Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T20:36:33.541Z Has data issue: false hasContentIssue false

4 - Inputs from icebergs to the ocean

from Part I - The science of icebergs

Published online by Cambridge University Press:  05 December 2015

Grant R. Bigg
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Icebergs
Their Science and Links to Global Change
, pp. 82 - 100
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Roberts, C. G. D., The Iceberg. In: The Iceberg and other poems, Toronto: Ryerson (1934), lines 233–9, then extract from lines 5873.Google Scholar
Stephenson, G. R., Sprintall, J., Gille, S. T., et al., Subsurface melting of a free-floating Antarctic iceberg. Deep Sea Res. II, 58 (2011), 1336–45.CrossRefGoogle Scholar
Helly, J. J., Kaufmann, R. S., Stephenson, G. R. Jr. and Vernet, M., Cooling, dilution and mixing of ocean water by free-drifting icebergs in the Weddell Sea. Deep Sea Res. II, 58 (2011), 1346–63.CrossRefGoogle Scholar
Smith, K. L. Jr., Sherman, A. D., Shaw, T. J., et al., Icebergs as unique Lagrangian ecosystems in polar seas. Ann. Rev. Mar. Sci., 5 (2013), 269–87.CrossRefGoogle ScholarPubMed
Gladstone, R., Bigg, G. R. and Nicholls, K.W., Icebergs and fresh water fluxes in the Southern Ocean. J. Geophys. Res. Oceans, 106 (2001), 19903–15.Google Scholar
Levine, R. C. and Bigg, G. R., The sensitivity of the glacial ocean to Heinrich events from different sources, as modelled by a coupled atmosphere-iceberg-ocean model. Paleoceanography, 23 (2008), PA4213, doi:10.1029/2008PA001613.CrossRefGoogle Scholar
Jongma, J. I., Driesschaert, E., Fichefet, T., et al., The effect of dynamic-thermodynamic icebergs on the Southern Ocean climate in a three-dimensional model. Ocean Model., 26 (2009), 104–13.CrossRefGoogle Scholar
Martin, T. and Adcroft, A., Parameterizing the fresh-water flux from land ice to ocean with interactive icebergs in a coupled climate model. Ocean Model., 34 (2010), 111–24.CrossRefGoogle Scholar
Marsh, R., Ivchenko, V. O., Skliris, N., et al., NEMO-ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at coarse and eddy-permitting resolution. Geoscientific Mod. Dev., 8 (2015), 1547–62.Google Scholar
Wilton, D. J., Bigg, G. R. and Hanna, E., Modelling twentieth century global ocean circulation and iceberg flux at 48°N: implications for west Greenland iceberg discharge. Prog. Oceanogr., (2015), doi:10.1016/j.pocean.2015.07.003.CrossRefGoogle Scholar
Silva, T. A. M., Bigg, G. R. and Nicholls, K. W., The contribution of giant icebergs to the Southern Ocean freshwater flux. J. Geophys. Res. Oceans, 111 (2006), C03004, doi:10.1029/2004JC002843.CrossRefGoogle Scholar
Millero, F. J., Freezing point of seawater. UNESCO Tech. Papers Mar. Sci., 28 (1978), 2935.Google Scholar
Raiswell, R., Benning, L. G., Tranter, M. and Tulaczyk, S., Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt. Geochem. Trans., 9 (2008), doi:10.1186/1467-4866-9-7.CrossRefGoogle ScholarPubMed
Shaw, T. J., Raiswell, R., Hexel, C. R., et al., Input, composition and potential impact of terrigenous material from free-drifting icebergs. Deep Sea Res. II, 58 (2011), 1376–83.CrossRefGoogle Scholar
Smith, K. L. Jr., Robison, B. H., Helly, J. J., et al., Free-drifting icebergs: hot spots of chemical and biological enrichment in the Weddell Sea. Science, 317 (2007), 478–82.CrossRefGoogle ScholarPubMed
Schwarz, J. N. and Schodlok, M. P., Impact of drifting icebergs on surface phytoplankton biomass in the Southern Ocean: ocean colour remote sensing and in situ iceberg tracking. Deep Sea Res. I, 56 (2009), 1727–41.CrossRefGoogle Scholar
Cefarelli, A. O., Vernet, M. and Ferrario, M. E., Phytoplankton composition and abundance in relation to free-floating Antarctic icebergs. Deep Sea Res. II, 58 (2011), 1436–50.CrossRefGoogle Scholar
Bigg, G. R., The oceans and their interaction with the atmosphere. Weather, 56 (2001), 296304.CrossRefGoogle Scholar
Blain, S., Sarthou, G. and Laan, P., Distribution of dissolved iron during the natural iron-fertilization experiment KEOPS (Kerguelen Plateau, Southern Ocean). Deep Sea Res. II, 55 (2008), 594605.CrossRefGoogle Scholar
Nielsdottir, M. C., Bibby, T. S., Moore, C. M., et al., Seasonal and spatial dynamics of iron availability in the Scotia Sea. Mar. Chem., 130 (2012), 6272.CrossRefGoogle Scholar
Thomas, D. N. and Dieckmann, G. S., Antarctic sea ice – a habitat for extremophiles. Science, 295 (2002), 641–4.CrossRefGoogle ScholarPubMed
