Skip to main content Accessibility help
Grassmannian Geometry of Scattering Amplitudes
  • Cited by 135

Book description

Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the broader fields of mathematical physics.


‘This book describes the interesting mathematical structures behind scattering amplitudes, which have led to important simplifications for explicit computations. A must-read for people interested in this active and fast-moving field.’

Juan Maldacena - Institute for Advanced Study, Princeton

‘In the continuing revolution in our understanding of scattering amplitudes in gauge theories, the emerging importance of Grassmannian geometry has been a considerable surprise. The consequences would have astonished the pioneers of quantum theory. This wonderful book, written by six of the field’s leading pioneers, presents the new developments so clearly and eloquently that it will enable everyone with a basic knowledge of field theory to enter this hugely exciting branch of theoretical physics. Warmly recommended.’

Graham Farmelo - University of Cambridge

‘This book is the 'Diagrammar' of the twenty-first century. Just as Gerard 't Hooft and Martinus Veltman laid out in 1973 the then-new calculus of Feynman diagrams for scattering processes in non-abelian gauge theories, so now have Nima Arkani-Hamed and his co-authors set forth a new perspective on scattering amplitudes, which leads away from locality and unitarity toward other principles, and they have provided a detailed and elegantly illustrated how-to manual for the practitioner.’

Lance Dixon - Stanford University

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.


  • 2 - Introduction to on-shell functions and diagrams
    pp 5-28
[1] N., Arkani-Hamed, J. L., Bourjaily, F., Cachazo, A. B., Goncharov, A., Postnikov, et al., “Scattering Amplitudes and the Positive Grassmannian,” arXiv:1212.5605 [hep-th].
[2] S., Weinberg, The Quantum Theory of Fields. Vol. 1: Foundations. Cambridge University Press, 1995.
[3] N., Seiberg and E., Witten, “Electric-Magnetic Duality, Monopole Condensation, and Confinement in N =2 Supersymmetric Yang–Mills Theory,” Nucl. Phys. B426 (1994) 19–52, arXiv:hep-th/9407087.
[4] N., Seiberg, “Electric-Magnetic Duality in Supersymmetric non-Abelian Gauge Theories,” Nucl. Phys. B435 (1995) 129–146, arXiv:hep-th/9411149.
[5] A., Kapustin and E., Witten, “Electric-Magnetic Duality And The Geometric Langlands Program,” Commun. Num. Theor. Phys. 1 (2007) 1–236, arXiv:hep-th/0604151.
[6] J. M., Maldacena, “The Large-N Limit of Superconformal Field Theories and Supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231–252, arXiv:hep-th/9711200.
[7] M. L., Mangano and S. J., Parke, “Multiparton Amplitudes in Gauge Theories,” Phys. Rept. 200 (1991) 301–367, arXiv:hep-th/0509223.
[8] L. J., Dixon, “Calculating Scattering Amplitudes Efficiently,” arXiv:hep-ph/9601359.
[9] F., Cachazo and P., Svrcek, “Lectures on Twistor Strings and Perturbative Yang–Mills Theory,” PoS RTN2005 (2005) 004, arXiv:hep-th/0504194.
[10] Z., Bern, L. J., Dixon, and D. A., Kosower, “On-Shell Methods in Perturbative QCD,” Annals Phys. 322 (2007) 1587–1634, arXiv:0704.2798 [hep-ph].
[11] B., Feng and M., Luo, “An Introduction to On-Shell Recursion Relations,” Front. Phys. 5, 7 (2011) 533–575, arXiv:1111.5759 [hep-th].
[12] R., Roiban, M., Spradlin, and A., Volovich, “Scattering Amplitudes in Gauge Theories: Progress and Outlook,” J. Phys. A44 (2011) no. 45, 1.
[13] N., Beisert, C., Ahn, L. F., Alday, Z., Bajnok, J. M., Drummond, et al., “Review of AdS/CFT Integrability: An Overview,” Lett. Math. Phys. 99 (2012) 3–32, arXiv:1012.3982 [hep-th].
[14] N., Arkani-Hamed, J. L., Bourjaily, F., Cachazo, S., Caron-Huot, and J., Trnka, “The All-Loop Integrand For Scattering Amplitudes in Planar N =4 SYM,” JHEP 1101 (2011) 041, arXiv:1008.2958 [hep-th].
[15] N., Arkani-Hamed, F., Cachazo, C., Cheung, and J., Kaplan, “A Duality For The S-Matrix,” JHEP 1003 (2010) 020, arXiv:0907.5418 [hep-th].
[16] L., Mason and D., Skinner, “Dual Superconformal Invariance, Momentum Twistors and Grassmannians,” JHEP 0911 (2009) 045, arXiv:0909.0250 [hep-th].
