Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T04:56:21.242Z Has data issue: false hasContentIssue false

5 - Solar internal flows and dynamo action

Published online by Cambridge University Press:  05 April 2013

Mark S. Miesch
Affiliation:
NCAR HAO
Carolus J. Schrijver
Affiliation:
Solar and Astrophysics Laboratory, Lockheed Martin
George L. Siscoe
Affiliation:
Boston University
Get access

Summary

Magnetism with enthusiasm

As discussed in many chapters throughout these volumes, stars bristle with magnetic energy. They inherit some of their natural magnetism from their parent molecular clouds as they contract from protostellar cores (Chapter 3). However, stars are far from passive. After they ignite and enter the main sequence, much of their magnetism comes from within, bred by active hydromagnetic dynamos (Chapter 2; Vol. I, Chapter 3). Emerging magnetic flux influences the star's evolution and shapes its environment. It is the dissipation of magnetic energy in the solar corona that powers the solar wind, and the wind in turn carves out the heliosphere, a planetary cloister within the surrounding interstellar medium where the Sun holds sway. Magnetic fields originating in the solar interior permeate the heliosphere, weaving an intricate web with planetary magnetospheres and linking the Sun to the planets. The web changes continually as coronal mass ejections send sporadic bursts of magnetized plasma coursing through the heliosphere, restructuring fields and flows as they go.

Stars build magnetic flelds by tapping the energy in their own corporeal constitution. Thermonuclear fusion in their cores converts matter into thermal energy and electromagnetic radiation which, in the Sun, is transported outward via the diffusion of photons. In the solar envelope, the plasma becomes more opaque as the temperature drops, which inhibits radiative diffusion and steepens the temperature gradient relative to the adiabatic temperature gradient (Section 5.2).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×