Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-15T09:31:58.743Z Has data issue: false hasContentIssue false

10 - Solar spectral irradiance: measurements and models

Published online by Cambridge University Press:  05 April 2013

Judith L. Lean
Affiliation:
Naval Research Laboratory
Thomas N. Woods
Affiliation:
University of Colorado
Carolus J. Schrijver
Affiliation:
Solar and Astrophysics Laboratory, Lockheed Martin
George L. Siscoe
Affiliation:
Boston University
Get access

Summary

Introduction

Solar photons are Earth's primary energy source: Earth is habitable only because the Sun shines, radiating energy throughout the entire heliosphere. The Sun shines because its surface, warmed by energy produced in its nuclear burning core (Bahcall, 2000), is hotter (5770 K) than the surrounding cosmos (4 K). Electromagnetic energy traveling radially outward from the Sun illuminates the heliosphere with a flux of photons that diminishes inversely with the square of increasing distance. Earth, which has only an insignificant internal energy source (see Section 7.4.1), intercepts solar radiant energy, collecting photons emitted from all locations of the solar disk. Unimpeded in their journey to Earth, solar photons take eight minutes to establish the fastest and most direct of all Sun–Earth connections.

The photon energy incident on the Earth at its average distance from the Sun of one astronomical unit (AU), and prior to absorption in the Earth's atmosphere, is called the solar irradiance (e.g. Fröhlich and Lean, 2004). When the energy of the photons is integrated over all wavelengths across the electromagnetic spectrum, the average total solar irradiance is 1361 ± 4W m−2. Solar photons at visible wavelengths have the largest flux (Fig. 10.1) because the emission spectrum of a blackbody near 5770 K peaks in this region. Although really a high temperature plasma, the Sun's “surface” is defined as that layer of the solar atmosphere for which optical depth is unity for photons near 500 nm (cf. Vol. I, chapter 8).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×