[17] N., Arkani-Hamed, F., Cachazo, and C., Cheung, “The Grassmannian Origin Of Dual Superconformal Invariance,” JHEP 1003 (2010) 036, arXiv:0909.0483 [hep-th].
[18] J. L., Bourjaily, J., Trnka, A., Volovich, and C., Wen, “The Grassmannian and the Twistor String: Connecting All Trees in N =4 SYM,” JHEP 1101 (2011) 038, arXiv:1006.1899 [hep-th].
[19] J., Drummond, “Review of AdS/CFT Integrability, Chapter V.2: Dual Superconformal Symmetry,” Lett. Math. Phys. 99 (2012) 481–505, arXiv:1012.4002 [hep-th].
[20] A. B., Goncharov, “A Simple Construction of Grassmannian Polylogarithms,” Adv. Math. (April, 2013), arXiv:0908.2238 [math.AG].
[21] A. B., Goncharov, M., Spradlin, C., Vergu, and A., Volovich, “Classical Polylogarithms for Amplitudes and Wilson Loops,” Phys. Rev. Lett. 105 (2010) 151605, arXiv:1006.5703 [hep-th].
[22] S., Caron-Huot, “Superconformal Symmetry and Two-Loop Amplitudes in Planar N =4 Super Yang–Mills,” JHEP 1112 (2011) 066, arXiv:1105.5606 [hep-th].
[23] L. F., Alday, “Some Analytic Results for Two-Loop Scattering Amplitudes,” JHEP 1107 (2011) 080, arXiv:1009.1110 [hep-th].
[24] L. J., Dixon, J. M., Drummond, and J. M., Henn, “Bootstrapping the Three-Loop Hexagon,JHEP 1111 (2011) 023, arXiv:1108.4461 [hep-th].
[25] P., Heslop and V. V., Khoze, “Wilson Loops@3-Loops in Special Kinematics,” JHEP 1111 (2011) 152, arXiv:1109.0058 [hep-th].
[26] L. J., Dixon, J. M., Drummond, and J. M., Henn, “Analytic Result for the Two-Loop Six-Point NMHV Amplitude in N=4 Super Yang–Mills Theory,” JHEP 1201 (2012) 024, arXiv:1111.1704 [hep-th].
[27] J. L., Bourjaily, A., DiRe, A., Shaikh, M., Spradlin, and A., Volovich, “The Soft-Collinear Bootstrap: N = 4 Yang–Mills Amplitudes at Six and Seven Loops,” JHEP 1203 (2012) 032, arXiv:1112.6432 [hep-th].
[28] B., Eden, P., Heslop, G. P., Korchemsky, and E., Sokatchev, “Constructing the Correlation Function of Four Stress-Tensor Multiplets and the Four-Particle Amplitude in N =4 SYM,” Nucl. Phys. B862 (2012) 450–503, arXiv:1201.5329 [hep-th].
[29] S., Caron-Huot and S., He, “Jumpstarting the All-Loop S-Matrix of Planar N=4 Super Yang–Mills,” JHEP 1207 (2012) 174, arXiv:1112.1060 [hep-th].
[30] A., Sever, P., Vieira, and T., Wang, “OPE for Super Loops,” JHEP 1111 (2011) 051, arXiv:1108.1575 [hep-th].
[31] A., Sever, P., Vieira, and T., Wang, “From Polygon Wilson Loops to Spin Chains and Back,” JHEP 1212 (2012) 065, arXiv:1208.0841 [hep-th].
[32] N., Gromov, V., Kazakov, and P., Vieira, “Exact Spectrum of Anomalous Dimensions of Planar N =4 Supersymmetric Yang–Mills Theory,” Phys. Rev. Lett. 103 (2009) 131601, arXiv:0901.3753 [hep-th].
[33] G., Lusztig, “Total Positivity in Partial Flag Manifolds,” Representation Theory 2 (1998) 70–78.
[34] G., Lusztig, “Total Positivity in Reductive Groups,” in Lie Theory and Geometry, In Honor of B. Kostant, vol. 123 of Prog. in Math., pp. 531–569. Boston: Birkhauser 1994.
[35] S., Fomin and A., Zelevinsky, “Cluster Algebras. I. Foundations,” J. Amer. Math. Soc. 15 (2002) no. 2, 497–529, arXiv:math/0104151.
[36] V. V., Fock and A. B., Goncharov, “Moduli Spaces of Local Systems and Higher Teichmüller Theory,” Publ.Math. IHES (2006) no. 103, 1–212, arXiv:math.AG/0311149.
[37] V. V., Fock and A. B., Goncharov, “Cluster Ensembles, Quantization and the Dilogarithm,” Ann. Sci. L'Ecole Norm. Sup. (2009), arXiv:math.AG/0311245.
