Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T09:27:57.569Z Has data issue: false hasContentIssue false

Chapter 2 - Crystals and Crystal Growth

Published online by Cambridge University Press:  14 June 2019

Allan S. Myerson
Affiliation:
Massachusetts Institute of Technology
Deniz Erdemir
Affiliation:
Bristol-Myers Squibb, USA
Alfred Y. Lee
Affiliation:
Merck & Co., Inc
Get access

Summary

Crystallization can be regarded as a self-assembly process in which randomly organized molecules in a fluid come together to form an ordered three-dimensional molecular array with a periodic repeating pattern. It is vital to many processes occurring in nature and manufacturing. Geologic crystallization is responsible from huge deposits of carbonates, sulfates, and phosphates that often grow in mountains and quarries. This process occurs over long periods of time, often at high temperatures and pressures, and results in large and usually highly ordered crystals such as diamond.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aakerőy, C. B., Beatty, A. M., and Helfrich, B. A. Angew. Chem. Int. Ed. 2001; 40:3240.Google Scholar
Abu Bakar, M. R., Nagy, Z. K., and Rielly, C. D. Org. Process Res. Des. 2009; 13:1343.CrossRefGoogle Scholar
Addadi, L., Weinstein, S., Gati, E., Weissbuch, I., and Lahav, M. J. Am. Chem. Soc. 1982; 104:4610.Google Scholar
Addadi, L., Berkovitch-Yellin, Z., Weissbuch, I., Lahav, M., and Leiserowitz, L. Mol Cryst. Liq. Cryst. 1983; 96:1.CrossRefGoogle Scholar
Addadi, L., Berkovitch-Yellin, Z., Weissbuch, I., et al. Angew. Chem. Int. Ed. 1985; 24:466.Google Scholar
Angell, C.A. Proc. Natl. Acad. Sci. USA. 1995; 92:6675.CrossRefGoogle Scholar
Asay, B. W., Henson, B. F., Smilowitz, L. B., and Dickson, P. M. J. Energ. Mater. 2003; 21:223.CrossRefGoogle Scholar
Bauer, J., Spanton, S., Henry, R., et al. Pharm. Res. 2001; 18:859.Google Scholar
Bausch, A., and Leuenberger, H. Int. J. Pharm. 1994; 101:63.Google Scholar
Beck, R., Hakkinen, A., Malthe-Sorenssen, D., and Andreassen, J. P. Sep. Purif. Technol. 2009; 66:549.Google Scholar
Beckmann, W. Org. Process Res. Dev. 2000; 4: 372.Google Scholar
Beckmann, W. Crystallization: Basic Concepts and Industrial Applications. Wiley-VCH, Weinheim, 2013.CrossRefGoogle Scholar
Bennema, P. J. Cryst. Growth, 1969; 5:29.CrossRefGoogle Scholar
Bennema, P., Boon, J., Van Leeuwen, L., and Gilmer, G.H. Krist. U. Technic. 1973; 8:659.Google Scholar
Berglund, K. A., and Larson, M. A. AIChE Symp. Series. 1982; 78:9.Google Scholar
Berglund, K. A., Kaufman, E. L., and Larson, M. A. AIChE J. 1983; 25:876.Google Scholar
Berkovitch-Yellin, Z. J. Am. Chem. Soc. 1985; 107:8239.Google Scholar
Berkovitch-Yellin, Z., Addadi, L., Idelson, M., Lahav, M., and Leiserowitz, L. Angew. Chem. Int. Ed. 1982; 21:1336.Google Scholar
Berkovitch-Yellin, Z., van Mil, J., Addadi, L., et al. J. Am. Chem. Soc. 1985; 107:3111.Google Scholar
Bernstein, J. Polymorphism in Molecular Crystals, Oxford University Press, Oxford, 2002.Google Scholar
Bernstein, J., Davey, R. J., and Henck, J.-O. Angew. Chem. Int. Ed. 1999; 38:3440.3.0.CO;2-#>CrossRefGoogle Scholar
Bertin, E. P. Principles and Practice of X-Ray Spectrometric Analysis. Plenum Press, New York, 1975.Google Scholar
Beyer, T., Day, G. M., and Price, S. L. J. Am. Chem. Soc. 2001; 123:5086.Google Scholar
Billot, P., Hosek, P., and Perrin, M.-A. Org. Process Res. Dev. 2013; 17:505.Google Scholar
Bingham, A. L., Hughes, D. S., Hursthouse, M. B., et al. Chem. Commun. 2001; 603.Google Scholar
Bisker-Leib, V., and Doherty, M. F. Cryst. Growth Des. 2001; 1:455.Google Scholar
Bisker-Leib, V., and Doherty, M. F. Cryst. Growth Des. 2003; 3:221.Google Scholar
Boerrigter, S. X. M., Cuppen, H. M., Ristic, R. I., et al. Cryst. Growth Des. 2002; 2:357.Google Scholar
