Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T09:57:30.396Z Has data issue: false hasContentIssue false

70 - Varicella-zoster vaccine

from Part VII - Vaccines and immunothgerapy

Published online by Cambridge University Press:  24 December 2009

Anne A. Gershon
Affiliation:
Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Varicella vaccines: background

A live attenuated varicella vaccine, the Oka strain, was developed by Takahashi and his colleagues in Japan the early 1970s (Takahashi et al., 1974). This vaccine is now being adminstered to varicella-susceptible healthy children and adults in many countries; it is produced by at least 3 manufacturers worldwide (Merck and Co., Glaxo SmithKline, and Biken Institute/Aventis Pasteur). Although the vaccine was developed in Japan, the largest experience with it comes from the United States, where the Merck formulation was licensed for routine use in healthy susceptible individuals over the age of 1 year in 1995 (Centers for Disease Control, 1996). In both pre- and postlicensure studies (Gershon et al., 1984a, b; White, 1997; Sharrar et al., 2000) the vaccine was demonstrated to be extremely safe. Adverse effects in healthy persons are few and quite transient: a sore arm after the injection in 20%–25%, and a very minor rash resembling mild varicella in about 5%, usually appearing a month after immunization (White, 1997). A small proportion of vaccinees (15%) may also experience mild fever. It takes about a week to demonstrate antibodies to varicella-zoster virus (VZV) after immunization, but protection often results even after an exposure has occurred. As a result of widespread immunization of children, the epidemiology of varicella has begun to change in the United States, with a reported marked decline in incidence in sentinel areas, where active surveillance for the disease is being carried out (Seward et al., 2002).

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 1262 - 1273
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ampofo, K., Saiman, L., Russa, P., Steinberg, S., Annunziato, P., and Gershon, A. (2002). Persistence of immunity to live attenuated varicella vaccine in healthy adults. Clin. Infect. Dis., 34(6), 774–779.CrossRefGoogle ScholarPubMed
Arvin, A. and Gershon, A. (1996). Live attenuated varicella vaccine. Annu. Rev. Microbiol., 50, 59–100.CrossRefGoogle ScholarPubMed
Arvin, A. M., Pollard, R. B., Rasmussen, L., and Metigan, T. (1978). Selective impairment in lymphocyte reactivity to varicella-zoster antigen among untreated lymphoma patients. J. Infect. Dis., 137, 531–540.CrossRefGoogle Scholar
Asano, Y. (1996). Varicella vaccine: the Japanese experience. J. Infect. Dis., 174, S310–S313.CrossRefGoogle ScholarPubMed
Asano, Y., Nakayama, H., Yasaki, T.et al. (1977). Protection against varicella in family contacts by immediate inoculation with live varicella vaccine. Pediatrics, 59, 3–7.Google ScholarPubMed
Asano, Y., Hirose, S., Iwayama, S., Miyata, Yazaki, T., and Takahashi, M. (1982). Protective effect of immediate inoculation of a live varicella vaccine in household contacts in relation to the viral dose and interval between exposure and vaccination. Biken J., 25, 43–45.Google Scholar
Asano, Y., Suga, S., Yoshikawa, T.et al. (1994). Experience and reason: twenty year follow up of protective immunity of the Oka live varicella vaccine. Pediatrics, 94, 524–526.Google Scholar
Berger, R., Florent, G., and Just, M. (1981). ‘Decrease of the lympho-proliferative response to varicella-zoster virus antigen in the aged’. Infect. Immunol., 32, 24–27.Google Scholar
Beutels, P., Clara, R., Tormans, G., Vandoorsalaer, E., and Damme, P. (1996). Costs and benefits of routine varicella vaccination in German children. J. Infect. Dis., 174, S335–S341.CrossRefGoogle ScholarPubMed
Bogger-Goren, S., Baba, K., Husley, P., Yabuuchi, H., Takahashi, M., and Ogra, P. (1982). Antibody response to varicella-zoster virus after natural or vaccine-induced infection. J. Infect. Dis., 146, 260–265.CrossRefGoogle ScholarPubMed
Brisson, M. and Edmunds, W. J. (2002). The cost-effectiveness of varicella vaccination in Canada. Vaccine, 20(7–8), 1113–1125.CrossRefGoogle Scholar
