Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T07:16:30.838Z Has data issue: false hasContentIssue false

6 - Asymptotic Distributions of Instrumental Variables Statistics with Many Instruments

Published online by Cambridge University Press:  24 February 2010

Donald W. K. Andrews
Affiliation:
Yale University, Connecticut
James H. Stock
Affiliation:
Harvard University, Massachusetts
Get access

Summary

ABSTRACT

This paper extends Staiger and Stock's (1997) weak instrument asymptotic approximations to the case of many weak instruments by modeling the number of instruments as increasing slowly with the number of observations. It is shown that the resulting “many weak instrument” approximations can be calculated sequentially by letting first the sample size, and then the number of instruments, tend to infinity. The resulting distributions are given for k-class estimators and test statistics.

NTRODUCTION

Most of the literature on the distribution of statistics in instrumental variables (IV) regression assumes, either implicitly or explicitly, that the number of instruments (K2) is small relative to the number of observations (T); see Rothenberg's (1984) survey of Edgeworth approximations to the distributions of IV statistics. In some applications, however, the number of instruments can be large; for example, Angrist and Krueger (1991) had 178 instruments in one of their specifications. Sargan (1975), Kunitomo (1980), and Morimune (1983) provided early asymptotic treatments of many instruments. More recently, Bekker (1994) obtained first-order distributions of various IV estimators under the assumptions that K2 → ∞, T → ∞, and K2/Tc, 0 ≤ c < 1, when the so-called concentration parameter (μ2) is proportional to the sample size and the errors are Gaussian. Chao and Swanson (2002) have explored the consistency of IV estimators with weak instruments when the number of instruments is large, in the sense that K2 is also modeled as increasing to infinity, but more slowly than T.

This paper continues this line of research on the asymptotic distribution of IV estimators when there are many instruments.

Type
Chapter
Information
Identification and Inference for Econometric Models
Essays in Honor of Thomas Rothenberg
, pp. 109 - 120
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×