Boerrigter, S. X. M., Josten, G. P. H., van de Streek, J., et al. J. Phys. Chem A. 2004; 108:5894.Google Scholar
Boistelle, R. In Advances in Nephrology (Grunfeld, J. P., Bach, J. F., Crosnier, J., and Funck-Brentano, J. L. eds.), pp. 173217. Medical Publishers, Chicago, 1986.Google Scholar
Bolla, G., and Nangia, A. Chem. Commun. 2016; 52:8342.CrossRefGoogle Scholar
Bolton, O., Simke, L. R., Pagoria, P. F, and Matzger, A. J. Cryst. Growth Des. 2012; 12:4311.Google Scholar
Botsaris, G. D., and Denk, E. G. Ind. Eng. Chem. Fundam. 1970; 9:276.CrossRefGoogle Scholar
Braga, D., Cojazzi, G., Paolucci, D., and Grepioni, F. Chem. Commun. 2001; 803.Google Scholar
Braga, D., and Grepioni, F. Chem. Commun. 2005; 3635.Google Scholar
Braun, D. E., Bhardwaj, R. M., Florence, A. J., Tocher, D. A., and Price, S. L. Cryst. Growth Des. 2013; 13:19.Google Scholar
Bravais, A. Etudes Crystallographiques. Paris, 1866.Google Scholar
Brick, M. C., Palmer, H. J., and Whitesides, T. H. Langmuir 2003; 19:6367.Google Scholar
Brittain, H. G. Polymorphism in Pharmaceutical Solids (2nd edn). CRC Press, Boca Raton, FL, 2009.Google Scholar
Brunsteiner, M., and Price, S. L. Cryst. Growth Des. 2001; 1:447.Google Scholar
Buckley, H. E. Crystal Growth. Wiley, New York, NY, 1951.Google Scholar
Bunn, C. W. Chemical Crystallography (2nd edn). Oxford University Press, London, 1961.Google Scholar
Burton, W. K., Cabrera, N., and Frank, F. C. Philos. Trans. 1951; A243:299.Google Scholar
Byrn, S. R., Xu, W., and Newman, A. W. Adv. Drug Delivery Rev. 2001; 48:115.Google Scholar
Cardew, P. T., Davey, R. J., and Ruddick, A. J. J. Chem. Soc. Faraday Trans. 1984; 2(80):659.Google Scholar
Carpenter, K. J., and Wood, W. M. L. Adv. Powder Technol. 2004; 15:657.Google Scholar
Carstensen, J. T., and Morris, T. J. Pharm. Sci. 1993; 82:657.Google Scholar
Chanda, M. In Science of Engineering Materials (Chanda, M., ed.). pp. 174236. Palgrave, London, 1979.Google Scholar
Chen, B.-D., Cilliers, J. J., Davey, R. J., Garside, J., and Woodburn, E. T. J. Am. Chem. Soc. 1998; 120:1625.CrossRefGoogle Scholar
Chen, B. D., Garside, J., Davey, R. J., Maginn, S. J., and Matsuoka, M. J. Phys. Chem. 1994; 98:3215.Google Scholar
Chen, X., Morris, K. R., Griesser, U. J., Byrn, S. R., and Stowell, J. G. J. Am. Chem. Soc. 2002; 124:15012.Google Scholar
Chernov, A. A. Soviet Phys. Usp. 1961; 4:116.Google Scholar
Cherukuvada, S., Kaur, R., and Guru Row, T.N. Cryst. Eng. Commun, 2016; 18:8528Google Scholar
Chianese, A, and Kramer, H. J. M. Industrial Crystallization Process Monitoring and Control. Wiley-VCH, Weinheim, 2012.Google Scholar
Chiarella, R. A., Davey, R. J., and Peterson, M. L. Cryst. Growth Des. 2007; 7:1223.Google Scholar
Chikhalia, V., Forbes, R., Storey, R., and Ticehurst, M. Eur. J. Pharm. Sci. 2006; 27:19.Google Scholar
Chiou, W. L., Chen, S.-J., and Athanikar, N. J. Pharm. Sci. 1976; 65:1702.Google Scholar
Chow, A. H. L., and Leung, M. W. M. Drug Dev. Ind. Pharm. 1996; 22:357.Google Scholar
Clontz, N. A., Johnson, A. T., McCabe, W. L., and Rousseau, R. W. Ind. Eng. Chem. Fund. 1972; 11:368.Google Scholar
Clydesdale, G., Roberts, K. J., and Docherty, R. J. Cryst. Growth. 1994a; 135;331.Google Scholar
Clydesdale, G., Roberts, K. J., Lewtas, K., and Docherty, R. J. Cryst. Growth. 1994b; 141:443.Google Scholar
Clydesdale, G., Roberts, K. J., and Lewtas, K. Mol. Cryst. Liq. Cryst. 1994c ; 248:243.Google Scholar
Clydesdale, G., Hammond, R. B., and Roberts, K. J. J. Phys. Chem. B. 2003; 107:4826.Google Scholar
Cobley, C. J., Lennon, I. C., Praquin, C., et al. Org. Process Res. Dev. 2003; 7:407.Google Scholar
Cody, A. M., and Cody, R. D. J. Cryst. Growth. 1991; 113:508.Google Scholar
