen, H. J., Schellnhuber, J., Alcamo, T., Barker, D. M., Kammen, R., Leemans, D., Liverman, M., Munasinghe, B., Osman-Elasha, N., Stern, and O., Wsve, 2009: Synthesis Report: Climate Change- Global Risks, Challenges & Decisions. International Alliance of Research Universities. www.climatecongress.ku.dk (accessed 14 April 2011).Google Scholar
Richter, B., S., Postel, C., Revenga, T., Scudder, B., Lehner, A., Churchill, and M., Chow, 2010: Lost in development's shadow: The downstream human consequences of dams. Water Alternatives, 3 (2): 14–42.Google Scholar
Rockström, J., W., Steffen, K., Noone, A., Persson, F. S., Chapin, E. F., Lambin, T. M., Lenton, M., Scheffer, C., Folke, H., Schellnhuber, B., Nykvist, C. A., De Wit, T., Hughes, S., Van der Leeuw, H, Rodhe, S., Sörlin, P. K., Snyder, R., Costanza, U., Svedin, M., Falkenmark, L., Kalberg, R. W., Corell, V. J., Fabry, J., Hansen, B., Walker, D., Liverman, K., Richardson, P., Crutzen, and J.A., Foley, 2009: A safe operating space for humanity. Nature, 461: 472–475.Google Scholar
Rodhe, H., J., Langner, L., Gallardo, and E., Kjellstrom, 1995. Global scale transport of acidifying pollutants. Water, Air, & Soil Pollution, 85 (1): 37–50.CrossRefGoogle Scholar
Rowell, A., and P. F., Moore, 2000: Global Review of Forest Fires. WWF/IUCN, Gland, Switzerland.Google Scholar
,Royal Society, 2008: Ground-level ozone in the 21st century: future trends, impacts and policy implications. Science Policy Report 15/08, The Royal Society, London, UK.Google Scholar
Schaeffer, S. M., J. B., Miller, B. H., Vaughn, J. W. C., White, and D. R., Bowling, 2008: Long-term field performance of a tunable diode laser absorption spectrometer for analysis of carbon isotopes of CO2 in forest air. Atmospheric Chemistry and Physics, 8 (17): 5263–5277.CrossRefGoogle Scholar
Schär, C., P. L., Vidale, D., Lüthi, C., Frei, C., Häberli, M.A., Liniger and C., Appenzeller, 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427: 332–336.Google Scholar
Schellnhuber, H. J., 2008: Global warming: Stop worrying, start panicking?Proceedings of the National Academy of Sciences of the United States of America, 105: 14239–14240.CrossRefGoogle ScholarPubMed
Schellnhuber, H.J., 2009: Tipping elements in the Earth System. Proceedings of the National Academy of Sciences of the United States of America Special Issue, 106 (49): 20561–20563.Google ScholarPubMed
Schneider, S. H. and M. D., Mastrandrea, 2005: Probabalistic assessment of ‘dangerous’ climate change and emissions pathways. Proceedings of the National Academy of Sciences of the United States of America, 102: 15728–15735.CrossRefGoogle Scholar
Schopp, W., M., Amann, J., Cofala, C., Heyes, and Z., Klimont, 1999: Integrated assessment of European air pollution emission control strategies. Environmental Modelling and Software, 14 (1): 1–9.Google Scholar
Schwela, D., G., Haq, C., Huizenga, W.-J., Han, H., Fabian, and M., Ajero, 2006: Urban Air pollution in Asian Cities: Status, Challenges and Management. Earthscan, London.Google Scholar
Seidel, D. J., and W. J., Randel, 2006: Variability and trends in the global tropopause estimated from radiosonde data. Journal of Geophysical Research Atmospheres, 111 (D21101).CrossRefGoogle Scholar
Selman, M., and S., Greenhalgh, 2009: Eutrophication: Sources and drivers of nutrient pollution. WRI Policy Note. Water Quality: Eutrophication Hypoxia No. 2. World Policy Institute, Washington, DC.Google Scholar
Shaw, G. E., 1995: The Arctic Haze Phenomenon. American Meteorological Society, 76: 2403–2413.2.0.CO;2>CrossRefGoogle Scholar
Shi, L., L., Xing, G. F., Lu, and J., Zou, 2008: Evaluation of rational sulphur dioxide abatement in China. International Journal of Environmental Pollution, 35: 42–57.CrossRefGoogle Scholar