Brisson, M., Gay, N., Do, W. J., and Andrews, N. J. (2002). Exposure to varicella boosts immunity to herpes-zoster: implications for mass vaccination against chickenpox. Vaccine, 20, 2500–2507.CrossRefGoogle ScholarPubMed
Broyer, M. and Boudailliez, B. (1985a). Prevention of varicella infection in renal transplanted children by previous immunization with a live attenuated varicella vaccine. Transpl. Proc., 17, 151–152.Google Scholar
Broyer, M. and Boudailliez, B. (1985b). Varicella vaccine in children with chronic renal insufficiency. Postgrad. Med J., 61 (S4), 103–106.Google Scholar
Broyer, M., Tete, M. T., Guest, G., Gugnadoux, M. F., and Rouzioux, C. (1997). Varicella and zoster in children after kidney transplantation: long term results of vaccination. Pediatrics, 99, 35–39.CrossRefGoogle ScholarPubMed
Burke, B. L., Steele, R., W., Beard, O. W., Woods, J. S., Cain, T. D., and Marmer, D. J. (1982). Immune responses to varicella-zoster in the aged. Arch. Intern. Med., 142, 291–293.CrossRefGoogle ScholarPubMed
Burnham, B. R., Wells, T. S., and Riddle, J. R. (1998). A cost–benefit analysis of a routine varicella vaccination program for United States Air Force Academy cadets. Milit. Med., 163(9), 631–634.CrossRefGoogle ScholarPubMed
Centers for Disease Control (1996). Prevention of varicella: Recommendations of the Advisory Committee on Immunization Practices (ACIP). Morb. Mortal. Wkly Rep., 45, 1–36.
Centers for Disease Control (1999). Prevention of varicella. Update. Morb. Mortal. Wkly. Rep., 48, 1–6.
Centers for Disease Control (2001). Simultaneous administration of varicella vaccine and other recommended childhood vaccines – United States, 1995–1999. Morb. Mortal. Wkly. Rep., 50, 1058–1061.
Chen, J., Gershon, A., Silverstein, S. J., Li, Z. S., Lung, P., and Gershon, M. D. (2003). Latent and lytic infection of isolated guinea pig enteric and dorsal root ganglia by varicella zoster virus. J. Med. Virol., 70, S71–S78.CrossRefGoogle Scholar
Clements, D., Moreira, S. P., Coplan, P., Bland, C., and Walter, E. (1999). Postlicensure study of varicella vaccine effectiveness in a day-care setting. Pediatr. Infect. Dis. J., 18, 1047–1050.CrossRefGoogle Scholar
Clements, D. A., Armstrong, C. B., Ursano, A. M., Moggio, M., Walter, E. B., and Wilfert, C. M. (1995). Over five-year follow-up of Oka/Merck varicella vaccine recipients in 465 infants and adolescents. Pediatr. Infect. Dis. J., 14, 874–879.CrossRefGoogle ScholarPubMed
Clements, D. A., Zaref, J. I., Bland, C. L., Walter, E. B., and Coplan, P. (2001). Partial uptake of varicella vaccine and the epidemiological effect on varicella disease in 11 day-care centers in North Carolina. Arch. Pediatr. Adolesc. Med., 155, 433–461.CrossRefGoogle ScholarPubMed
Coudeville, L., Paree, F., Lebrun, T., and Sally, J. (1999). The value of varicella vaccination in healthy children: cost–benefit analysis of the situation in France. Vaccine, 17(2), 142–151.CrossRefGoogle ScholarPubMed
Domingo, Diez J., Ridao, M., Latour, J., Ballester, A., and Morant, A. (1999). A cost benefit analysis of routine varicella vaccination in Spain. Vaccine, 17(11–12), 1306–1311.CrossRefGoogle Scholar
Donahue, J. G., Choo, P. W., Manson, J. E., and Platt, R. (1995). The incidence of herpes zoster. Arch. Intern. Med., 155(15), 1605–1609.CrossRefGoogle ScholarPubMed
Dworkin, M. S., Jennings, C. E., Thomas-Roth, J., (Lang, J. E., Stukenberg, C., and Lumpkin, J. R.) (2002). An outbreak of varicella among children attending preschool and elementary school in Illinois. Clin. Infect. Dis., 35, 102–104.CrossRefGoogle ScholarPubMed
Feldman, S., Hughes, W. T., and Kim, H. Y. (1973). Herpes zoster in children with cancer. Am. J. Dis. Child., 126, 178–184.Google ScholarPubMed
Feldman, S., Hughes, W., and Daniel, C., (1975). Varicella in children with cancer: 77 cases. Pediatrics, 80, 388–397.Google Scholar
Galea, S., Sweet, A., Gershon, A., et al. (2002). The Postmarketing Safety Review of Reports of Herpes Zoster after the Administration of VARIVAXR [Varicella Virus Vaccine Live (OKA/MERCK). Fifth Annual Conference on Vaccine Research, Baltimore, MD.