Cőlfen, H. Macromol. Rapid Commun. 2001; 22:219.Google Scholar
Cőlfen, H., and Qi, L. Chem. Eur. J. 2001; 7:106.Google Scholar
Cőlfen, H., and Antonietti, M. Mesocrystals and Nonclassical Crystallization. Wiley, West Sussex, 2008.Google Scholar
Coombes, D. S., Catlow, C. R. A., Gale, J. D., Hardy, M. J., and Saunders, M. R. J. Pharm. Sci. 2002; 91;1652.Google Scholar
Corrigan, O. I., Sabra, K., and Holohan, E. M. Drug Dev. Ind. Pharm. 1983; 9:1.Google Scholar
Craig, S., and Jones, D. A. (1999). World Patent WO 00/32597.Google Scholar
Cruz-Cabeza, A. J., and Bernstein, J. Chem. Rev. 2014; 114:2170.Google Scholar
Cui, Y., and Yao, E. J. Pharm. Sci. 2008; 97:2730.Google Scholar
Cullity, B. D., and Stock, S. R. Elements of X-Ray Diffraction (3rd edn). Prentice-Hall, New York, NY, 2001.Google Scholar
Dandekar, P., Kuvadia, Z. B., and Doherty, M. F. Annu. Rev. Mater. Res. 2013; 43, 359.Google Scholar
Davey, R.J. J. Cryst. Growth. 1986; 76:637.Google Scholar
Davey, R. J., and Garside, J. From Molecules to Crystallizers. Oxford University Press, Oxford, 2001.Google Scholar
David, W. I. F., and Shankland, K. Acta Cryst. 2008; A64:52.Google Scholar
Dawson, K. J., Kearns, K. L., Ediger, M., Sacchetti, M. J., and Zografi, G. J. Phys. Chem. B. 2009; 113:2422.Google Scholar
Debenedetti, P. G., Tom, J. W., Kwauk, X., and Yeo, S. D. Fluid Phase Equilib. 1993; 82:11.CrossRefGoogle Scholar
Dennehy, R. D. Org. Process Res. Dev. 2003; 7:1002.CrossRefGoogle Scholar
Descamps, M. Disordered Pharmaceutical Materials. Wiley-VCH, Weinheim, 2016a.Google Scholar
Descamps, M. Adv. Drug Delivery Rev. 2016b; 100.Google Scholar
Donnay, J. D. H., and Harker, D. Am. Mineral. 1937; 22:463.Google Scholar
Donth, E.-J. The Glass Transition. Springer-Verlag, Berlin, 2001.Google Scholar
Duggirala, N. K., Perry, M. L., Almarsson, O., and Zaworotko, M. J. Chem. Commun. 2016; 52:640.Google Scholar
Duroudier, J.-P. Crystallization and Crystallizers. ISTE Press – Elsevier, London, 2016.Google Scholar
Eccles, K. S., Deasy, R. E., Fabian, L., Maguire, A. R., and Lawrence, S. E. J. Org. Chem. 2011; 76:1159.Google Scholar
Edgar, R., Schultz, T. M., Rasmussen, F. B., Feidenhans, R., and Leiserowitz, L. J. Am. Chem. Soc. 1999; 121:632.Google Scholar
Ediger, M. D. J. Chem. Phys. 2017; 147:210901.Google Scholar
Elamin, A. A., Sebhatu, T., and Ahlneck, C. Int. J. Pharm. 1995; 119:25.Google Scholar
Erk, P. Curr. Opin. Solid State Mater. Sci. 2001; 5:155.Google Scholar
Etter, M. C., and Adsmond, D. A. Chem. Commun. 1990; 589.Google Scholar
Fairbrother, J. E., and Grant, D. J. W. J. Pharm. Pharmacol. 1978a; 30:19P.Google Scholar
Fairbrother, J. E., and Grant, D. J. W. J. Pharm. Pharmacol. 1978b; 30:27P.Google Scholar
Farnand, J. R., Smith, H. M., and Puddington, I. E. Can. J. Chem. Eng. 1961; 39:94.Google Scholar
Ferrari, E. S., and Davey, R. J. Cryst. Growth Des. 2004; 4:1061.CrossRefGoogle Scholar
Foxman, B. M., Guarrera, D. J., Taylor, L. D., VanEngen, D., and Warner, J. C. Cryst. Eng. 1998; 1:109.Google Scholar
Frank, F. C. Symposium on Crystal Growth: Discussions of the Faraday Society No. 5. Faraday Society, London, 1949.Google Scholar
Garcia-Ruiz, J. M. J. Struct. Biol. 2003; 142:22.Google Scholar
Frey, M., Genovesio-Taverne, J. C., and Fontecilla-Camps, J. C. J. Phys. D Appl. Phys. 1991; 24:101.Google Scholar
Friedel, G. Bull. Soc. Fr. Mineral. 1907; 30:326.Google Scholar
Friscic, T., and Jones, W. J. Pharm. Pharmacol. 2010; 62:1547.Google Scholar
Frizzell, D. WO2013/162725 2013; A1.Google Scholar
Garside, J. Chem. Eng. Sci. 1985; 40:3.Google Scholar
Garside, J., and Ristic, R. I. J. Cryst. Growth. 1983; 61:215.Google Scholar
Garside, J., and Jancic, S. AIChE J. 1976; 11:887.Google Scholar
Garside, J., Gibilaro, L. G., and Tavare, N. S. Chem. Eng. Sci. 1982; 37:1625.Google Scholar
