Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T14:53:37.830Z Has data issue: false hasContentIssue false

23 - The role of color in the voluntary and involuntary guidance of selective attention

from Part VII - Color effects on psychological and biological functioning

Published online by Cambridge University Press:  05 April 2016

Andrew J. Elliot
Affiliation:
University of Rochester, New York
Mark D. Fairchild
Affiliation:
Rochester Institute of Technology, New York
Anna Franklin
Affiliation:
University of Sussex
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, B. A., and Folk, C. L. (2010). Variations in the magnitude of attentional capture: testing a two-process account. Attention, Perception & Psychophysics, 72, 342–52.Google Scholar
Anderson, B. A., Laurent, P. A., and Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences of the United States of America, 108, 10367–71.Google ScholarPubMed
Anderson, B. A., Laurent, P. A., and Yantis, S. (2012). Generalization of value-based attentional priority. Visual Cognition, 20, 647–58.CrossRefGoogle ScholarPubMed
Anderson, B. A., and Yantis, S. (2012). Value-driven attentional and oculomotor capture during goal-directed, naturalistic viewing. Attention, Perception & Psychophysics, 74, 1644–53.CrossRefGoogle Scholar
Anderson, B. A., and Yantis, S. (2013). Persistence of value-driven attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 39, 69.Google ScholarPubMed
Bacon, W. F., and Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55, 485–96.CrossRefGoogle ScholarPubMed
Bauer, B., Jolicoeur, P., and Cowan, W. B. (1996). Visual search for colour targets that are or are not linearly separable from distractors. Vision Research, 36, 1439–66.CrossRefGoogle Scholar
Becker, S. I. (2010). The role of target–distractor relationships in guiding attention and the eyes in visual search. Journal of Experimental Psychology: General, 139, 247–65.Google ScholarPubMed
Becker, S. I., Folk, C. L., and Remington, R. W. (2010). The role of relational information in contingent capture. Journal of Experimental Psychology: Human Perception and Performance, 36, 1460–76.Google ScholarPubMed
Becker, S. I., Folk, C. L., and Remington, R. W. (2013). Involuntary attentional capture does not depend on feature similarity, but on target–nontarget relations. Psychological Science, 24, 634–47.CrossRefGoogle Scholar
Boot, W. R., and Brockmole, J. R. (2010). Irrelevant features at fixation modulate saccadic latency and direction in visual search. Visual Cognition, 18, 481–91.CrossRefGoogle Scholar
Boynton, R. (1979). Human Color Vision. New York: Holt, Rinehart and Winston.Google Scholar
Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97, 523–47.CrossRefGoogle ScholarPubMed
Bundesen, C, and Pedersen, L. F. (1983). Color segregation and visual search. Perception & Psychophysics, 33, 487–93.CrossRefGoogle ScholarPubMed
Carter, R. C. (1982). Visual search with color. Journal of Experimental Psychology: Human Perception and Performance, 8, 127–36.Google ScholarPubMed
Changizi, M. A., Zhang, Q., and Shimojo, S. (2006). Bare skin, blood and the evolution of primate colour vision. Biological Letters, 2, 217–21.Google ScholarPubMed
Chun, M. C., Golumb, J. D., and Turke-Brown, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73101.CrossRefGoogle ScholarPubMed
Chun, M. M. (1997). Temporal binding errors are redistributed by the attentional blink. Perception & Psychophysics, 59, 1191–9.CrossRefGoogle ScholarPubMed
Chun, M. M., and Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception and Performance, 21, 109–27.Google ScholarPubMed
Daoutis, C. A., Pilling, M., and Davies, I. R. L. (2006). Categorical effects in visual search for colour. Visual Cognition, 14, 217–40.CrossRefGoogle Scholar
Desimone, R., and Duncan, J. (1995). Neural mechanism of selective visual attention. Annual Review of Neuroscience, 18, 193222.CrossRefGoogle ScholarPubMed
Duncan, J. (1988). Boundary conditions on parallel processing in human vision. Perception, 17, 358.Google Scholar
Duncan, J., and Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–58.CrossRefGoogle ScholarPubMed
D’Zmura, M. (1991). Color in visual search. Vision Research, 31, 951–66.Google ScholarPubMed
Egeth, H., Virzi, R. A., and Garbart, H. (1984). Searching for conjunctively defined targets. Human Perception and Performance, 10, 3239.CrossRefGoogle ScholarPubMed
Elliot, A. J., and Maier, M. A. (2014). Color psychology: effects of perceiving color on psychological functioning in humans. Annual Review of Psychology, 65, 95120.CrossRefGoogle ScholarPubMed
Farmer, E. W., and Taylor, R. M. (1980). Visual search through color displays: effects of target-background similarity and background uniformity. Perception & Psychophysics, 27, 267–72.CrossRefGoogle ScholarPubMed
