Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T11:40:07.060Z Has data issue: false hasContentIssue false

16 - Solar variability, climate, and atmospheric photochemistry

Published online by Cambridge University Press:  05 April 2013

Guy P. Brasseur
Affiliation:
NCAR ESSL
Daniel Marsch
Affiliation:
National Center for Atmospheric Research
Hauke Schmidt
Affiliation:
Max Planck Institute for Meteorology
Carolus J. Schrijver
Affiliation:
Solar and Astrophysics Laboratory, Lockheed Martin
George L. Siscoe
Affiliation:
Boston University
Get access

Summary

Introduction

The possible link between solar variability and climate remains an intriguing and controversial issue. Solar physicists have shown that the total solar irradiance (S0 = L/4πd2), whose value is close to 1366 W m−2 (Fröhlich, 2004), varies typically by 1.5 W m−2 (slightly more than 0.1%) over an 11-year solar cycle (see Chapter 10 and Fig. 10.9). This change is considerably smaller than the radiative forcing produced by enhanced concentrations of greenhouse gases since the beginning of the industrial era. Figure 16.1 (from the Fourth Assessment conducted by the Intergovernmental Panel on Climate Change, or IPCC) highlights a possible longer term trend in the solar irradiance, but, unless some amplification mechanisms occur, this forcing remains small compared, for example, to the effect of carbon dioxide and other radiatively active gases, whose atmospheric concentrations have increased as a result of human activity.

Different mechanisms have been proposed to explain the relations between the state of the atmosphere and the 11-year solar cycle. One of them is the absorption of short-wave solar radiation by ozone in the stratosphere with possible effects on the diabatic heating, temperature, and the general circulation of the atmosphere. Another mechanism refers to the impact of galactic cosmic rays on the formation of cloud condensation nuclei and hence on cloudiness and surface temperature. The cosmic-ray intensity in the atmosphere is anti-correlated with solar activity (Chapters 9 and 11).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×