Garside, J., Mullin, J. W., and Das, S. N. Ind. Eng. Chem. Fund. 1974;13, 299.CrossRefGoogle Scholar
Garside, J., Phillips, V. R., and Shah, M. B. Ind. Eng. Chem. Fund. 1976; 15:230.Google Scholar
Garside, J., Van Rosmalen, R., and Bennema, R. J. Cryst. Growth. 1975; 29:353.Google Scholar
Garti, N., and Zour, H. J. Cryst. Growth. 1997; 17:486.Google Scholar
Gatumel, C., Espitalier, F., Schwartzentruber, J., Biscans, B., and Wilhelm, A. M. KONA 1998; 16:160.Google Scholar
Getsoian, A., Lodaya, R. M., and Blackburn, A. C. Int. J. Pharm. 2008; 348:3.Google Scholar
Gilmer, G. A., Ghez, R., and Cabrera, N. J. Cryst. Growth. 1971; 8:79.CrossRefGoogle Scholar
Givand, J. C., Rousseau, R. W., and Ludovice, P. J. J. Cryst. Growth. 1998; 194:228.Google Scholar
Glusker, J. P., and Trueblood, K. N. Crystal Structure Analysis (3rd edn). Oxford University Press, London, 2010.Google Scholar
Gong, Y., Colliman, B. M., Mehrens, S. M., et al. J. Pharm. Sci. 2007; 97:2130.Google Scholar
Gu, C.-H., Young, V. Jr., and Grant, D. J. W. J. Pharm. Sci. 2001;90:1878.Google Scholar
Gu, C.-H., Chatterjee, K., Young, V. Jr., and Grant, D. J. W. J. Cryst. Growth. 2002; 235:471.Google Scholar
Gu, C.-H., Li, H., Gandhi, R. B., and Raghavan, K. Int. J. Pharm. 2004; 283:117.Google Scholar
Guillory, J. In Polymorphism in Pharmaceutical Solids (Brittain, H. G, ed.), pp. 183226, Marcel Dekker, New York, NY, 1999.Google Scholar
Gyuali, O., Szabó-Révész, P., Aigner, P. Cryst. Growth Des. 2017; 17:5233.Google Scholar
Habgood, M. Cryst. Growth Des. 2013; 13:4549.Google Scholar
Haleblian, J. K. J. Pharm. Sci. 1975; 64:1269.Google Scholar
Hancock, B. C., and Parks, M. Pharm. Res. 2000; 17:397.Google Scholar
Harner, R. S. Ressler, R. J., Briggs, R. L, et al. Org. Process Res. Des. 2009; 13:114.Google Scholar
Hartel, R. W. Crystallization in Foods. Springer, Berlin, 2001.Google Scholar
Harter, A., Schenck, L., Lee, I., and Cote, A. Org. Process Res. Dev. 2013; 17:1335.Google Scholar
Hartman, P., and Bennema, P. J. Cryst. Growth. 1980; 49:145.Google Scholar
Hartman, P., and Perdok, W. G. Acta Crystal. 1955; 8:49.Google Scholar
Hilfiker, R. Polymorphism: In the Pharmaceutical Industry. Wiley-VCH, Weinheim, 2006.Google Scholar
Hsi, K. H.-Y., Chadwick, K., Fried, A., Kenny, M., and Myerson, A. S. Cryst. Eng. Commun. 2012; 14:2386.Google Scholar
Horn, D., and Rieger, J. Angew. Chem. Int. Ed. 2001; 40:4330.Google Scholar
Human, H. J., Van Enckerork, W. J. A., and Bennema, P. In Industrial Crystallization 81 (Jancic, S. J., and De Jong, E. J., eds.), p. 387. North Holland, Amsterdam, 1982.Google Scholar
Huttenrauch, R., Fricke, S., and Zielke, P. Pharm. Res. 1985; 6:302.Google Scholar
Inokuma, Y., Yoshioka, S., Ariyoshi, J., et al. Nature. 2013; 495:461.Google Scholar
Irisawa, T. In Crystal Growth Technology, pp. 2554. Springer-Verlag, Berlin, 2003.Google Scholar
James, S. L., Adams, C. J., Bolm, C., et al. Chem. Soc. Rev. 2012; 41:413.Google Scholar
Jiang, C., Wang, Y., Yan, J., et al. Org. Process Res. Dev. 2015; 19:1752.Google Scholar
Johnson, B. K., and Prud’homme, R. K. Aust. J. Chem. 2003; 56:1021.Google Scholar
Jones, A. G. Crystallization Process Systems. Butterworth-Heinemann, Oxford, 2002.Google Scholar
Jones, W., and Eddleston, M. D. Faraday Discuss. 2014; 170:9.Google Scholar
Jung, J., and Perrut, M. J. Supercrit. Fluids. 2001; 20:179.Google Scholar
Kahr, B., and Gurney, R. W. Chem. Rev. 2001; 101:893.Google Scholar
Katz, J. L, Reick, M. R., Herzog, R. E., and Parsiegla, K. I. Langmuir 1993; 9:1423.Google Scholar
Kawashima, Y., Aoki, S., and Takenaka, H. Chem. Pharm. Bull. 1982a; 30:1837.Google Scholar
Kawashima, Y., Okumura, M., and Takenaka, H. Science 1982b; 216:1127.Google Scholar
