Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T22:00:42.418Z Has data issue: false hasContentIssue false

6 - Quantum chaos and vectorial interactions

Published online by Cambridge University Press:  13 August 2009

H. M. Fried
Affiliation:
Brown University, Rhode Island
Get access

Summary

The possibility of quantum chaos for vectorial interactions is here described in some detail, along with its apparent suppression when the radiative corrections of quantum field theory (quantum fluctuations of the classical, “external” electromagnetic field) are introduced. Based on these quantum-mechanical ideas, an application is made to classical-chaotic systems, of perhaps the simplest form – a forced Duffing model, without damping – where it is found that the chaos is first suppressed and then (apparently) removed by introducing couplings to random and/or chaotic sources. This may be characterized as “quantum mechanics with ħ ∼ 1”, and suggests a brute-force method by which the chaos of a classical system may be at least diminished. A similar effect is noted for a different classical system that displays chaos – a pair of coupled oscillators – independently of any external forcing.

First-quantization chaos

The reader is now asked to return to the Gc[A] representations for vectorial interactions of the previous chapter; for simplicity, the arguments of this chapter are presented only for QED in a relativistic context, but have obvious generalizations to non-relativistic QED, and to relativistic QCD.

The map (5.31) defines the quantity Ωμ(s′), which is needed for the explicit solution of (5.33). It is the existence of such a map which carries with it the inescapable possibility of chaotic behavior, at least in the present context of vectorial interactions in potential theory. The analysis used here is given directly in terms of proper time τ, of which xμ(τ) is a function.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×