[38] V. V., Fock and A. B., Goncharov, “Cluster X-Varieties, Amalgamation and Poisson–Lie Groups,” in Algebraic Geometry and Number Theory, Dedicated to Drinfeld's 50th birthday, pp. 27–68. Boston: Birkhauser 2006. arXiv:math.RT/0508408.
[39] A., Postnikov, “Total Positivity, Grassmannians, and Networks,” arXiv:math/0609764.
[40] A., Knutson, T., Lam, and D., Speyer, “Positroid Varieties: Juggling and Geometry,” Compositio Mathematica 149 (2013) no. 10, 1710–1752, arXiv:1111.3660 [math.AG].
[41] A. B., Goncharov and R., Kenyon, “Dimers and Cluster Integrable Systems,” Ann. Sci. L'Ecole Norm. Sup. 46 (2013) no. 4, 747–813, arXiv:1107.5588 [math.AG].
[42] D., Thurston, “From Dominoes to Hexagons,” arXiv:math/0405482.
[43] F., Gantmacher and M., Krein, “Sur les Matrices Oscillatores,” CR Acad. Sci. Paris 201 (1935).
[44] I. J., Schoenberg, “Über Variationsvermindernde Lineare Transformationen,” Math. Z. 32 (1930) 321–322.
[45] O., Aharony, O., Bergman, D. L., Jafferis, and J., Maldacena, “N =6 Superconformal Chern–Simons Matter Theories, M2-Branes and Their Gravity Duals,” JHEP 0810 (2008) 091, arXiv:0806.1218 [hep-th].
[46] V. V., Fock and A. B., Goncharov, “The Quantum Dilogarithm and Quantisation of Cluster Varieties,” Inventiones Math. 175 (2009) 223–286, arXiv:math.QA/0702397.
[47] M., Kontsevich and Y., Soibelman, “Stability Structures, Motivic Donaldson-Thomas Invariants and Cluster Transformations,” arXiv:0811.2435 [math.AG].
[48] D., Gaiotto, G. W., Moore, and A., Neitzke, “Wall-Crossing in Coupled 2d-4d Systems,” arXiv:1103.2598 [hep-th].
[49] D., Xie, “Network, Cluster Coordinates and N = 2 Theory I,” arXiv:1203.4573 [hep-th].
[50] S., Franco, “Bipartite Field Theories: from D-Brane Probes to Scattering Amplitudes,” JHEP 1211 (2012) 141, arXiv:1207.0807 [hep-th].
[51] D., Xie and M., Yamazaki, “Network and Seiberg Duality,” JHEP 1209 (2012) 036, arXiv:1207.0811 [hep-th].
[52] D., Xie, “Network, Cluster Coordinates and N =2 Theory II: Irregular Singularity,” arXiv:1207.6112 [hep-th].
[53] J. J., Heckman, C., Vafa, D., Xie, and M., Yamazaki, “String Theory Origin of Bipartite SCFTs,” JHEP 1305 (2013) 148, arXiv:1211.4587 [hep-th].
[54] S., Franco, D., Galloni, and R.-K., Seong, “New Directions in Bipartite Field Theories,” JHEP 1306 (2013) 032, arXiv:1211.5139 [hep-th].
[55] Y., Kodama and L., Williams, “KP Solitons, Total Positivity, and Cluster Algebras,” Proc. Natl. Acad. Sci. USA 108 (2011) no. 22, 8984–8989, arXiv:1105.4170 [math.CO].
[56] Y., Kodama and L., Williams, “KP Solitons and Total Positivity for the Grassmannian,” Inventiones Mathematicae (2014) 1–63, arXiv:1106.0023 [math.CO].
[57] Y., Kodama and L., Williams, “A Deodhar Decomposition of the Grassmannian and the Regularity of KP solitons,” arXiv:1204.6446 [math.CO].
[58] V., Pestun, “Localization of Gauge Theory on a Four-Sphere and Supersymmetric Wilson Loops,” Commun. Math. Phys. 313 (2012) 71–129, arXiv:0712.2824 [hep-th].
[59] D., Gaiotto and E., Witten, “S-Duality of Boundary Conditions in N = 4 Super Yang–Mills Theory,” Adv. Theor. Math. Phys. 13 (2009), arXiv:0807.3720 [hep-th].
[60] B. L. van der, Waerden, “Spinoranalyse,” Nach. Ges. Wiss. Göttingen Math.-Phys. 1 (1929) 100–109.
[61] F. A., Berends, R., Kleiss, P. De, Causmaecker, R., Gastmans, and T. T., Wu, “Single Bremsstrahlung Processes in Gauge Theories,” Phys. Lett. B103 (1981) 124.
[62] P. De, Causmaecker, R., Gastmans, W., Troost, and T. T., Wu, “Multiple Bremsstrahlung in Gauge Theories at High Energies. 1. General Formalism for Quantum Electrodynamics,” Nucl. Phys. B206 (1982) 53.