Kearns, K. L., Swallen, S. F., Ediger, M. D., Wu, T., and Yu, L. J. Chem. Phys. 2007; 127:154702.Google Scholar
Khan, G. M., and Jiabi, Z. Drug. Dev. Ind. Pharm. 1998; 24:463.Google Scholar
Khankari, R. K., and Grant, D. J. W. Thermochim. Acta. 1995; 248:61.Google Scholar
Khoshkhoo, S., and Anwar, J. J. Phys. D Appl. Phys. 1993; 26:B90.Google Scholar
Kim, J. W., Kim, J. K., Kim, H. S., and Koo, K. K. Org. Process Res. Dev. 2011; 15:602.Google Scholar
Kim, S., Lotz, B., Lindrud, M., et al. Org. Process Res. Dev. 2005; 9:894.Google Scholar
Kim, S., Wei, C., and Kiang, S. Org. Process Res. Dev. 2003; 7:997.Google Scholar
Kipp, S., Lacmann, R., Reichelt, M., and Schroder, W. Chem. Eng. Technol. 1996; 19:543.Google Scholar
Kitaigorodsky, A. I. Molecular Crystals and Molecules. Academic Press, New York, NY, 1973.Google Scholar
Kofler, L., and Kofler, A. Thermal Micromethods for the Study of Organic Compounds and Their Mixtures. Wagner, Innsbruck, 1952.Google Scholar
Kozma, D. CRC Handbook of Optical Resolutions via Diastereomeric Salt Formation. CRC Press, Boca Raton, FL, 2001.Google Scholar
Kubota, N., Doki, N., Yokota, M., and Sato, A. Powder Technol. 2001; 121:31.Google Scholar
Lahav, M., and Leiserowitz, L. Chem. Eng. Sci. 2001; 56:2245.Google Scholar
Laudise, R. A. The Growth of Single Crystals. Prentice-Hall, Englewood Cliffs, NJ, 1970.Google Scholar
Lee, A. Y., Erdemir, D., and Myerson, A. S. Annu. Rev. Chem. Biomol. Eng. 2011; 2:259.Google Scholar
Lefever, R.A. >Solid State Materials: Preparation and Properties, vol. 1: Aspects of Crystal Growth. Marcel Dekker, New York, NY, 1971.Google Scholar
Leusen, F. J. J., Noordik, J. H., and Karfunkel, H. R. Tetrahedron 1993; 49:5377.Google Scholar
Levi, A. C., and Kotrla, M. J. Phys. Condens. Matter. 1997; 9:299.Google Scholar
Lewiner, F., Fevotte, G., Klein, J. P., and Puel, F. Ind. Eng. Chem. Res. 2002; 41:1321.Google Scholar
Lewis, A. E., Seckler, M. M., Kramer, H., and Rosmalen, G. V. Industrial Crystallization: Fundamentals and Applications. Cambridge University Press, Cambridge, 2015.Google Scholar
Leyssens, T., Springuel, G., Montis, R., Candoni, N., and Veesler, S. Cryst. Growth Des. 2012; 12:1520.Google Scholar
Li, H., Wang, J., Bao, Y., Guo, Z., and Zhang, M. J. Cryst. Growth. 2003; 247:192.Google Scholar
Lindrud, M. D., Kim, S., and Wei, C. US Patent No. 6,302,958. Washington, DC: US Patent Office, 2001.Google Scholar
Liu, X. Y., Boek, E. S., Briels, W. J., and Bennema, P. Nature 1995; 374:342.Google Scholar
Liversidge, G. G., and Cundy, K. C. Int. J. Pharm. 1995; 125:91.Google Scholar
Lopez-Cordoba, A., Deladino, L., Agudelo-Mesa, L., and Martino, M. J. Food Eng. 2014; 124:158.Google Scholar
Lovette, M. A., Muratore, M., and Doherty, M. F. AIChE J. 2012; 58:1465.Google Scholar
Lu, J. J., and Ulrich, J. Cryst. Res. Technol. 2003; 38:63.Google Scholar
Lucaioli, P., Nauha, E., Singh, I., and Blagden, N. Cryst. Growth Des. 2018; 18:1062.Google Scholar
Lung-Somarriba, B. L. M., Moscosa-Santillan, M., Porte, C., and Delacroix, A. J. Cryst. Growth. 2004; 270:624.Google Scholar
Luque de Castro, M. D., and Priego-Capote, F. Ultrason. Sonochem. 2007; 14:717.Google Scholar
Lusi, M. Crys. Growth. Des. 2018; 18:3704.Google Scholar
MacLeod, C. S., and Muller, F. L. Org. Process Res. Dev. 2012; 16:425.Google Scholar
Mahajan, A. J., and Kirwan, D. J. J. Phys. D Appl. Phys. 1993; 26:B176.Google Scholar
Mann, S. Biomineralization: Principles and Concept in Bioinorganic Materials Chemistry. Oxford University Press, New York, NY, 2002.Google Scholar
Markman, O., Elias, D., Addadi, L., Cohen, I. R., and Berkovitch-Yellin, Z. J. Cryst. Growth. 1992; 122:344.Google Scholar
Martillo, M. A., Nazzai, L., and Crittenden, D. B. Curr. Rheumatol Rep. 2014; 16:400.Google Scholar
