Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T04:58:08.425Z Has data issue: false hasContentIssue false

3 - Impacts of Climate Change on the Distributions of Allergenic Species

Published online by Cambridge University Press:  05 August 2016

Paul J. Beggs
Affiliation:
Macquarie University, Sydney
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alsos, I. G., Alm, T., Normand, S., Brochmann, C. (2009). Past and future range shifts and loss of diversity in dwarf willow (Salix herbacea L.) inferred from genetics, fossils and modelling. Global Ecology and Biogeography, 18(2), 223239.CrossRefGoogle Scholar
Altermatt, F. (2010). Climatic warming increases voltinism in European butterflies and moths. Proceedings of the Royal Society B: Biological Sciences, 277(1685), 12811287.CrossRefGoogle ScholarPubMed
Antonicelli, L., Bilò, M. B., Bonifazi, F. (2002). Epidemiology of Hymenoptera allergy. Current Opinion in Allergy and Clinical Immunology, 2(4), 341346.CrossRefGoogle ScholarPubMed
Archer, M. E. (2001). Changes in abundance of Vespula germanica and V. vulgaris in England. Ecological Entomology, 26(1), 17.CrossRefGoogle Scholar
Asano, E., Cassill, D. L. (2012). Modeling temperature-mediated fluctuation in colony size in the fire ant, Solenopsis invicta. Journal of Theoretical Biology, 305, 7077.CrossRefGoogle ScholarPubMed
Ascunce, M. S., Yang, C.-C., Oakey, J., et al. (2011). Global invasion history of the fire ant Solenopsis invicta. Science, 331(6020), 10661068.CrossRefGoogle ScholarPubMed
Bale, J. S., Masters, G. J., Hodkinson, I. D., et al. (2002). Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8(1), 116.CrossRefGoogle Scholar
Barbet-Massin, M., Rome, Q., Muller, F., et al. (2013). Climate change increases the risk of invasion by the Yellow-legged hornet. Biological Conservation, 157, 410.CrossRefGoogle Scholar
Bartomeus, I., Ascher, J. S., Wagner, D., et al. (2011). Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proceedings of the National Academy of Sciences of the United States of America, 108(51), 2064520649.CrossRefGoogle ScholarPubMed
Bässler, C., Hothorn, T., Brandl, R., Müller, J. (2013). Insects overshoot the expected upslope shift caused by climate warming. PLoS One, 8(6), e65842.CrossRefGoogle ScholarPubMed
Baum, K. A., Tchakerian, M. D., Thoenes, S. C., Coulson, R. N. (2008). Africanized honey bees in urban environments: a spatio-temporal analysis. Landscape and Urban Planning, 85(2), 123132.CrossRefGoogle Scholar
Baz, A., Cifrián, B., Martín-Vega, D. (2010). Distribution of the German wasp (Vespula germanica) and the common wasp (Vespula vulgaris) (Hymenoptera: Vespidae) in natural habitats in central Spain as shown by carrion-baited traps. Sociobiology, 55(3), 871882.Google Scholar
Beaumont, L. J., Gallagher, R. V., Thuiller, W., et al. (2009). Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Diversity and Distributions, 15(3), 409420.CrossRefGoogle Scholar
Beaumont, L. J., Hughes, L., Pitman, A. J. (2008). Why is the choice of future climate scenarios for species distribution modelling important? Ecology Letters, 11(11), 11351146.CrossRefGoogle ScholarPubMed
Beggs, J. R., Brockerhoff, E. G., Corley, J. C., et al. (2011). Ecological effects and management of invasive alien Vespidae. BioControl, 56(4), 505526.CrossRefGoogle Scholar
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4), 365377.CrossRefGoogle ScholarPubMed