Shiklomanov, I. A., and J. C., Rodda, 2003: World Water Resources at the Beginning of the 21st Century. United Nations Educational, Scientific and Cultural Organization (UNESCO) and Cambridge University Press, Cambridge, UK and New York, NY.Google Scholar
Shiyatov, S. G., M. M., Terent'ev, and V. V., Fomin, 2005: Spatiotemporal dynamics of forest-tundra communities in the polar Urals. Russian Journal of Ecology, 36, 69–75.CrossRefGoogle Scholar
Sitch, S., P. M., Cox, W. J., Collins, and C., Huntingford, 2007: Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature, 448: 791–794.CrossRefGoogle ScholarPubMed
Skarby, L., et al., 1998: Impacts of ozone on forests: A European perspective. New Phytologist, 139: 109–122.CrossRefGoogle Scholar
Sladen, W. J. L., C. M., Menzie, and W. L., Reichel, 1966: DDT residues in Adélie penguins and a crabeater seal from Antarctica. Nature, 210: 670–673.CrossRefGoogle Scholar
Sliggers, J. and W., Kakebeeke, 2004: Clearing the Air: 25 years of the Convention on Long-Range Transboundary Air Pollution. United Nations ECE/EB.AIR/84.Google Scholar
Smith, J. B. et al., 2001: Impacts, Adaptation, and vulnerability. In Climate Change 2001. J., McCarthy, O., Canziana, N., Leary, D., Dokken, K., White (eds.), Cambridge University Press, Cambridge, UK and New York, NY, pp. 913–967.Google Scholar
Smith, J. B., H., Schneider, M., Oppenheimer, G.W., Yohe, W., Hare, M. D., Mastrandrea, A., Patwardhan, I., Burton, J., Corfee-Morlot, C. H. D., Magadza, H.-M., Füssel, A. B., Pittock, A., Rahman, A., Suarez, and J.-P., van Ypersele, 2009: Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate change (IPCC) “reasons for concern.”PNAS, 106: 4133–4137.Google Scholar
Smith, K., 1997: The potential for feedback effects induced by global warming on emissions of nitrous oxide form soils. Global Change Biology, 3: 327–338.CrossRefGoogle Scholar
Smith, T. M. and R. W., Reynolds, 2005: A global merged land and sea surface temperature reconstruction based on historical observations (1880–1997). Journal of Climate, 18: 2021–2036.CrossRefGoogle Scholar
Smith, S. J., van Aardenne, J., Klimont, Z., Andres, R., Volke, A., Delgado Arias, S., 2011: Anthropogenic sulfur dioxide emissions: 1850–2005. Atm. Chem. & Phys., 11 (3): 1101–1116CrossRefGoogle Scholar
Sokolov, A., D., Kicklighter, J., Melillo, B., Felzer, C., Schlosser, and T., Cronin, 2008: Consequences of considering carbon-nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. Journal of Climate, 21 (15): 3776–3796.CrossRefGoogle Scholar
Sokolov, A., P., Stone, C., Forest, C., Prinn, M., Sarofim, M., Webster, S., Paltsev, and C., Schlosser, 2009: Probabilistic Forecast for Twenty-First-Century Climate Based on Uncertainties in Emissions (Without Policy) and Climate Parameters. Journal of Climate, 22: 5175–5204.CrossRefGoogle Scholar
Solomon, S., R.R., Garcia, F.S., Rowland, and D. J., Wuebbles, 1986: On the Depletion of Antarctic Ozone. Nature, 321 (6072): 755–758.CrossRefGoogle Scholar
,State of Eriteria, 2001: Eritrea's Initial National Communication under the United Nations Framework Convention on Climate Change (UNFCCC). Ministry of Land, Water, and Environment. Asmara.Google Scholar
Steffen, W., J., Crutzen, and J. R., McNeill, 2007: The Anthropocene: are humans now overwhelming the great forces of Nature?Ambio, 36 (8): 614–621.CrossRefGoogle ScholarPubMed
Stevenson, D. S., F. J., Dentener, M. G., Schultz, K., Ellingsen, T. P. C., van Noije, O., Wild, G., Zeng, M., Amann, C. S., Atherton, N., Bell, D. J., Bergmann, I., Bey, T., Butler, J., Cofala, W. J., Collins, R. G., Derwent, R. M., Doherty, J., Drevet, H. J., Eskes, A. M., Fiore, M., Gauss, D. A., Hauglustaine, L. W., Horowitz, I. S. A., Isaksen, M. C., Krol, J. F., Lamarque, M. G., Lawrence, V., Montanaro, J. F., Muller, G., Pitari, M. J., Prather, J. A., Pyle, S., Rast, J. M., Rodriguez, M. G., Sanderson, N. H., Savage, D. T., Shindell, S. E., Strahan, K., Sudo, and S., Szopa, 2006: Multimodel ensemble simulations of present-day and near-future troposheric ozone. Journal of geophysical research-atmospheres, 111 (8): D08301.CrossRefGoogle Scholar