[63] J. F., Gunion and Z., Kunszt, “Improved Analytic Techniques for Tree Graph Calculations and the Ggqq Lepton Anti-Lepton Subprocess,” Phys. Lett. B161 (1985) 333.
[64] R., Kleiss and W. J., Stirling, “Spinor Techniques for Calculating pp?W±Z0 +Jets,” Nucl. Phys. B262 (1985) 235–262.
[65] N., Arkani-Hamed, F., Cachazo, and J., Kaplan, “What is the Simplest Quantum Field Theory?,” JHEP 1009 (2010) 016, arXiv:0808.1446 [hep-th].
[66] P., Griffiths and J., Harris, Principles of Algebraic Geometry. Wiley Classics Library. New York, John Wiley & Sons Inc., 1978.
[67] R. J., Eden, P. V., Landshoff, D. I., Olive, and J. C., Polkinghorne, The Analytic S-Matrix. Cambridge University Press, 1966.
[68] P., Benincasa and F., Cachazo, “Consistency Conditions on the S-Matrix of Massless Particles,” arXiv:0705.4305 [hep-th].
[69] G. 't, Hooft, “A Planar Diagram Theory for Strong Interactions,” Nucl. Phys. B72 (1974) 461.
[70] V. P., Nair, “A Current Algebra for Some Gauge Theory Amplitudes,” Phys. Lett. B214 (1988) 215.
[71] E., Witten, “Perturbative Gauge Theory as a String Theory in Twistor Space,” Commun. Math. Phys. 252 (2004) 189–258, arXiv:hep-th/0312171.
[72] M., Bianchi, H., Elvang, and D. Z., Freedman, “Generating Tree Amplitudes in N =4 SYM and N =8 SG,” JHEP 0809 (2008) 063, arXiv:0805.0757 [hep-th].
[73] J., Drummond, J., Henn, G., Korchemsky, and E., Sokatchev, “Generalized Unitarity for N =4 Super-Amplitudes,” Nucl. Phys. B869 (2013) 452–492, arXiv:0808.0491 [hep-th].
[74] R., Britto, F., Cachazo, and B., Feng, “New Recursion Relations for Tree Amplitudes of Gluons,” Nucl. Phys. B715 (2005) 499–522, arXiv:hep-th/0412308.
[75] R., Britto, F., Cachazo, B., Feng, and E., Witten, “Direct Proof of Tree-Level Recursion Relation in Yang–Mills Theory,” Phys. Rev. Lett. 94 (2005) 181602, arXiv:hep-th/0501052.
[76] Z., Bern, L. J., Dixon, and D. A., Kosower, “On-Shell Recurrence Relations for One-Loop QCD Amplitudes,” Phys. Rev. D71 (2005) 105013, arXiv:hep-th/0501240.
[77] D. C., Dunbar, J. H., Ettle, and W. B., Perkins, “Augmented Recursion For One-loop Amplitudes,” Nucl. Phys. Proc. Suppl. 205-206 (2010) 74–79, arXiv:1011.0559 [hep-th].
[78] R. H., Boels, “On BCFW Shifts of Integrands and Integrals,” JHEP 1011 (2010) 113, arXiv:1008.3101 [hep-th].
[79] S. D., Alston, D. C., Dunbar, and W. B., Perkins, “Complex Factorisation and Recursion for One-Loop Amplitudes,” Phys. Rev. D86 (2012) 085022, arXiv:1208.0190 [hep-th].
[80] R., Britto, F., Cachazo, and B., Feng, “Computing One-Loop Amplitudes from the Holomorphic Anomaly of Unitarity Cuts,” Phys. Rev. D71 (2005) 025012, arXiv:hep-th/0410179.
[81] S., Caron-Huot, “Loops and Trees,” JHEP 1105 (2011) 080, arXiv:1007.3224 [hep-ph].
[82] A. P., Hodges, “Twistor Diagrams for All Tree Amplitudes in Gauge Theory: A Helicity-Independent Formalism,” arXiv:hep-th/0512336.
[83] M. B., Green, J. H., Schwarz, and L., Brink, “N=4 Yang–Mills andN=8 Supergravity as Limits of String Theories,” Nucl. Phys. B198 (1982) 474–492.
[84] C.-N., Yang, “Some Exact Results for the Many Body Problems in One Dimension with Repulsive Delta Function Interaction,” Phys. Rev. Lett. 19 (1967) 1312–1314.
[85] R. J., Baxter, “Partition Function of the Eight Vertex Lattice Model,” Annals Phys. 70 (1972) 193–228.
[86] J., Kaplan, “Unraveling Ln,k: Grassmannian Kinematics,” JHEP 1003 (2010) 025, arXiv:0912.0957 [hep-th].