Galil, K., Fair, E., Mountcastle, N., Britz, P., and Seward, J. (2002a). Younger age at vaccination may increase risk of varicella vaccine failure. J. Infect. Dis., 186, 102–105.CrossRefGoogle Scholar
Galil, K., Lee, B., Strine, T.et al. (2002b). Outbreak of varicella at a day-care center despite vaccination. N. Engl. J. Med., 347, 1909–1915.CrossRefGoogle Scholar
Gelb, L. D., Dohner, D. E., Gershon, A.et al. (1987). Molecular epidemiology of live, attenuated varicella virus vaccine in children and in normal adults. J. Infect. Dis., 155, 633–640.CrossRefGoogle ScholarPubMed
Gershon, A. (1995). Varicella-zoster virus: prospects for control. Adv. Pediatr. Infect. Dis., 10, 93–124.Google ScholarPubMed
Gershon, A. (2002). Varicella vaccine: are two doses better than one?N. Engl. J. Med., 347, 1962–1963.CrossRefGoogle ScholarPubMed
Gershon, A. and Steinberg, S. (1981). Antibody responses to varicella-zoster virus and the role of antibody in host defense. Am. J. Med. Sci., 282, 12–17.CrossRefGoogle ScholarPubMed
Gershon, A., La Russa, P., and Steinberg, S. (1996a). Varicella vaccine: use in immunocompromised patients. Infectious Disease Clinics of North America, ed. White, R. E. J.. Philadelphia: W. B. Saunders, 10, 583–594.Google Scholar
Gershon, A., LaRussa, P., Steinberg, S., Lo, S. H., Murevish, N., and Meier, P. (1996b). The protective effect of immunologic boosting against zoster: an analysis in leukemic children who were vaccinated against chickenpox. J. Infect. Dis., 173, 450–453.CrossRefGoogle Scholar
Gershon, A., Takahashi, M., and Seward, J. (2002). Live attenuated varicella vaccine. In Vaccines, ed. Plotkin, S. and Orenstein, W., 4th edn, pp. 783–823. Philadelphia: W. B. Saunders.Google ScholarPubMed
Gershon, A. A. (2001). Live-attenuated varicella vaccine. Infect. Dis. Clin. N. Amer., 15, 65–81.CrossRefGoogle ScholarPubMed
Gershon, A. A., Steinberg, S., Gelb, L.et al. (1984a). Clinical reinfection with varicella-zoster virus. J. Infect. Dis., 149, 137–142.CrossRefGoogle Scholar
Gershon, A. A., Steinberg, S., Gelb, L.et al. (1984b). Live attenuated varicella vaccine: efficacy for children with leukemia in remission. J. Am. Med. Assoc, 252, 355–362.CrossRefGoogle Scholar
Gershon, A. A., Steinberg, S., Russa, P.et al. (1988). Immunization of healthy adults with live attenuated varicella vaccine. J. Infect. Dis., 158, 132–137.CrossRefGoogle ScholarPubMed
Gershon, A. A., Steinberg, S., Gelb, L.et al. (1990). Live attenuated varicella vaccine: protection in healthy adults in comparison to leukemic children. J. Infect. Dis., 161, 661–666.CrossRefGoogle Scholar
Ghaffar, F., Carrick, K., Rogers, B. B., Margraf, L. R., Krisher, K., and Ramillo, O. (2000). Disseminated infection with varicella-zoster virus vaccine strain presenting as hepatitis in la child with adenosine deaminase deficiency. Pediatr. Infect. Dis. J., 19, 764–765.CrossRefGoogle Scholar
Gomi, Y., Imagawa, T., Takahashi, M., and Yamanishi, K. (2000). Oka varicella vaccine is distinguishable from its parental virus in DNA sequence of open reading frame 62 and its transactivation activity. J. Med. Virol., 61, 497–503.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Gomi, Y., Imagawa, T., Takahashi, M., and Yamanish, K. (2001). Comparison of DNA sequence and transactivation activity of open reading frame 62 of Oka varicella vaccine and its parental viruses. Arch. Virol., S17, 49–56.Google Scholar