Stieb, et al., 2002: Meta-analysis of time-series studies of air pollution and mortality: Effects of gases and particles and the influence of cause of death, age and season. Journal of the Air and Waste management association, 52 (4): 470–484.CrossRefGoogle ScholarPubMed
Stige, L., J., Stave, K., Chan, L., Ciannelli, N., Pettorelli, M., Glantz, H., Herren, and N., Stenseth, 2006: The effect of climate variation on agro-pastoral production in Africa. PNAS, 103 (9): 3049–3053.CrossRefGoogle ScholarPubMed
Stigiiani, W. M., and R. W., Shaw, 1990: Energy use and acid deposition: The view from Europe. Annual Review of Energy, 15: 201–216.Google Scholar
Stocks, B. J. et al., 1998: Climate change and forest fire potential in Russian and Canadian boreal forests. Climatic Change, 38: 1–13.CrossRefGoogle Scholar
Stohl, A., 2006, Characteristics of atmospheric transport into the Arctic troposphere. Journal of Geophysical Research-Atmospheres, 111: D11306.CrossRefGoogle Scholar
Stone, R., 2007: A world without corals?Science, 316 (5825): 678–681.CrossRefGoogle ScholarPubMed
Stroeve, J., M., Serreze, S., Drobot, S., Gearheard, M., Holland, J., Maslanik, W., Meier, and T., Scambos, 2008: Arctic sea ice extent plummets in 2007. EOS Transactions of the American Geophysical Union, 89: 13–14.CrossRefGoogle Scholar
Svensson, R., and M., Wigren-Svensson, 1992: Effects of cooling water discharge on the vegetation in the Forsmark Biotest Basin, Sweden. Aquatic Botany, 42 (2): 121–141.CrossRefGoogle Scholar
Teixeira, T., L., Neves, and F., Araújo, 2009: Effects of a nuclear power plant thermal discharge on habitat complexity and fish community structure in Ilha Grande Bay, Brazil. Marine Environmental Research, 68 (4): 188–195.CrossRefGoogle ScholarPubMed
Titus, J. G., 2005: Sea-level rise effect. Encyclopaedia of Coastal Science. M. L., Schwartz (ed.), Springer, Dordrecht, pp. 838–846.Google Scholar
Tong, D., et al., 2007: The use of air quality forecasts to assess impacts of air pollution on crops: methodology and case study. Atmospheric Environment, 41: 8772–8784.CrossRefGoogle Scholar
Toth, F., 2003: Climatic policy in light of climate science: The iclips project. Climatic Change, 56: 7–36.Google Scholar
Tsunehiko, O., F., Norio, L., Hu, H., Hiroshi, S., Hiroyuki, S., Massahi, and S., Katsunori, 2001: Quality control and its constraints during the preparatory-phase activities of the acid deposition monitoring network in East Asia. Water, Soil and Air Pollution, 131: 1613–1618.Google Scholar
Turner, J., S. R., Colwell, G. J., Marshall, T. A., Lachlan-Cope, A. M., Carleton, P. D., Jones, V., Lagun, P. A., Reid, and S., Lagovkina, 2005: Antarctic climate change during the last 50 years. International Journal of Climatology, 25: 279–294.CrossRefGoogle Scholar
,UN, 2008: World Population Prospects, the 2008 revision. United Nations Department of Economic and Social Affairs. esa.un.org/unpd/wpp2008/index.htm (accessed 10 June 2011).Google Scholar
,UN, 2011: National Accounts database. United Nations Department of Economic and Social Affairsunstats.un.org/unsd/snaama/introduction.asp (accessed 9 September 2010).Google Scholar
,UNDP, 2000: World Energy Assessment: Energy and the Challenge of Sustainability. UNDP, New York.Google Scholar
,UNECE, 2004: 25 Years of the Convention on Long-Range Transboundary Air Pollution. United Nations Economic Commission for Europe (UNECE), New York.Google Scholar
,UNECE 2007: Strategies and Policies for Air Pollution Abatement. 2006 Review prepared under The Convention on Long-range Transboundary Air Pollution. United Nations Economic Commission for Europe (UNECE), Geneva.Google Scholar