Matsuda, Y., Kawaguchi, S., Kobayashi, H., and Nishijo, J. J. Pharm. Sci. 1984; 73:173.Google Scholar
Matsuda, Y., Akazawa, R., Teraoka, R., and Otsuka, M. J. Pharm. Pharmacol. 1994; 46:162.Google Scholar
McCabe, W. L. Ind. Eng. Chem. 1929; 21:112.Google Scholar
McCausland, L. J., Cains, P. W., and Martin, P. D. Chem. Eng. Prog. 2001; 97:56.Google Scholar
McCrone, W. In Physics and Chemistry of the Organic Solid State (Fox, D., Labes, M. M., and Weissberger, A., eds.), pp. 725–67, Wiley Interscience, New York, NY, 1965.Google Scholar
Melikhov, I. V., and Kutepov, A. M. Theor. Found. Chem. Eng. 2001; 35:427.Google Scholar
Mersmann, A. Crystallization Technology Handbook (2nd edn). Marcel Dekker, New York, NY, 2001.Google Scholar
Michaels, A. S., and Coville, A. R. J. Phys. Chem. 1960; 64:13.Google Scholar
Midler, M., Paul, E. L., Whittington, E. F., et al. US Patent No. 5,314,506, 1994.Google Scholar
Mir, N. A., Dubey, R., and Desiraju, G. R. IUCrJ 2016; 3:96.Google Scholar
Mitscherlich, E. Ann. Chim. Phys. 1822; 19:350.Google Scholar
Morimoto, M., Kobatake, S., and Irie, M. J. Am. Chem. Soc. 2003; 125:11080.Google Scholar
Morissette, S. L., Almarsson, O., Peterson, M. L., et al. Adv. Drug Delivery Rev. 2004; 46:275.Google Scholar
Morris, K. R. In Polymorphism in Pharmaceutical Solids (Brittain, H. G., ed.), pp. 125–81, Marcel Dekker, New York, NY, 1999.Google Scholar
Morris, K. R., Griesser, U. J., Eckhardt, C. J., and Stowell, J. G. Adv. Drug Delivery Rev. 2001; 48:91.Google Scholar
Mougin, P., Clydesdale, G., Hammond, R. B., and Roberts, K. J. J. Phys. Chem. B. 2003; 107:13262.Google Scholar
Mukuta, T., Lee, A. Y., Kawakami, T., and Myerson, A. S. Cryst. Growth Des. 2005; 5:1429.Google Scholar
Mullin, J. W. Crystallization (3rd edn). Butterworth-Heinemann, Oxford, 1993.Google Scholar
Mullin, J. W., and Gaska, J. Can. J. Chem. Eng. 1969; 47:483.Google Scholar
Mullin, J. W., Garside, J., and Gaska, C. Chem. Ind. 1966; 41:704.Google Scholar
Myerson, A. S. Handbook of Industrial Crystallization (2nd edn). Butterworth-Heinemann, Oxford, 2002.Google Scholar
Myerson, A. S., and Kirwan, D. J. Ind. Eng. Chem. Fund. 1977; 16:420.Google Scholar
Nangia, A. Acc. Chem. Res. 2008; 41:595.Google Scholar
Newman, A. Pharmaceutical Amorphous Solid Dispersions. Wiley, New York, NY, 2015.Google Scholar
Nyvlt, J., Sohnel, O., Matuchova, M., and Broul, M. The Kinetics of Industrial Crystallization. Elsevier, Amsterdam, 1985.Google Scholar
Oberholtzer, E. R., and Brenner, G. S. J. Pharm. Sci. 1979; 68:863.Google Scholar
Ohara, M., and Reid, R. C. Modeling Crystal Growth Rates from Solution. Prentice-Hall, Englewood Cliffs, NJ, 1973.Google Scholar
Panda, T., Horike, S., Hag, K., et al. Angew. Chem. Int. Ed. 2017; 56:2413.Google Scholar
Parrott, E. L. In Encyclopedia of Pharmaceutical Technology (Swarbrick, J., and Boylan, J. C., eds.), pp. 101–21. Marcel Dekker, New York, NY, 1990.Google Scholar
Pathak, P., Meziani, M. J., Desai, T., and Sun, Y.-P. J. Am. Chem. Soc. 2004; 126:10842.Google Scholar
Paul, E. L., Tung, H. H., and Midler, M. Powder Technol. 2005; 150:133.Google Scholar
Pons-Siepermann, C. A., Huang, S., and Myerson, A. S. Cryst. Eng. Commun. 2016; 18:7487.Google Scholar
Price, C. J. Chem. Eng. Prog. 1997; 93:34.Google Scholar
Prodan, E. A. React. Solid. 1990; 8:299.Google Scholar
Pudipeddi, M., and Serajuddin, A. T. M. J. Pharm. Sci. 2005; 94:929.Google Scholar
Qiao, N., Li, M., Schlindwein, W., et al. Int. J. Pharm. 2011; 419:1.Google Scholar
Qiu, Y., and Rasmussen, A. C. AIChE J. 1990; 36:665.Google Scholar
Qiu, Y., Dalal, S., and Ediger, M. D. Soft Matter. 2018; 14:2827.Google Scholar
Rahman, Z., Agarabi, C., Zidan, A. S., Khan, S. R., and Khan, M. A. AAPS Pharm. Sci. Tech. 2011; 12:693.Google Scholar