Hardy, I. B., Gershon, A., Steinberg, S.et al. (1991). The incidence of zoster after immunization with live attenuated varicella vaccine. A study in children with leukemia. N. Engl. J. Med., 325, 1545–1550.CrossRefGoogle ScholarPubMed
Hata, A., Asanuma, H., Rinki, M.et al. (2002). Use of an inactivated varicella vaccine in recipients of hematopoietic- cell transplants. N. Engl. J. Med., 347(1), 26–34.CrossRefGoogle ScholarPubMed
Hope-Simpson, R. E. (1965). The nature of herpes zoster: a long term study and a new hypothesis. Proc. Roy. Soc. Med., 58, 9–20.Google Scholar
Izurieta, H., Strebel, P., and Blake, P. (1997). Post-licensure effectiveness of varicella vaccine during an outbreak in a child care center. J. Am. Med. Assoc., 278, 1495–1498.CrossRefGoogle Scholar
Johnson, C., Stancin, T., Fattlar, D., Rome, L. P., and Kumar, M. L. (1997). A long-term prospective study of varicella vaccine in healthy children. Pediatrics, 100, 761–766.CrossRefGoogle ScholarPubMed
Junker, A. K., Angus, E., and Thomas, E. (1991). Recurrent varicella-zoster virus infections in apparently immunocompetent children. Pediatr. Infect. Dis. J., 10, 569–575.CrossRefGoogle ScholarPubMed
Junker, K., Avnstorp, C., Neilsen, C., and Hansen, N. (1989). Reinfection with varicella-zoster virus in immunocompromised patients. Curr. Probl. Dermatol., 18, 152–157.CrossRefGoogle ScholarPubMed
Kramer, J. M., Russa, P., Tsai, W. C.et al. (2001). Disseminated vaccine strain varicella as the acquired immunodeficiency syndrome-defining illness in a previously undiagnosed child. Pediatrics, 108(2), E39.CrossRefGoogle Scholar
Kuter, B., Matthews, H., Shinefield, H.et al. (2004). Ten year follow-up of healthy children who received one or two injections of varicella vaccine. Pediatr. Infect. Dis. J. 23(2), 132–137.CrossRefGoogle ScholarPubMed
LaRussa, P., Lungu, O., Gershon, A., Steinberg, S., and Silverstein, S. (1992). Restriction fragment length polymorphism of polymerase chain reaction products from vaccine and wild-type varicella-zoster virus isolates. J. Virol., 66, 1016–1020.Google Scholar
LaRussa, P., Steinberg, S.et al. (1997). Transmission of vaccine strain varicella-zoster virus from a healthy adult with vaccine-associated rash to susceptible household contacts. J. Infect. Dis., 176, 1072–1075.Google Scholar
LaRussa, P., Steinberg, S., Merwice, F., and Gershon, A. (2000). Viral strain identification in varicella vaccinees with disseminated rashes. Pediatr. Infect. Dis. J., 19, 1037–1039.Google Scholar
Levin, M. J. (2001). Use of varicella vaccines to prevent herpes zoster in older individuals. Arch. Virol. Suppl., 17, 151–160.Google Scholar
Levin, M. J. (2003). Development of acyclovir resistance during chronic Oka strain varicella-zoster virus infection in an immunocompromised child. J. Infect. Dis., 188, 954–959.CrossRefGoogle Scholar
Levin, M. J., Gershon, A. A., Weinberg, A.et al. (2001). Immunization of HIV-infected children with varicella vaccine. J. Pediatr., 139(2), 305–310.CrossRefGoogle ScholarPubMed
Levy, O., Orange, J. S., Hibberd, P.et al. (2003). Disseminated varicella infection due to vaccine (Oka) strain varicella-zoster virus in a patient with a novel deficiency in natural killer cells. J. Infect. Dis., 188, 948–953.CrossRefGoogle Scholar