,UNECE Task Force on Hemispheric Transport of Air Pollution, 2007: Hemispheric Transport of Air Pollution 2007, Air pollution studies No. 16. United Nations Economic Commission for Europe (UNECE), Geneva.Google Scholar
,UNEP, 2006: Report on Atmosphere and Air Pollution. Africa Regional Implementation Review for the 14th Session of the Commission on Sustainable Development (CDS-14). United Nations Environmental Programme (UNEP), Nairobi.Google Scholar
,UNEP/GRID-Arendal, 2005: Climate change vulnerability in Africa. In UNEP/GRID-Arendal Maps and Graphics Library. maps.grida.no/go/graphic/climate_change_vulnerability_in_africa (accessed 22 July 2011).Google Scholar
,UNFCCC, 1992: United Nations Framework Convention on Climate Change. FCCC/INFORMAL/84. United Nations (UN), New York and Geneva.Google Scholar
,USAID, 2002: USAID response to drought in southern Africa. www.usaid.gov/press/releases/2002/fs020510.html (accessed 12 March 2011).Google Scholar
,USEPA, 2006: Air quality criteria for ozone and related photochemical oxidants (final). US Environmental Protection Agency (US EPA). Washington, DC.Google Scholar
,USEPA 2008. Integrated Science Assessment for Oxides of Nitrogen and Sulfur – Ecological Criteria National (Final Report). National Center for Environmental Assessment, Research Triangle Park, NC. US Environmental Protection Agency (US EPA). EPA/600/R-08/139. cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=201485 (accessed 22 November 2010).Google Scholar
,USEPA 2010a: AirNow web site. US Environmental Protection Agency (US EPA). www.epa.gov/aircompare/compare-trip.htm (accessed 22 November 2010).
,USEPA 2010b: Acid Rain and Related Programs: 2009 Environmental Results. US Environmental Protection Agency (US EPA). Washington, DC. www.epa.gov/airmarkets/progress/ARP09_3.html (accessed 20 November 2010).Google Scholar
,USEPA 2011a: National Ambient Air Quality Standards. US Environmental Protection Agency (US EPA). www.epa.gov/air/criteria.html (accessed 20 November 2011).Google Scholar
,USEPA 2011b: Ozone National Ambient Air Quality Standards: Scope and Methods Plan for Welfare Risk and Exposure Assessment. Office of Air Quality Planning and Standards. US Environmental Protection Agency (US EPA).Google Scholar
,USEPA 2011c: Regulatory Impact Analysis for the Federal Implementation Plans to Reduce Interstate Transport of Fine Particulate Matter and Ozone in 27 States; Correction of SIP Approvals for 22 States. Office of Air and Radiation (US EPA). http://www.epa.gov/crossstaterule/pdfs/FinalRIA.pdf (accessed 20 November 2011).Google Scholar
Ramanathan, V., M., Agrawal, H., Akimoto, M., Auffhammer, H., Autrup, L., Barregard, P., Bonasoni, M., Brauer, B., Brunekreef, G., Carmichael, W.-C., Chang, U. K., Chopra, C. E., Chung, S., Devotta, J., Duffus, L., Emberson, Y., Feng, S., Fuzzi, T., Gordon, A.K., Gosain, S. I., Hasnain, N., Htun, M., Iyngararasan, A., Jayaraman, D., Jiang, Y., Jin, N., Kalra, J., Kim, M. G., Lawrence, S., Mourato, L., Naeher, T., Nakajima, P., Navasumrit, T., Oki, B., Ostro, Trilok S., Panwar, M.R., Rahman, M. V., Ramana, H., Rodhe, M., Ruchirawat, M., Rupakheti, D., Settachan, A. K., Singh, G. St., Helen, P. V., Tan, S.K., Tan, P. H., Viet, J., Vincent, J. Y., Wang, X., Wang, S., Weidemann, D., Yang, S. C., Yoon, J., Zelikoff, Y. H., Zhang, and A., Zhu, 2008: Atmospheric Brown Clouds: Regional Assessment Report with Focus on Asia. Published by the United Nations Environment Programme, Nairobi, Kenya.Google Scholar
Valigura, R. A., R. B., Alexander, M. S., Castro, T. P., Meyers, H. W., Paerl, P. E., Stacy, and R. E., Turner, 2001: Nitrogen Loading in Coastal Water Bodies: An Atmospheric Perspective. American Geophysical Union, Washington, DC.CrossRefGoogle Scholar