Fecteau, J. H. (2007). Priming of pop-out depends upon the current goals of observers. Journal of Vision, 7, 111.CrossRefGoogle ScholarPubMed
Folk, C. L., and Anderson, B. A. (2010). Target uncertainty effects in attentional capture: singleton detection mode or multiple attentional control settings? Psychonomic Bulletin & Review, 17, 421–6.CrossRefGoogle ScholarPubMed
Folk, C. L., Ester, E., and Troemel, K. (2009). How to keep attention from straying: get engaged! Psychonomic Bulletin & Review, 16, 127–32.Google ScholarPubMed
Folk, C. L., Leber, A., and Egeth, H. (2008). Top-down control settings and the attentional blink: evidence for non-spatial contingent capture. Visual Cognition, 16, 616–42.Google Scholar
Folk, C. L., and Remington, R. W. (1998). Selectivity in distraction by irrelevant featural singletons: evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24, 847–58.Google ScholarPubMed
Folk, C. L., and Remington, R. W. (2008). Bottom-up priming of top-down attentional control settings. Visual Cognition, 16, 215–31.Google Scholar
Folk, C. L., Remington, R. W., and Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–44.Google ScholarPubMed
Folk, C. L., Remington, R. W., and Johnston, J. C. (1993). Contingent attentional capture: a reply to Yantis (1993). Journal of Experimental Psychology: Human Perception and Performance, 19, 682–5.Google Scholar
Folk, C. L., Remington, R. W., and Wright, J. H. (1994). The structure of attentional control: contingent attentional capture by apparent motion, abrupt onset, and color. Journal of Experimental Psychology: Human Perception and Performance, 20, 317–29.Google ScholarPubMed
Found, A., and Müller, H. J. (1996). Searching for unknown feature targets on more than one dimension: investigating a ‘dimension-weighting’ account. Perception & Psychophysics, 58, 88101.CrossRefGoogle ScholarPubMed
Frey, H. P., Honey, C., and König, P. (2008). What’s color got to do with it? The influence of color on overt visual attention in different categories. Journal of Vision, 8, 117.CrossRefGoogle Scholar
Frey, H. P., Wirz, K., Willenbocke, V., Betz, T., Schreiber, C., Trosciank, T., and König, P. (2011). Beyond correlation: do color features influence attention in rainforest? Frontiers in Human Neuroscience, 5, 36.CrossRefGoogle ScholarPubMed
Gegenfurtner, K. R., and Rieger, J. (2000). Sensory and cognitive contributions of color to the recognition of natural scenes. Current Biology, 10, 805–8.CrossRefGoogle Scholar
Green, B. F., and Anderson, L. K. (1956). Color coding in a visual search task. Journal of Experimental Psychology, 51, 1924.CrossRefGoogle Scholar
Harris, A., Remington, R. W., and Becker, S. (2013). Feature specificity in attentional capture by size and color. Journal of Vision, 13, 12.CrossRefGoogle ScholarPubMed
Hillstrom, A. P. (2000). Repetition effects in visual search. Perception & Psychophysics, 62, 800–17.CrossRefGoogle ScholarPubMed
Horstmann, G. (2002). Evidence for attentional capture by a surprising color singleton in visual search. Psychological Science, 13, 499505.CrossRefGoogle ScholarPubMed
Irons, J. L., Folk, C. L., and Remington, R. W. (2012). All set! Evidence of simultaneous attentional control settings for multiple target colors. Journal of Experimental Psychology: Human Perception and Performance, 38, 758–75.Google ScholarPubMed
Jameson, K. A., and D’Andrade, R. G. (1997). It’s not really red, green, yellow, blue: an inquiry into perceptual color space. In Hardin, C. L. and Maffi, L. (eds.), Color Categories in Thought and Language (pp. 295319). Cambridge University Press.Google Scholar
Jonides, J. (1981). Voluntary vs. automatic control over the mind’s eye’s movement. In Long, J. B. and Baddeley, A. D. (eds.), Attention and Performance IX (pp. 187203). Hillsdale, NJ: Erlbaum.Google Scholar
Koch, C., and Ullman, S. (1985). Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology, 4, 219–27.Google ScholarPubMed
Lamy, D., Leber, A., and Egeth, H. E. (2004). Effects of stimulus-driven salience within feature search mode. Journal of Experimental Psychology: Human Perception and Performance, 30, 1019–31.Google ScholarPubMed
Lennie, P., and D’Zmura, M. (1988). Mechanisms of color vision. Critical Reviews in Neurobiology, 3, 333400.Google ScholarPubMed
Lindsey, D. T., Brown, A. M., Reijnen, E., Rich, A. N., Kuzmove, Y. I., and Wolfe, J. M. (2010). Color channels, not color appearance or color categories guide visual search for desaturated color targets. Psychological Science, 21, 1208–14.CrossRefGoogle ScholarPubMed
Maljkovic, V., and Nakayama, K. (1994). Priming of pop-out. I. Role of features. Memory & Cognition, 22, 657–72.CrossRefGoogle ScholarPubMed
Maljkovic, V., and Nakayama, K. (1996). Priming of pop-out. II. The role of position. Perception & Psychophysics, 58(7), 977–91.CrossRefGoogle ScholarPubMed
Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco, CA: W. H. Freeman.Google Scholar
Mikellides, B. (1990). Color and physiological arousal. Journal of Architectural and Planning Research, 7, 1320.Google Scholar
Moher, J., Lakshmanan, B., Egeth, H., and Ewen, J. (2014). Inhibition drives early feature-based attention. Psychological Science, 25, 315–24.CrossRefGoogle ScholarPubMed
Moore, K. S., and Weissman, D. H. (2010). Involuntary transfer of a top-down attentional set into the focus of attention: evidence from a contingent attentional capture paradigm. Attention, Perception, and Psychophysics, 72, 14951509.CrossRefGoogle ScholarPubMed
Müller, H. J., Reimann, B., and Krummenacher, J. (2003). Visual search for singleton feature targets across dimensions: stimulus- and expectancy-riven effects in dimensional weighting. Journal of Experimental Psychology: Human Perception and Performance, 29, 1021–35.Google ScholarPubMed
Nagy, A. L., and Sanchez, R. R. (1990). Critical color differences determined with a visual search task. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 7, 1209–17.Google ScholarPubMed
Olivers, C., Meijer, F., and Theeuwes, J. (2006). Feature-based memory-driven attentional capture: visual working memory content affects visual attention. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1243–65.Google ScholarPubMed
Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 325.CrossRefGoogle ScholarPubMed
Posner, M. I., and Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542.CrossRefGoogle ScholarPubMed
Prinzmetal, W., Presti, D. E., and Posner, M. I. (1986). Does attention affect visual feature integration? Journal of Experimental Psychology: Human Perception and Performance, 12, 361–9.Google ScholarPubMed
Pylyshyn, Z. (1980). Computation and cognition: issues in the foundation of cognitive science. Behavioral and Brain Sciences, 3, 111–32.CrossRefGoogle Scholar
Raymond, J. E., Shapiro, K. L., and Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: an attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18, 849–60.Google Scholar
Saenz, M. T, Buracas, G. T., and Boynton, G. M. (2002). Global effects of feature-based attention in human visual cortex. Nature Neuroscience, 5, 631–2.CrossRefGoogle ScholarPubMed
Schultz, M. F., and Sanocki, T. (2003). Time course of perceptual grouping by color. Psychological Science, 14, 2630.CrossRefGoogle Scholar
Smallman, H., and Boynton, R. (1990). Segregation of basic colors in an information display. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10, 1985–94.Google Scholar
Sumner, P., and Mollon, J. D. (2000). Catarrhine photopigments are optimized for detecting targets against a foliage background. Journal of Experimental Biology, 203, 1963–86.CrossRefGoogle ScholarPubMed
Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51, 599606.CrossRefGoogle ScholarPubMed
Theeuwes, J. (1994). Stimulus-driven capture and attentional set: selective search for color and visual abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 20, 799806.Google ScholarPubMed
Theeuwes, J. (1995). Perceptual selectivity for color and form: on the nature of the interference effect. In Kramer, A. F., Coles, M. G. H., and Logan, G. D. (eds.), Converging Operations in the Study of Visual Attention (pp. 297314). Washington, DC: American Psychological Association.Google Scholar
Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 123, 7799.CrossRefGoogle Scholar
Treisman, A. (1988). Features and objects: the fourteenth Bartlett Memorial Lecture. Quarterly Journal of Experimental Psychology, 40A, 201–36.Google Scholar
Treisman, A., and Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97136.CrossRefGoogle ScholarPubMed
Treisman, A., and Gormican, S. (1988). Feature analysis in early vision: evidence from search asymmetries. Psychological Review, 95, 1548.CrossRefGoogle ScholarPubMed
Turatto, M., and Galfano, G. (2001). Attentional capture by color without any relevant attentional set. Perception & Psychophysics, 63, 286–97.CrossRefGoogle ScholarPubMed
Wilson, G. D. (1966). Arousal properties of red versus green. Perceptual and Motor Skills, 23, 947–49.CrossRefGoogle Scholar
Wolfe, J. M. (1994). Guided Search 2.0: a revised model of visual search. Psychonomic Bulletin & Review, 1, 202–38.CrossRefGoogle ScholarPubMed
Yantis, S., and Egeth, H. (1999). On the distinction between visual salience and stimulus-driven attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 25, 661–76.Google ScholarPubMed
Yokoi, K., and Uchikawa, K. (2005). Color category influences heterogeneous visual search for color. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 22, 2309–17.CrossRefGoogle ScholarPubMed
Zhang, W., and Luck, S. J. (2009). Feature-based attention modulates feedforward visual processing. Nature Neuroscience, 12, 24–5.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×