Rams-Baron, M., Jachowicz, R., Boldyreva, E., et al. Amorphous Drugs: Benefits and Challenges, Springer, New York, NY, 2018.Google Scholar
Randolph, A. AIChE Symp. Series. 1984; 240:80.Google Scholar
Randolph, A., and Larson, M. Theory of Particulate Processes (2nd edn). Academic Press, New York, NY, 1986.Google Scholar
Rasenack, N., and Muller, B. W. Int. J. Pharm. 2002; 244:45.Google Scholar
Resnati, G., Metrangolo, P., Terraneo, G., and Baldrighi, M. US2015/0051280 A1, 2015.Google Scholar
Reutzel-Edens, S. M. Curr. Opin. Drug Discov. Dev. 2006; 9:806.Google Scholar
Richards, W. T., and Loomis, A. L. J. Am. Chem. Soc. 1927; 49:3086.Google Scholar
Rifani, M., Yin, Y. Y., Elliott, D. S., et al. J. Am. Chem. Soc. 1995; 117:7572.Google Scholar
Roberts, K. J., Sherwood, J. N., Yoon, C. S., and Docherty, R. Chem. Mater. 1994; 6:1099.Google Scholar
Rudolph, P. Handbook of Crystal Growth (2nd edn, vol. IIA). Elsevier, Amsterdam, 2015.Google Scholar
Ruecroft, G., Hipkiss, D., Ly, T., Maxted, N., and Cains, P. W. Org. Process Res. Dev. 2005; 9:923.Google Scholar
Ruoff, A. L. Materials Science. Prentice-Hall, Englewood Cliffs, NJ, 1973.Google Scholar
Sanchez-Guadarrama, O., Mendoza-Navarro, F., Cedillo-Cruz, A., et al. Cryst. Growth Des. 2016; 16:307.Google Scholar
Sander, J. R. G., Zeiger, B. W., and Suslick, K. S. Ultrason. Sonochem. 2014; 21:1908.Google Scholar
Sangwal, K. Additives and Crystallization Processes: From Fundamental to Applications. Wiley, West Sussex, 2007.Google Scholar
Sato, K. J. Phys. D Appl. Phys. 1993; 26:B77.Google Scholar
Sato, K. Crystallization of Lipids: Fundamentals and Applications in Food, Cosmetics, and Pharmaceuticals. Wiley-Blackwell, West Sussex, 2018.Google Scholar
Schmidt, M. U., Hofmann, D. W. M., Buchsbaum, C., and Metz, H. J. Angew. Chem. Int. Ed. 2006; 45:1313.Google Scholar
Schoen, H. M., Grove, C. S. Jr., and Palermo, J. A. J. Chem. Educ. 1956; 33:373.Google Scholar
Schultheiss, N., and Newman, A. Cryst. Growth Des. 2009; 9:2950.Google Scholar
Schuth, F. Curr. Opin. Solid State Mater. Sci. 2001; 5:389.Google Scholar
Sgualdino, G., Aquilano, D., Tamburini, E., Vaccari, G., and Mantovani, G. Mater. Chem. Phys. 2000; 66:316.Google Scholar
Shah, N., Sandhu, H., Choi, D. S., Chokshi, H., and Malick, A. W. Amorphous Solid Dispersions, Springer, New York, NY, 2014.Google Scholar
Shan, N., and Zaworotko, M. J. Drug Discov. Today. 2008; 13:440.Google Scholar
Shakhtshneider, T. P., and Boldyrev, V. V. Drug Dev. Ind. Pharm. 1993; 19:2055.Google Scholar
Sheikh, A. Y., Raham, S. A., Hammond, R. B., and Roberts, K. J. Cryst. Eng. Commun. 2009; 11:501.Google Scholar
Shekunov, B. Y., and York, P. J. Cryst. Growth. 2000; 211:122.Google Scholar
Simmons, D. L., Ranz, R. J., Gyanchandani, N. D., and Picotte, P. J. Pharm. Sci. 1972; 7:121.Google Scholar
Simone, E., Klapwijk, A. R., Wilson, C. C., and Nagy, Z. K. Cryst. Growth Des. 2017; 17:1695.Google Scholar
Sjostrom, B., Bergenstahl, B., Lindberg, M., and Rasmuson, A. C. J. Dispers. Sci. Technol. 1994; 15:89.Google Scholar
Slaminko, P., and Myerson, A. S. AIChE J. 1981; 11:1029.Google Scholar
Sőhnel, O., and Garside, J. Precipitation: Basic Principles and Industrial Applications. Butterworth-Heinemann, Oxford, 1992.Google Scholar
Springuel, G., and Leyssens, T. Cryst. Growth Des. 2012; 12:3374.Google Scholar
Srinivasan, K., Sankaranarayanan, K., Thangavelu, S., and Ramasamy, P. J. Cryst. Growth. 2000; 212:246.Google Scholar
Stahl, P. H., and Wermuth, C. G. Pharmaceutical Salts: Properties, Selection, and Use (2nd edn). Wiley-VCH, Weinheim, 2011.Google Scholar
Stahly, G. P. Cryst. Growth Des. 2009; 9:4212.Google Scholar
Steed, J. W. Trends Pharmacol. Sci. 2013; 34:185.Google Scholar