van Aardenne, J. A., F. J., Dentener, J. G. J., Olivier, C. G. M. K., Goldewijk, and J., Lelieveld, 2001: A 1 degrees × 1 degrees resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990. Global Biogeochemical Cycles, 15 (4): 909–928.CrossRefGoogle Scholar
van Aardenne, J.A., G. R., Carmichael, H. Hiram, Levy II, D., Streets, and L., Hordijk, 1999. Anthropogenic NOx emissions in Asia in the period 1990–2020. Atmospheric Environment, 33: 633–646.CrossRefGoogle Scholar
van Dingenen, R., F. J., Dentener, F., Raes, M. C., Krol, L. D., Emberson, and J., Cofala, 2009: The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmospheric Environment, 43: 604–618.CrossRefGoogle Scholar
van Tienhoven, A. M., M., Zunckel, L., Emberson, A., Koosailee, and L., Otter, 2006: Preliminary assessment of risk of ozone impacts to maize (Zea mays) in southern Africa. Environmental Pollution, 140: 220–230.CrossRefGoogle Scholar
van Vuuren, D. P., M., den Elzen, P., Lucas, B., Eickhout, B., Strengers, B., van Ruijven, S., Wonink, and R., van Houdt, 2007: Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Climatic Change, 81: 119–159.CrossRefGoogle Scholar
Vanguelova, E. I., S., Benham, R., Pitman, A. J., Moffat, M., Broadmeadow, T., Nisbet, D., Durrant, N., Barsoum, M., Wilkinson, F., Bochereau, T., Hutchings, S., Broadmeadow, P., Crow, P., Taylor, and T. D., Houston, 2010: Chemical fluxes in time through forest ecosystems in the UK-Soil response to pollution recovery. Environmental Pollution, 158 (5): 1857–1869.CrossRefGoogle ScholarPubMed
Velders, G. J. M., S. O., Andersen, J. S., Daniel, D. W., Fahey, and M., McFarland, 2007: in The Montreal Protocol, Celebrating 20 years of environmental progress, D., Kaniaru (ed.), Cameron May, London, UK, pp. 285–290.Google Scholar
Vestreng, V., G., Myhre, H., Fagerli, S., Reis, and L., Tarrason, 2007: Twenty-five years of continuous sulphur dioxide emission reduction in Europe. Atmospheric chemistry and physics, 7 (13): 3663–3681.CrossRefGoogle Scholar
Vestreng, V., L., Ntziachristos, A., Semb, S., Reis, I.S.A., Isaksen, and L., Tarrason, 2009: Evolution of N O x emissions in Europe with focus on road transport control measures. Atmospheric Chemistry and Physics, 9: 1503–1520.CrossRefGoogle Scholar
Vingarzan, R., 2004: A review of surface ozone background levels and trends. Atmospheric Environment, 38: 3431–3442.CrossRefGoogle Scholar
Vitousek, P. M., H. A., Mooney, J., Lubchenco, and J.M., Melillo, 1997: Human domination of Earth's ecosystems. Science, 277: 494–499.CrossRefGoogle Scholar
Vörösmarty, C., M., Meybeck, B., Fekete, K., Sharma, P., Green, and J., Syvitski, 2003: Anthropogenic sediment retention: major global impact from registered river impoundments. Global and Planetary Change, 39 (1–2): 169–190.CrossRefGoogle Scholar
Wafula, E., M., Kinyanjui, L., Nyabola, and E., Tenambergen, 2000: Effect of improved stoves on prevalence of acute respiration infection and conjunctivitis among children and women in a rural community in Kenya. East African Medical Journal, 77 (1): 37–41.Google Scholar
Walker, I. J., and J. V., Barrie, 2006: Geomorphology and sea-level rise on one of Canada's most ‘sensitive’ coasts: northeast Graham Island, British Columbia, Canada. Journal of Coastal Research SI, 39: 220–226.Google Scholar
Wallack, J. S., and V., Ramanathan, 2009: The other Climate Changers: Why black carbon and ozone also matter. Foreign Affairs, 88 (5): 105–113.Google Scholar
Walther, G.-R., S., Beissner and C.A., Burga, 2005: Trends in upward shift of alpine plants. Journal of Vegetation Science, 16, 541–548.CrossRefGoogle Scholar
Wang, X., and D. L., Mauzerall, 2004: Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020. Atmospheric Environment, 38: 4383–4402.CrossRefGoogle Scholar