Lieu, T., Cochi, S., Black, S.et al. (1994). Cost-effectiveness of a routine varicella vaccination program for U.S. children. J. Am. Med. Assoc., 271, 375–381.CrossRefGoogle ScholarPubMed
Loparev, V. N., Argaw, T., Krause, P., Takayama, M., and Schmid, S. (2000a). Improved identification and differentiation of varicella-zoster virus (VZV) wild type strains and an attenuated varicella vaccine strain using a VZV open reading frame 62-based PCR. J. Clin. Micro., 38, 3156–3160.Google Scholar
Loparev, V. N., McCaustland, K., Holloway, B., Krause, P. R., Takayama, M., and Schmid, S. (2000). Rapid genotyping of varicella-zoster virus vaccine and wild type strains with fluorophore-labeled hybridization probes. J. Clin. Micro., 38, 4315–4319.Google ScholarPubMed
Moffat, J. F., Zerboni, L., Kinchington, P., Grose, C., Kaneshima, H., and Arvin, A. (1998). Attenuation of the vaccine Oka strain of varicella-zoster virus and role of glycoprotein C in alphaherpesvirus virulence demonstrated in the SCID-hu mouse. J. Virol., 72, 965–974.Google ScholarPubMed
Oxman, M. N., Levin, M. J., Johnson, G. R.et al. (2005). A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N. Engl. J. Med., 352(22), 2271–2284.CrossRefGoogle ScholarPubMed
Provost, P. J., Krah, D. L., Kuter, B. J.et al. (1991). Antibody assays suitable for assessing immune responses to live varicella vaccine. Vaccine, 9, 111–116.CrossRefGoogle ScholarPubMed
Redman, R., Nader, S., Zerboni, L.et al. (1997). Early reconstitution of immunity and decreased severity of herpes zoster in bone marrow transplant recipients immunized with inactivated varicella vaccine. J. Infect. Dis., 176, 578–585.CrossRefGoogle ScholarPubMed
Ross, A. H., Lencher, E., and Reitman, G. (1962). Modification of chickenpox in family contacts by administration of gamma globulin. N. Engl. J. Med., 267, 369–376.CrossRefGoogle ScholarPubMed
Saiman, L., LaRussa, P., Steinberg, S.et al. (2001). Persistence of immunity to varicella-zoster virus vaccination among health care workers. Inf. Cont. Hosp. Epidemiol., 22, 279–283.CrossRefGoogle Scholar
Salzman, M. B., Sharrar, R., Steinberg, S., and LaRussa, P. (1997). Transmission of varicella-vaccine virus from a healthy 12 month old child to his pregnant mother. J. Pediatr., 131, 151–154.CrossRefGoogle ScholarPubMed
Seward, J. F., Watson, B. M., Peterson, C. L.et al. (2002). Varicella disease after introduction of varicella vaccine in the United States, 1995–2000. J. Am. Med. Assoc., 287(5), 606–611.CrossRefGoogle ScholarPubMed
Shapiro, E. and LaRussa, P. (1997). Vaccination for varicella – just do it. J. Am. Med. Assoc., 278, 1529–1530.CrossRefGoogle ScholarPubMed
Sharrar, R. G., LaRussa, P., Galea, S.et al. (2000). The postmarketing safety profile of varicella vaccine. Vaccine, 19, 916–923.CrossRefGoogle ScholarPubMed
Shepp, D., Dandliker, P., and Meyers, J. (1988). Current therapy of varicella zoster virus infection in immunocompromised patients. Am. J. Med., 85 (S2A), 96–98.Google ScholarPubMed
Shinefield, H., Black, S., Staehle, B.et al. (2002). Vaccination with measles, mumps, and rubella vaccine and varicella vaccine: safety, tolerability, immunogenicity, persistence of antibody, and duration of protection against varicella in healthy children. Pediatr. Infect. Dis. J., 21, 555–561.CrossRefGoogle ScholarPubMed