Strickland-Constable, R. F. Kinetics and Mechanism of Crystallization. Academic Press, New York, NY, 1968.Google Scholar
Sukenik, C. N., Bonapace, J. A. P., Mandel, N. S., et al. J. Am. Chem. Soc. 1977; 99:851.Google Scholar
Sun, C. C., and Grant, D. J. W. Pharm. Res. 2004; 21:382.Google Scholar
Sun, C. C., and Kiang, Y. H. J. Pharm. Sci. 2007; 97:3456.Google Scholar
Tavare, N. S. Industrial Crystallization: Process Simulation Analysis and Design. Springer Science+Business Media, New York, NY, 1995.Google Scholar
Tavare, N. S., and Garside, J. Chem. Eng. Res. Des. 1986; 64:109.Google Scholar
ter Horst, J. H., Kramer, H. J. M., van Rosmalen, G. M., and Jansens, P. J. J. Cryst. Growth. 2002; 23739:2215.Google Scholar
Texter, J. J. Dispers. Sci. Technol. 2001; 22:499.Google Scholar
Thakuria, R., Delori, A., Jones, W., et al. Int. J. Pharm. 2013; 453:101.Google Scholar
Tom, J. W., and Debenedetti, P. G. J. Aerosol Sci. 1991; 22:555.Google Scholar
Tung, H.-H., Paul, E. L., Midler, M., and McCauley, J. A. Crystallization of Organic Compounds: An Industrial Perspective. Wiley, Hoboken, NJ, 2009.Google Scholar
Vainshtein, B. K. >Modern Crystallography, vol. 1: Fundamentals of Crystals: Symmetry and Methods of Structural Crystallography (2nd edn). Springer-Verlag, Berlin, 1994.Google Scholar
Van Rosmalen, R., and Bennema, P. J. Cryst. Growth. 1975; 29:342.Google Scholar
Van’t Land, C. M., and Wunk, B. G. Control of Particle Size in Industrial Sodium Chloride Crystallization (Mullin, J. W., ed.), p. 51. Plenum Press, New York, NY, 1978.Google Scholar
Variankaval, N., Lee, C., Xu, J., et al. Org. Process Res. Des. 2007; 11:229.Google Scholar
Violanto, M. R., and Fischer, H. W. US Patent No. 4,826,689, 1989.Google Scholar
Vippagunta, S. R., Brittain, H. G., and Grant, D. J. W. Adv. Drug Delivery Rev. 2001; 48:3.Google Scholar
Vries, T., Wynberg, H., van Echten, E., et al. Angew. Chem. Int. Ed. 1998; 37:2349.Google Scholar
Wang, J. R., Fan, X., Ding, Q., and Mei, X. J. Mol. Struct. 2016; 1119:269.Google Scholar
Wedd, M. W., Price, C. J., York, P., Maginn, S. J., and Mullin, J. W. Anal. Proc. 1993; 30:447.Google Scholar
Wells, A. Discuss. Faraday Soc 5, p. 197. 1949.Google Scholar
Whitaker, A. In Analytical Chemistry of Synthetic Colorants (Peters, A. T., and Szep, J., eds.), pp. 148. Springer Science + Business Media, Berlin, 1995.Google Scholar
White, E. T., and Wright, A. G. Chem. Eng. Prog. Symp. Series. 1971; 110:6781.Google Scholar
Wiedersich, J., Kudlik, A., Gottwald, J., et al. J. Phys. Chem. B. 1997; 101:5800.Google Scholar
Williams-Seton, L., Davey, R. J., and Lieberman, H. F. J. Am. Chem. Soc. 1999; 121:4563.Google Scholar
Winn, D., and Doherty, M. F. AIChE J. 1998; 44:2501.Google Scholar
Withbroe, G. J., Seadeek, C., Girard, K. P., et al. Org. Process Res. Dev. 2013; 17:500.Google Scholar
Wőhler, F Justus Liebigs Ann. Chem. 1844; 51:153.Google Scholar
Wright, J. D. Molecular Crystals (2nd edn). Cambridge University Press, New York, NY, 1995.Google Scholar
Yang, H. G., Sun, C. H., Qiao, S. Z., et al. Nature. 2008; 453:638.Google Scholar
Yano, J., Furedi-Milhofer, H., Wachtel, E., and Garti, N. Langmuir 2000; 16:10005.Google Scholar
York, P. Int. J. Pharm. 1983; 14:1.Google Scholar
York, P., Kompella, U. B., and Shekunov, B. Y. Supercritical Fluid Technology for Drug Product Development. Marcel Dekker, Inc., New York.Google Scholar
Yu, L. Acc. Chem. Res. 2010; 43:1257.Google Scholar
Yu, L., Reutzel-Edens, S. M., and Mitchell, C. A. Org. Process Res Dev. 2000; 4:396.Google Scholar
Zhong, W., Quiang, W., Zhi, X. H., and Ayami, F. CN 103535579 A, 2014.Google Scholar
Zhu, M., and Yu, L. J. Chem. Phys. 2017; 146:244503.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×