[87] E. I., Buchbinder and F., Cachazo, “Two-Loop Amplitudes of Gluons and Octa-Cuts in N =4 Super Yang–Mills,” JHEP 0511 (2005) 036, arXiv:hep-th/0506126.
[88] F., Cachazo and D., Skinner, “On the Structure of Scattering Amplitudes in N =4 Super Yang–Mills and N =8 Supergravity,” arXiv:0801.4574 [hep-th].
[89] F., Cachazo, “Sharpening The Leading Singularity,” arXiv:0803.1988 [hep-th].
[90] F., Cachazo, M., Spradlin, and A., Volovich, “Leading Singularities of the Two-Loop Six-Particle MHV Amplitude,” Phys. Rev. D78 (2008) 105022, arXiv:0805.4832 [hep-th].
[91] D. A., Kosower and K. J., Larsen, “Maximal Unitarity at Two Loops,” Phys. Rev. D85 (2012) 045017, arXiv:1108.1180 [hep-th].
[92] S., Caron-Huot and K. J., Larsen, “Uniqueness of Two-Loop Master Contours,” JHEP 1210 (2012) 026, arXiv:1205.0801 [hep-ph].
[93] P., Mastrolia, E., Mirabella, and T., Peraro, “Integrand Reduction of One-Loop Scattering Amplitudes Through Laurent Series Expansion,” JHEP 1206 (2012) 095, arXiv:1203.0291 [hep-ph].
[94] R., Britto, F., Cachazo, and B., Feng, “Generalized Unitarity and One-Loop Amplitudes in N=4 Super-Yang–Mills,” Nucl. Phys. B725 (2005) 275–305, arXiv:hep-th/0412103.
[95] W. L. van, Neerven and J. A. M., Vermaseren, “Large Loop Integrals,” Phys. Lett. B137 (1984) 241.
[96] Z., Bern, L. J., Dixon, D. C., Dunbar, and D. A., Kosower, “One-Loop n-Point Gauge Theory Amplitudes, Unitarity and Collinear Limits,” Nucl. Phys. B425 (1994) 217–260, arXiv:hep-ph/9403226.
[97] Z., Bern, L. J., Dixon, D. C., Dunbar, and D. A., Kosower, “Fusing Gauge Theory Tree Amplitudes into Loop Amplitudes,” Nucl. Phys. B435 (1995) 59–101, arXiv:hep-ph/9409265.
[98] Z., Bern, J., Rozowsky, and B., Yan, “Two-Loop Four-Gluon Amplitudes in N =4 Super Yang–Mills,” Phys. Lett. B401 (1997) 273–282, arXiv:hep-ph/9702424.
[99] Z., Bern, L. J., Dixon, and V. A., Smirnov, “Iteration of Planar Amplitudes in Maximally Supersymmetric Yang–Mills Theory at Three Loops and Beyond,” Phys. Rev. D72 (2005) 085001, arXiv:hep-th/0505205.
[100] Z., Bern, J., Carrasco, H., Johansson, and D., Kosower, “Maximally Supersymmetric Planar Yang–Mills Amplitudes at Five Loops,” Phys. Rev. D76 (2007) 125020, arXiv:0705.1864 [hep-th].
[101] G., Ossola, C. G., Papadopoulos, and R., Pittau, “CutTools: A Program Implementing the OPP Reduction Method to Compute One-Loop Amplitudes,” JHEP 0803 (2008) 042, arXiv:0711.3596 [hep-ph].
[102] I. M., Gelfand, R. M., Goresky, R. D., MacPherson, and V. V., Serganova, “Combinatorial Geometries, Convex Polyhedra, and Schubert Cells,” Adv. in Math. 63 (1987) no. 3, 301–316.
[103] N. E., Mnëv, “The Universality Theorems on the Classification Problem of Configuration Varieties and Convex Polytope Varieties,” in Topology and Geometry—Rohlin Seminar, vol. 1346 of Lecture Notes in Math., pp. 527–543. Springer, Berlin, 1988.
[104] K., Rietsch, “An Algebraic Cell Decomposition of the Nonnegative Part of a Flag Variety,” J. Algebra 213 (1999) no. 1, 144–154, arXiv:alg-geom/9709035.
[105] L. K., Williams, “Shelling Totally Nonnegative Flag Varieties,” J. Reine Angew. Math. 609 (2007) 1–21, arXiv:math/0509129 [math.CO].
[106] L. K., Williams, “Enumeration of Totally Positive Grassmann Cells,” Adv. Math. 190 (2005) no. 2, 319–342, arXiv:math/0307271 [math.CO].
[107] S. J., Parke and T. R., Taylor, “An Amplitude for n-Gluon Scattering,” Phys. Rev. Lett. 56 (1986) 2459.