Bertelsmeier, C., Guénard, B., Courchamp, F. (2013a). Climate change may boost the invasion of the Asian needle ant. PLoS One, 8(10), e75438.CrossRefGoogle ScholarPubMed
Bertelsmeier, C., Luque, G. M., Courchamp, F. (2013b). Global warming may freeze the invasion of big-headed ants. Biological Invasions, 15(7), 15611572.CrossRefGoogle Scholar
Bertelsmeier, C., Luque, G. M., Courchamp, F. (2013c). Increase in quantity and quality of suitable areas for invasive species as climate changes. Conservation Biology, 27(6), 14581467.CrossRefGoogle ScholarPubMed
Bertelsmeier, C., Luque, G. M., Hoffmann, B. D., Courchamp, F. (2015). Worldwide ant invasions under climate change. Biodiversity and Conservation, 24(1), 117128.CrossRefGoogle Scholar
Bolte, A., Czajkowski, T., Kompa, T. (2007). The north-eastern distribution range of European beech – a review. Forestry, 80(4), 413429.CrossRefGoogle Scholar
Bradley, B. A., Blumenthal, D. M., Wilcove, D. S., Ziska, L. H. (2010). Predicting plant invasions in an era of global change. Trends in Ecology and Evolution, 25(5), 310318.CrossRefGoogle Scholar
Brantley, S., Ford, C. R., Vose, J. M. (2013). Future species composition will affect forest water use after loss of eastern hemlock from southern Appalachian forests. Ecological Applications, 23(4), 777790.CrossRefGoogle ScholarPubMed
Brown, T. C., Tankersley, M. S. (2011). The sting of the honeybee: an allergic perspective. Annals of Allergy, Asthma & Immunology, 107(6), 463470.CrossRefGoogle ScholarPubMed
Buckley, L. B., Urban, M. C., Angilletta, M. J., et al. (2010). Can mechanism inform species’ distribution models? Ecology Letters, 13(8), 10411054.CrossRefGoogle ScholarPubMed
Cabrelli, A., Beaumont, L., Hughes, L. (2015). The impacts of climate change on Australian and New Zealand flora and fauna. In: Stow, A., Maclean, N., Holwell, G. I., eds. Austral Ark: The State of Wildlife in Australia and New Zealand. Cambridge: Cambridge University Press, pp. 6582.Google Scholar
Cariñanos, P., Casares-Porcel, M. (2011). Urban green zones and related pollen allergy: a review. Some guidelines for designing spaces with low allergy impact. Landscape and Urban Planning, 101(3), 205214.CrossRefGoogle Scholar
Cecchi, L., Malaspina, T. T., Albertini, R., et al. (2007). The contribution of long-distance transport to the presence of Ambrosia pollen in central northern Italy. Aerobiologia, 23(2), 145151.CrossRefGoogle Scholar
Chauvel, B., Cadet, É. (2011). Introduction et dispersion d’une espèce envahissante: le cas de l’ambroisie à feuilles d’armoise (Ambrosia artemisiifolia L.) en France. Acta Botanica Gallica, 158(3), 309327.CrossRefGoogle Scholar
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 10241026.CrossRefGoogle ScholarPubMed
Cho, Y. S., Lee, Y.-M., Lee, C.-K., et al. (2002). Prevalence of Pachycondyla chinensis venom allergy in an ant-infested area in Korea. The Journal of Allergy and Clinical Immunology, 110(1), 5457.CrossRefGoogle Scholar
Choi, M.-B., Kim, J.-K., Lee, J.-W. (2012). Increase trend of social hymenoptera (wasps and honeybees) in urban areas, inferred from moving-out case by 119 rescue services in Seoul of South Korea. Entomological Research, 42(6), 308319.CrossRefGoogle Scholar
Cirujeda, A., Aibar, J., Zaragoza, C. (2011). Remarkable changes of weed species in Spanish cereal fields from 1976 to 2007. Agronomy for Sustainable Development, 31(4), 675688.CrossRefGoogle Scholar