Shinefield, H., Williams, W. R., Marchant, C.et al. (2005a). Dose-response study of a quadrivalent measles, mumps, rubella and varicella vaccine in healthy children. Pediatr. Infect. Dis. J., 24(8), 670–675.CrossRefGoogle Scholar
Shinefield, H., Black, S., Digilio, L.et al. (2005b). Evaluation of a quadrivalent measles, mumps, rubella and varicella vaccine in healthy children. Pediatr. Infect. Dis. J., 24(8), 665–669.CrossRefGoogle Scholar
Takahashi, M., Otsuka, T., Okuno, Y., Asano, T., Yazahi, T., and Isomura, S. (1974). Live vaccine used to prevent the spread of varicella in children in hospital. Lancet, 2, 1288–1290.CrossRefGoogle ScholarPubMed
Takayama, N., Minamitani, M., and Takayama, M. (1997). HIgh incidence of breakthrough varicella observed in healthy Japanese lchildren immunized with live varicella vaccine (Oka strain). Acta Paediatr. Jpn., 39, 663–668.CrossRefGoogle Scholar
Thomas, S., Wheeler, J., and Hall, A. J. (2002). Contacts with varicella or with children and protection against herpes zoster in adults: a case-control study. Lancet, 360, 678–682.CrossRefGoogle ScholarPubMed
Tsolia, M., Gershon, A., Steinberg, S., and Gelb, L. (1990). Live attenuated varicella vaccine: evidence that the virus is attenuated and the importance of skin lesions in transmission of varicella-zoster virus. J. Pediatr., 116, 184–189.CrossRefGoogle ScholarPubMed
Varis, T. and Vesikari, T. (1996). Efficacy of high titer live attenuated varicella vaccine in healthy young children. J. Infect. Dis., 174, S330–S334.CrossRefGoogle ScholarPubMed
Vazquez, M., LaRussa, P., Gershon, A., Steinberg, S., Freudigman, K., and Shapiro, E. (2001). The effectiveness of the varicella vaccine in clinical practice. N. Engl. J. Med., 344, 955–960.CrossRefGoogle ScholarPubMed
Vazquez, M., LaRussa, P., Gershon, A., et al. (2003). Effectiveness of varicella vaccine after 8 years. Infectious Disease Society of America 41 St Annual Meeting, San Diego, CA.
Watson, B., Seward, J., Yang, A.et al. (2000). Post exposure effectiveness of varicella vaccine. Pediatrics, 105, 84–88.CrossRefGoogle Scholar
Weibel, R., Neff, B. J., Kuter, B. J.et al. (1984). Live attenuated varicella virus vaccine: efficacy trial in healthy children. N. Engl. J. Med., 310, 1409–1415.CrossRefGoogle ScholarPubMed
Weibel, R., Kuter, B. J., Neff, B.et al. (1985). Live Oka/Merck varicella vaccine in healthy children: further clinical and laboratory assessment. J. Am. Med. Assoc., 245, 2435–2439.CrossRefGoogle Scholar
White, C. J. (1996). Clinical trials of varicella vaccine in healthy children. Infect. Dis. Clin. N. Amer., 10, 595–608.CrossRefGoogle ScholarPubMed
White, C. J. (1997). Varicella-zoster virus vaccine. Clin. Infect. Dis., 24, 753–763.CrossRefGoogle ScholarPubMed
Whitley, R., Hilty, M., Haynes, R.et al. (1982). Vidarabine therapy of varicella in immunosuppressed patients. J. Pediatr., 101(1), 125–131.Google ScholarPubMed
Whitley, R., Soong, S., Dolin, R.et al. (1982). Early vidarabine to control the complications of herpes zoster in immunosuppressed patients. N. Engl. J. Med., 307, 971–975.CrossRefGoogle ScholarPubMed
Williams, V., Gershon, A., and Brunell, P. (1974). Serologic response to varicella-zoster membrane antigens measured by indirect immunofluorescence. J. Infect. Dis., 130, 669–672.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×