Wei, Wei., Wang, S., Chatani, S., Klimont, Z., Cofala, J., Hao, J., 2008: Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China. Atmospheric Environment 42 (20): 4976–4988CrossRefGoogle Scholar
,WGBU (German Advisory Council on Global Change), 2009: Solving the Climate Dilemma: The Budget Approach, WGBU, Berlin, Germany.Google Scholar
White, A., M. G. R., Cannel, and A. D., Friend, 2000: The high-latitude terrestrial carbon sink: a model analysis. Global Change Biology, 6: 227–246.CrossRefGoogle Scholar
,WHO, 2002: Addressing the links between indoor air pollution, household energy and human health. World Health Organization (WHO), Switzerland.Google Scholar
,WHO 2006a: Air quality guidelines: global update 2005, particulate matter, ozone, nitrogen dioxide and sulphur dioxide. World Health Organization (WHO) Regional Office for Europe: Copenhagen, Denmark.Google Scholar
,WHO 2006b: Health risks of particulate matter from long-range transboundary air pollution. European Centre for Environment and Health, Report E88189, World Health Organization (WHO), Switzerland.Google Scholar
Wilkinson, C. R. (ed.), 2000: Global Coral Reef Monitoring Network: Status of Coral Reefs of the World in 2000. Townsville, Queensland: Australian Institute of Marine Science.
Wise, M., A., Calvin, A., Thomson, L., Clarke, B., Bond-Lamberty, R., Sands, S. J., Smith, A., Janetos, and J., Edmonds, 2009: Implications of limiting CO2 concetrations for land use and energy. Science, 324: 1183–1186.CrossRefGoogle Scholar
,World Commisssion on Dams, 2000: Dams and development: a new framework for decision-making. Report of the World Commission on Dams, London: Earthscan.Google Scholar
,World Resources Institute (WRI), United Nations Development Programme, United Nations Environment Programme, and World Bank, 2008. World Resources 2008: Roots of Resilience – Growing the Wealth of the Poor. Washington, DC.Google Scholar
,World Bank, 2007: Cost of pollution in China: Economic estimates of physical damages. The World Bank, State Environmental Protection Administration. P.R.China. www.worldbank.org/eapenvironment (accessed 20 February 2011).Google Scholar
,World Bank Group, 2009: Directions in hydropower. The World Bank, Washington, DC.Google Scholar
,World Water Assessment Programme, 2009: The United Nations World Water Development Report 3: Water in a Changing World. United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris, and Earthscan, London.Google Scholar
,WWF, 2005: An overview of glaciers, glacier retreat, and subsequent impacts in Nepal, India and China. World Wildlife Fund (WWF), Nepal Programme.Google Scholar
Xu-Ri, , and I., Prentice, 2008: Terrestrial nitrogen cycle simulation with a dynamic global vegetation model. Global Change Biology, 14 (8): 1745–1764.CrossRefGoogle Scholar
Yi-Li, C., Y., Hsiao-Hui, and L., Hsing-Juh, 2009: Effects of a thermal discharge from a nuclear power plant on phytoplankton and periphyton in subtropical coastal waters. Journal of Sea Research, 61 (4): 197–205.Google Scholar
Zalasiewicz, J., M., Williams, W., Steffen, and P., Crutzen, 2010: The new world of the Anthropocene. Environmental Science & Technology, 44: 2228–2231.Google ScholarPubMed
Zhang, Q., D. G., Streets, G.R., Carmichael, K., He, H., Huo, H., , A., Kannari, Z., Klimont, I. S., Park, S., Reddy, J. S., Fu, D., Chen, L., Duan, Y., Lei, L. T., Wang, and Z. L., Yao, 2009: Asian emissions in 2006 for the NASA INTEX-B mission. Atmospheric Chemistry and Physics, 9: 5131–5153.CrossRefGoogle Scholar
Zhang, Q., D., Streets, K., He, Y., Wang, A, Richter, J., Burrows, I., Uno, C., Jang, D., Chen, Z., Yao, and Y., Lei, 2007: NOx emission trends for China, 1995–2004: The view from the ground and the view from space. Journal of Geophysical Research, 112 (D22306).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×