Comte, L., Buisson, L., Daufresne, M., Grenouillet, G. (2013). Climate-induced changes in the distribution of freshwater fish: observed and predicted trends. Freshwater Biology, 58(4), 625639.CrossRefGoogle Scholar
Cooling, M., Hartley, S., Sim, D. A., Lester, P. J. (2012). The widespread collapse of an invasive species: Argentine ants (Linepithema humile) in New Zealand. Biology Letters, 8(3), 430433.CrossRefGoogle ScholarPubMed
Cunze, S., Leiblein, M. C., Tackenberg, O. (2013). Range expansion of Ambrosia artemisiifolia in Europe is promoted by climate change. ISRN Ecology, 2013, 610126.CrossRefGoogle Scholar
Demain, J. G., Gessner, B. D., McLaughlin, J. B., Sikes, D. S., Foote, J. T. (2009). Increasing insect reactions in Alaska: is this related to changing climate? Allergy and Asthma Proceedings, 30(3), 238243.CrossRefGoogle ScholarPubMed
de Mello, M. H. S. H., da Silva, E. A., Natal, D. (2003). Abelhas africanizadas em área metropolitana do Brasil: abrigos e influências climáticas. Africanized bees in a metropolitan area of Brazil: shelters and climatic influences. Revista de Saúde Pública, 37(2), 237241.CrossRefGoogle Scholar
Dormann, C. F., Schymanski, S. J., Cabral, J., et al. (2012). Correlation and process in species distribution models: bridging a dichotomy. Journal of Biogeography, 39(12), 21192131.CrossRefGoogle Scholar
Drake, V. A. (1994). The influence of weather and climate on agriculturally important insects: an Australian perspective. Australian Journal of Agricultural Research, 45(3), 487509.CrossRefGoogle Scholar
Ehleringer, J. (1983). Ecophysiology of Amaranthus palmeri, a Sonoran Desert summer annual. Oecologia, 57(1–2), 107112.CrossRefGoogle Scholar
Elith, J., Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677697.CrossRefGoogle Scholar
Essl, F., Dullinger, S., Kleinbauer, I. (2009). Changes in the spatio-temporal patterns and habitat preferences of Ambrosia artemisiifolia during its invasion of Austria. Preslia, 81(2), 119133.Google Scholar
Estay, S. A., Lima, M. (2010). Combined effect of ENSO and SAM on the population dynamics of the invasive yellowjacket wasp in central Chile. Population Ecology, 52(2), 289294.CrossRefGoogle Scholar
Follak, S., Dullinger, S., Kleinbauer, I., Moser, D., Essl, F. (2013). Invasion dynamics of three allergenic invasive Asteraceae (Ambrosia trifida, Artemisia annua, Iva xanthiifolia) in central and eastern Europe. Preslia, 85(1), 4161.Google Scholar
Follak, S., Essl, F. (2013). Spread dynamics and agricultural impact of Sorghum halepense, an emerging invasive species in Central Europe. Weed Research, 53(1), 5360.CrossRefGoogle Scholar
Gallagher, R. V., Beaumont, L. J., Hughes, L., Leishman, M. R. (2010). Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. Journal of Ecology, 98(4), 790799.CrossRefGoogle Scholar
Gauthier, M.-M., Jacobs, D. F. (2011). Walnut (Juglans spp.) ecophysiology in response to environmental stresses and potential acclimation to climate change. Annals of Forest Science, 68(8), 12771290.CrossRefGoogle Scholar
Groves, R. (1999). Sleeper weeds. In: Bishop, A. C., Boersma, M., Barnes, C. D., eds. Proceedings of the 12th Australian Weeds Conference, 12–16 September 1999, Hobart, Tasmania. Hobart: Tasmanian Weed Society, pp. 632636.Google Scholar
Gutierrez, A. P., Ponti, L., Cossu, Q. A. (2009). Effects of climate warming on Olive and olive fly (Bactrocera oleae (Gmelin)) in California and Italy. Climatic Change, 95(1–2), 195217.CrossRefGoogle Scholar
Haight, K. L., Tschinkel, W. R. (2003). Patterns of venom synthesis and use in the fire ant, Solenopsis invicta. Toxicon, 42(6), 673682.CrossRefGoogle ScholarPubMed