[108] R., Penrose, “Twistor Algebra,” J. Math. Phys. 8 (1967) 345.
[109] R., Penrose and M. A. H., MacCallum, “Twistor Theory: An Approach to the Quantization of Fields and Space-Time,” Phys. Rept. 6 (1972) 241–316.
[110] R., Penrose, “Twistor Quantization and Curved Space-Time,” Int. J. Theor. Phys. 1 (1968) 61–99.
[111] E. H., Kronheimer and R., Penrose, “On the Structure of Causal Spaces,” Proc. Cambridge Phil. Soc. 63 (1967) 481–501.
[112] R., Penrose, “The Central Programme of Twistor Theory,” Chaos Solitons Fractals 10 (1999) 581–611.
[113] A., Ferber, “Supertwistors and Conformal Supersymmetry,” Nucl. Phys. B132 (1978) 55.
[114] J. M., Drummond, J. M., Henn, and J., Plefka, “Yangian Symmetry of Scattering Amplitudes in N = 4 Super Yang–Mills Theory,” JHEP 05 (2009) 046, arXiv:0902.2987 [hep-th].
[115] J., Drummond and L., Ferro, “The Yangian Origin of the Grassmannian Integral,” JHEP 1012 (2010) 010, arXiv:1002.4622 [hep-th].
[116] J., Drummond and L., Ferro, “Yangians, Grassmannians and T-duality,” JHEP 1007 (2010) 027, arXiv:1001.3348 [hep-th].
[117] N., Beisert, J., Henn, T., McLoughlin, and J., Plefka, “One-Loop Superconformal and Yangian Symmetries of Scattering Amplitudes in N =4 Super Yang–Mills,” JHEP 04 (2010) 085, arXiv:1002.1733 [hep-th].
[118] J., Drummond, J., Henn, V., Smirnov, and E., Sokatchev, “Magic Identities for Conformal Four-Point Integrals,” JHEP 0701 (2007) 064, arXiv:hep-th/0607160.
[119] L. F., Alday and J. M., Maldacena, “Gluon Scattering Amplitudes at Strong Coupling,” JHEP 06 (2007) 064, arXiv:0705.0303 [hep-th].
[120] L. F., Alday and J., Maldacena, “Comments on Gluon Scattering Amplitudes via AdS/CFT,” JHEP 11 (2007) 068, arXiv:0710.1060 [hep-th].
[121] A., Brandhuber, P., Heslop, and G., Travaglini, “MHV Amplitudes in N =4 Super Yang–Mills andWilson Loops,” Nucl. Phys. B794 (2008) 231–243, arXiv:0707.1153 [hep-th].
[122] J. M., Drummond, G. P., Korchemsky, and E., Sokatchev, “Conformal Properties of Four-Gluon Planar Amplitudes and Wilson loops,” Nucl. Phys. B795 (2008) 385–408, arXiv:0707.0243 [hep-th].
[123] J. M., Drummond, J., Henn, G. P., Korchemsky, and E., Sokatchev, “On Planar Gluon Amplitudes/Wilson Loops Duality,” Nucl. Phys. B795 (2008) 52–68, arXiv:0709.2368 [hep-th].
[124] J. M., Drummond, J., Henn, G. P., Korchemsky, and E., Sokatchev, “The Hexagon Wilson Loop and the BDS Ansatz for the Six-Gluon Amplitude,” Phys. Lett. B662 (2008) 456–460, arXiv:0712.4138 [hep-th].
[125] J. M., Drummond, J., Henn, G. P., Korchemsky, and E., Sokatchev, “Hexagon Wilson Loop = Six-Gluon MHV Amplitude,” Nucl. Phys. B815 (2009) 142–173, arXiv:0803.1466 [hep-th].
[126] Z., Bern et al., “The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang–Mills Theory,” Phys. Rev. D78 (2008) 045007, arXiv:0803.1465 [hep-th].
[127] L. F., Alday and J., Maldacena, “Null Polygonal Wilson Loops and Minimal Surfaces in Anti-de-Sitter Space,” JHEP 11 (2009) 082, arXiv:0904.0663 [hep-th].
[128] A., Hodges, “Eliminating Spurious Poles from Gauge-Theoretic Amplitudes,” JHEP 1305 (2013) 135, arXiv:0905.1473 [hep-th].
[129] G., Korchemsky and E., Sokatchev, “Superconformal Invariants for Scattering Amplitudes in N =4 SYM Theory,” Nucl. Phys. B839 (2010) 377–419, arXiv:1002.4625 [hep-th].
[130] J., Drummond, J., Henn, G., Korchemsky, and E., Sokatchev, “Dual Superconformal Symmetry of Scattering Amplitudes in N=4 Super Yang–Mills Theory,” Nucl. Phys.B828 (2010) 317–374, arXiv:0807.1095 [hep-th].