Vernet, M., Sines, K., Chakos, D., et al., Impacts on phytoplankton dynamics by free-drifting icebergs in the NW Weddell Sea. Deep Sea Res. II, 58 (2011), 1422–35.CrossRefGoogle Scholar
Kaufmann, R. S., Robison, B. H., Sherlock, R. E., et al., Composition and structure of macrozooplankton and micronekton communities in the vicinity of free-drifting Antarctic icebergs. Deep Sea Res. II, 58 (2011), 1469–84.CrossRefGoogle Scholar
Smith, K. L. Jr., Sherman, A. D., Shaw, T. J., et al., Carbon export associated with free-drifting icebergs in the Southern Ocean. Deep Sea Res. II, 58 (2011), 1485–96.Google Scholar
Shaw, T. J., Smith, K. L. Jr., Hexel, C. R., et al., 234Th-based carbon export around free-drifting icebergs in the Southern Ocean. Deep Sea Res. II, 58 (2011), 1384–91.CrossRefGoogle Scholar
Ruhl, H. A., Ellena, J. A., Wilson, R. C. and Helly, J., Seabird aggregation around free-drifting icebergs in the northwest Weddell Sea. Deep Sea Res. II, 58 (2011), 1497–504.CrossRefGoogle Scholar
Burnham, K. K. and Newton, I., Seasonal movements of Gyrfalcons Falco rusticolus include extensive periods at sea. Ibis, 153 (2011), 468–84.CrossRefGoogle Scholar
Mathews, E. A. and Pendleton, G. W., Declines in harbour seal (Phoca vitulina) numbers in Glacier Bay National Park, Alaska, 1992–2002. Mar. Mammal Sci., 22 (2006), 167–89.CrossRefGoogle Scholar
Gonzalez-Solis, J., Croxall, J. P. and Briggs, D. R., Activity patterns of giant petrels, Macronectes spp., using different foraging strategies. Mar. Biol., 140 (2002), 197204.Google Scholar
Ribic, C. A., Ainley, D. G. and Fraser, W. R., Habitat selection by marine mammals in the Marginal Ice-Zone. Ant. Sci., 3 (1991), 181–6.CrossRefGoogle Scholar
Sherlock, R. E., Reisenbichler, K. R., Bush, S. L., et al., Near-field zooplankton, ice-face biota and proximal hydrography of free-drifting Antarctic icebergs. Deep Sea Res. II, 58 (2011), 1457–68.CrossRefGoogle Scholar
Warren, S. G., Roesler, C. S., Morgan, V. I., et al., Green icebergs formed by freezing of organic-rich water to the base of Antarctic ice shelves. J. Geophys. Res. Oceans, 98 (1993), 6921–8.Google Scholar
Shepherd, L. D., Millar, C. D, Ballard, G., et al., Microevolution and mega-icebergs in the Antarctic. Proc. Nat. Acad. Sci. USA, 102 (2005), 16717–22.CrossRefGoogle ScholarPubMed
Kooyman, G. L., Ainley, D. G., Ballard, G. and Ponganis, P. J., Effects of giant icebergs on two emperor penguin colonies in the Ross Sea, Antarctica. Ant. Sci., 19 (2007), 31–8.Google Scholar
Wadham, J. L., De’ath, R., Monteiro, F. M., et al., The potential role of the Antarctic Ice Sheet in global biogeochemical cycles. Earth Env. Sci. Trans. Roy. Soc. Edinburgh, 104 (2013), 5567.CrossRefGoogle Scholar
Wolff, E. W., Ice sheets and nitrogen. Phil. Trans. Roy. Soc. B, 368 (2013), 20130127, doi:10.1098/rstb.2013.0127.CrossRefGoogle ScholarPubMed
Lawson, E. C., Wadhams, J. L., Tranter, M., et al., Greenland Ice Sheet exports labile organic carbon to the Arctic oceans. Biogeosci. Discuss., 10 (2013), 19311–45.Google Scholar
Rignot, E., Velicogna, I., van den Broecke, M. R., et al., Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38 (2011), L05503, doi:10.1029/2011GL046583.CrossRefGoogle Scholar
Tranvik, L. J., Downing, J. A., Cotner, J. B., et al., Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr., 54 (2009), 2298–314.CrossRefGoogle Scholar
Ciais, P., Sabine, C., Bala, G., et al., Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Stocker, T. F., Qin, D., Plattner, G.-K., et al. Cambridge: Cambridge University Press (2013), pp. 465570.Google Scholar
Gruber, N. and Galloway, J. N., An Earth-system perspective of the global nitrogen cycle. Nature, 451 (2008), 293–6.CrossRefGoogle ScholarPubMed
Wadley, M. R., Jickells, T. D. and Heywood, K. J., The role of iron sources and transport for Southern Ocean productivity. Deep Sea Res. I, 87 (2014), 8294.CrossRefGoogle Scholar
Arrigo, K. R. and van Dijken, G. L., Annual cycles of sea ice and phytoplankton in Cape Bathurst polynya, southeastern Beaufort Sea, Canadian Arctic. Geophys. Res. Lett., 31 (2004), L08304, doi:10.1029/2003GL018978.CrossRefGoogle Scholar
Bigg, G. R., Wadley, M. R., Stevens, D. P. and Johnson, J. A., Modelling the dynamics and thermodynamics of icebergs. Cold Regions Sci. Technol., 26 (1997), 113–35.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×