Harrison, P. A., Berry, P. M., Butt, N., New, M. (2006). Modelling climate change impacts on species’ distributions at the European scale: implications for conservation policy. Environmental Science & Policy, 9(2), 116128.CrossRefGoogle Scholar
Hartley, S., Harris, R., Lester, P. J. (2006). Quantifying uncertainty in the potential distribution of an invasive species: climate and the Argentine ant. Ecology Letters, 9(9), 10681079.CrossRefGoogle ScholarPubMed
Hemery, G. E., Clark, J. R., Aldinger, E., et al. (2010). Growing scattered broadleaved tree species in Europe in a changing climate: a review of risks and opportunities. Forestry, 83(1), 6581.CrossRefGoogle Scholar
Henneken, R., Helm, S., Menzel, A. (2012). Meteorological influences on swarm emergence in honey bees (Hymenoptera: Apidae) as detected by crowdsourcing. Environmental Entomology, 41(6), 14621465.CrossRefGoogle ScholarPubMed
Hickler, T., Vohland, K., Feehan, J., et al. (2012). Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Global Ecology and Biogeography, 21(1), 5063.CrossRefGoogle Scholar
Hofgaard, A., Tømmervik, H., Rees, G., Hanssen, F. (2013). Latitudinal forest advance in northernmost Norway since the early 20th century. Journal of Biogeography, 40(5), 938949.CrossRefGoogle Scholar
Hyvönen, T., Luoto, M., Uotila, P. (2012). Assessment of weed establishment risk in a changing European climate. Agricultural and Food Science, 21(4), 348360.CrossRefGoogle Scholar
Iverson, L., Prasad, A., Matthews, S. (2008). Modeling potential climate change impacts on the trees of the northeastern United States. Mitigation and Adaptation Strategies for Global Change, 13(5–6), 487516.CrossRefGoogle Scholar
Jump, A. S., Hunt, J. M., Peñuelas, J. (2006). Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology, 12(11), 21632174.CrossRefGoogle Scholar
Karlsson, B. (2014). Extended season for northern butterflies. International Journal of Biometeorology, 58(5), 691701.CrossRefGoogle ScholarPubMed
Kasper, M. L., Reeson, A. F., Austin, A. D. (2008a). Colony characteristics of Vespula germanica (F.) (Hymenoptera, Vespidae) in a Mediterranean climate (southern Australia). Australian Journal of Entomology, 47(4), 265274.CrossRefGoogle Scholar
Kasper, M. L., Reeson, A. F., Mackay, D. A., Austin, A. D. (2008b). Environmental factors influencing daily foraging activity of Vespula germanica (Hymenoptera, Vespidae) in Mediterranean Australia. Insectes Sociaux, 55(3), 288295.CrossRefGoogle Scholar
Keenan, T., Serra, J. M., Lloret, F., Ninyerola, M., Sabate, S. (2011). Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters! Global Change Biology, 17(1), 565579.CrossRefGoogle Scholar
Kelly, A. E., Goulden, M. L. (2008). Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 1182311826.CrossRefGoogle ScholarPubMed
Kemp, S. F., deShazo, R. D., Moffitt, J. E., Williams, D. F., Buhner II, W. A. (2000). Expanding habitat of the imported fire ant (Solenopsis invicta): a public health concern. The Journal of Allergy and Clinical Immunology, 105(4), 683691.CrossRefGoogle ScholarPubMed
Kim, J.-H., Oh, J.-W., Lee, H.-B., et al. (2012). Changes in sensitization rate to weed allergens in children with increased weeds pollen counts in Seoul Metropolitan Area. Journal of Korean Medical Science, 27(4), 350355.CrossRefGoogle ScholarPubMed