[131] N., Arkani-Hamed, J., Bourjaily, F., Cachazo, and J., Trnka, “Unification of Residues and Grassmannian Dualities,” JHEP 1101 (2011) 049, arXiv:0912.4912 [hep-th].
[132] N., Arkani-Hamed, J., Bourjaily, F., Cachazo, and J., Trnka, “Local Spacetime Physics from the Grassmannian,” JHEP 1101 (2011) 108, arXiv:0912.3249 [hep-th].
[133] M., Bullimore, L., Mason, and D., Skinner, “Twistor-Strings, Grassmannians and Leading Singularities,” JHEP 1003 (2010) 070, arXiv:0912.0539 [hep-th].
[134] S. K., Ashok and E. Dell, Aquila, “On the Classification of Residues of the Grassmannian,” JHEP 1110 (2011) 097, arXiv:1012.5094 [hep-th].
[135] M., Staudacher, “Review of AdS/CFT Integrability, Chapter III.1: Bethe Ansätze and the R-Matrix Formalism,” Lett. Math. Phys. 99 (2012) 191–208, arXiv:1012.3990 [hep-th].
[136] M. S., Bianchi, M., Leoni, and S., Penati, “An All Order Identity between ABJM and N =4 SYM Four-Point Amplitudes,” JHEP 1204 (2012) 045, arXiv:1112.3649 [hep-th].
[137] M. S., Bianchi, M., Leoni, A., Mauri, S., Penati, and A., Santambrogio, “Scattering Amplitudes/Wilson Loop Duality In ABJM Theory,” JHEP 1201 (2012) 056, arXiv:1107.3139 [hep-th].
[138] M. S., Bianchi, M., Leoni, A., Mauri, S., Penati, and A., Santambrogio, “Scattering in ABJ theories,” JHEP 1112 (2011) 073, arXiv:1110.0738 [hep-th].
[139] M. S.|Bianchi, M.|Leoni, A.|Mauri, S.|Penati, and A.|Santambrogio, “One Loop Amplitudes In ABJM,” JHEP 1207 (2012) 029, arXiv:1204.4407 [hep-th].
[140] T., Bargheer, F., Loebbert, and C., Meneghelli, “Symmetries of Tree-Level Scattering Amplitudes in N=6 Superconformal Chern–Simons Theory,” Phys. Rev. D82 (2010) 045016, arXiv:1003.6120 [hep-th].
[141] S., Lee, “Yangian Invariant Scattering Amplitudes in Supersymmetric Chern–Simons Theory,” Phys. Rev. Lett. 105 (2010) 151603, arXiv:1007.4772 [hep-th].
[142] Y.-t., Huang and A. E., Lipstein, “Dual Superconformal Symmetry of N = 6 Chern–Simons Theory,” JHEP 1011 (2010) 076, arXiv:1008.0041 [hep-th].
[143] D., Gang, Y.-t., Huang, E., Koh, S., Lee, and A. E., Lipstein, “Tree-level Recursion Relation and Dual Superconformal Symmetry of the ABJM Theory,” JHEP 1103 (2011) 116, arXiv:1012.5032 [hep-th].
[144] A., Agarwal, N., Beisert, and T., McLoughlin, “Scattering in Mass-Deformed N =4 Chern–Simons Models,” JHEP 0906 (2009) 045, arXiv:0812.3367 [hep-th].
[145] T., Bargheer, N., Beisert, F., Loebbert, T., McLoughlin, N., Beisert, et al., “Conformal Anomaly for Amplitudes in N =6 Superconformal Chern–Simons Theory,” J. Phys. A45 (2012) 475402, arXiv:1204.4406 [hep-th].
[146] A., Brandhuber, G., Travaglini, and C., Wen, “A Note on Amplitudes in N = 6 Superconformal Chern–Simons Theory,” JHEP 1207 (2012) 160, arXiv:1205.6705 [hep-th].
[147] A., Brandhuber, G., Travaglini, and C., Wen, “All One-Loop Amplitudes in N =6 Superconformal Chern–Simons Theory,” JHEP 1210 (2012) 145, arXiv:1207.6908 [hep-th].
[148] M., Kontsevich, “Deformation Quantization of Poisson Manifolds,” Lett. Math. Phys. 66 (2003) no. 3, 157–216, arXiv:q-alg/9709040.
[149] S., Caron-Huot, “Notes on the Scattering Amplitude / Wilson Loop Duality,” JHEP 1107 (2011) 058, arXiv:1010.1167 [hep-th].
[150] L., Mason and D., Skinner, “The Complete Planar S-Matrix of N=4 SYM as aWilson Loop in Twistor Space,” JHEP 12 (2010) 018, arXiv:1009.2225 [hep-th].
[151] M., Bullimore and D., Skinner, “Holomorphic Linking, Loop Equations and Scattering Amplitudes in Twistor Space,” arXiv:1101.1329 [hep-th].
[152] L. F., Alday, B., Eden, G. P., Korchemsky, J., Maldacena, and E., Sokatchev, “From Correlation Functions to Wilson Loops,” JHEP 1109 (2011) 123, arXiv:1007.3243 [hep-th].
[153] B., Eden, G. P., Korchemsky, and E., Sokatchev, “From Correlation Functions to Scattering Amplitudes,” JHEP 1112 (2011) 002, arXiv:1007.3246 [hep-th].
[154] B., Eden, G. P., Korchemsky, and E., Sokatchev, “More on the Duality Correlators/ Amplitudes,” Phys. Lett. B709 (2012) 247–253, arXiv:1009.2488 [hep-th].
[155] B., Eden, P., Heslop, G. P., Korchemsky, and E., Sokatchev, “The Super-Correlator/ Super-Amplitude Duality: Part I,” Nucl. Phys. B869 (2013) 329–377, arXiv:1103.3714 [hep-th].
[156] B., Eden, P., Heslop, G. P., Korchemsky, and E., Sokatchev, “The Super-Correlator/ Super-Amplitude Duality: Part II,” Nucl. Phys. B869 (2013) 378–416, arXiv:1103.4353 [hep-th].
[157] P. C., Schuster and N., Toro, “Constructing the Tree-Level Yang–Mills S-Matrix Using Complex Factorization,” JHEP0906 (2009) 079, arXiv:0811.3207 [hep-th].
[158] S., He and H.-b., Zhang, “Consistency Conditions on S-Matrix of Spin 1 Massless Particles,” JHEP 1007 (2010) 015, arXiv:0811.3210 [hep-th].
[159] J. M., Drummond and J. M., Henn, “All Tree-Level Amplitudes in N=4 SYM,” JHEP04 (2009) 018, arXiv:0808.2475 [hep-th].
[160] J. L., Bourjaily, “Efficient Tree-Amplitudes in N =4: Automatic BCFW Recursion in MATHEMATICA,” arXiv:1011.2447 [hep-ph].
[161] N., Arkani-Hamed, F., Cachazo, C., Cheung, and J., Kaplan, “The S-Matrix in Twistor Space,” JHEP 1003 (2010) 110, arXiv:0903.2110 [hep-th].
[162] Z., Bern, “String Based Perturbative Methods for Gauge Theories,” arXiv:hep-ph/9304249.
[163] Z., Bern and A., Morgan, “Supersymmetry Relations Between Contributions to One-Loop Gauge Boson Amplitudes,” Phys. Rev. D49 (1994) 6155–6163, arXiv:hepph/ 9312218.
[164] A., Kotikov and L., Lipatov, “DGLAP and BFKL Equations in the N =4 Supersymmetric Gauge Theory,” Nucl. Phys. B661 (2003) 19–61, arXiv:hep-ph/0208220.
[165] N., Arkani-Hamed, J. L., Bourjaily, F., Cachazo, and J., Trnka, “Local Integrals for Planar Scattering Amplitudes,” JHEP 1206 (2012) 125, arXiv:1012.6032 [hep-th].
[166] A., Brandhuber, O., Gurdogan, R.|Mooney, G., Travaglini, and G., Yang, “Harmony of Super Form Factors,” JHEP 1110 (2011) 046, arXiv:1107.5067 [hep-th].
[167] L. F., Alday, D., Gaiotto, and Y., Tachikawa, “Liouville Correlation Functions from Four-Dimensional Gauge Theories,” Lett. Math. Phys. 91 (2010) 167–197, arXiv:0906.3219 [hep-th].
[168] L. F., Alday, “Review of AdS/CFT Integrability, Chapter V.3: Scattering Amplitudes at Strong Coupling,” Lett. Math. Phys. 99 (2012) 507–528, arXiv:1012.4003 [hep-th].
[169] N., Arkani-Hamed, A. G., Cohen, D. B., Kaplan, A., Karch, and L., Motl, “Deconstructing (2,0) and Little String Theories,” JHEP 0301 (2003) 083, arXiv:hep-th/0110146.
[170] C., Cheung and D., O'Connell, “Amplitudes and Spinor-Helicity in Six Dimensions,” JHEP 0907 (2009) 075, arXiv:0902.0981 [hep-th].
[171] We thank Yu-tin Huang for discussions on this point.
[172] N., Arkani-Hamed, J. L., Bourjaily, F., Cachazo, A., Hodges, and J., Trnka, “A Note on Polytopes for Scattering Amplitudes,” JHEP 1204 (2012) 081, arXiv:1012.6030 [hep-th].


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.