Krushelnycky, P. D., Joe, S. M., Medeiros, A. C., Daehler, C. C., Loope, L. L. (2005). The role of abiotic conditions in shaping the long-term patterns of a high-elevation Argentine ant invasion. Diversity and Distributions, 11(4), 319331.CrossRefGoogle Scholar
Kullman, L. (2002). Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. Journal of Ecology, 90(1), 6877.CrossRefGoogle Scholar
Loacker, K., Kofler, W., Pagitz, K., Oberhuber, W. (2007). Spread of walnut (Juglans regia L.) in an Alpine valley is correlated with climate warming. Flora – Morphology, Distribution, Functional Ecology of Plants, 202(1), 7078.CrossRefGoogle Scholar
Loarie, S. R., Duffy, P. B., Hamilton, H., et al. (2009). The velocity of climate change. Nature, 462(7276), 10521055.CrossRefGoogle ScholarPubMed
Mao, Q., Ma, K., Wu, J., et al. (2013). Distribution pattern of allergenic plants in the Beijing metropolitan region. Aerobiologia, 29(2), 217231.CrossRefGoogle Scholar
Marigo, G., Peltier, J.-P., Girel, J., Pautou, G. (2000). Success in the demographic expansion of Fraxinus excelsior L. Trees, 15(1), 113.CrossRefGoogle Scholar
Masciocchi, M., Corley, J. (2013). Distribution, dispersal and spread of the invasive social wasp (Vespula germanica) in Argentina. Austral Ecology, 38(2), 162168.CrossRefGoogle Scholar
McDonald, A., Riha, S., DiTommaso, A., DeGaetano, A. (2009). Climate change and the geography of weed damage: analysis of U.S. maize systems suggests the potential for significant range transformations. Agriculture, Ecosystems & Environment, 130(3–4), 131140.CrossRefGoogle Scholar
Mlot, N. J., Tovey, C. A., Hu, D. L. (2011). Fire ants self-assemble into waterproof rafts to survive floods. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 76697673.CrossRefGoogle ScholarPubMed
Molaee, S. M., Ahmadi, K. A., Vazirianzadeh, B., Moravvej, S. A. (2014). A climatological study of scorpion sting incidence from 2007 to 2011 in the Dezful area of Southwestern Iran, using a time series model. Journal of Insect Science, 14(1), 151.CrossRefGoogle ScholarPubMed
Moriondo, M., Stefanini, F. M., Bindi, M. (2008). Reproduction of olive tree habitat suitability for global change impact assessment. Ecological Modelling, 218(1–2), 95109.CrossRefGoogle Scholar
Morrison, L. W., Porter, S. D., Daniels, E., Korzukhin, M. D. (2004). Potential global range expansion of the invasive fire ant, Solenopsis invicta. Biological Invasions, 6(2), 183191.CrossRefGoogle Scholar
Nitiu, D. S., Mallo, A. C. (2002). Incidence of allergenic pollen of Acer spp., Fraxinus spp. and Platanus spp. in the city of La Plata, Argentina: preliminary results. Aerobiologia, 18(1), 6571.CrossRefGoogle Scholar
Ortega, E. V., Vázquez, M. I. C., Tapia, J. G., Feria, A. J. M. (2004). Alergenos más frecuentes en pacientes alérgicos atendidos en un hospital de tercer nivel [Most common allergens in allergic patients admitted into a third-level hospital]. Revista Alergia México, 51(4), 145150.Google Scholar
Papillion, A. M., Hooper-Bùi, L. M., Strecker, R. M. (2011). Flooding increases volume of venom sac in Solenopsis invicta (Hymenoptera: Formicidae). Sociobiology, 57(2), 301308.Google Scholar
Pautasso, M., Aas, G., Queloz, V., Holdenrieder, O. (2013). European ash (Fraxinus excelsior) dieback – a conservation biology challenge. Biological Conservation, 158, 3749.CrossRefGoogle Scholar
Peñuelas, J., Boada, M. (2003). A global change-induced biome shift in the Montseny mountains (NE Spain). Global Change Biology, 9(2), 131140.CrossRefGoogle Scholar
Pereira, A. M., Chaud-Netto, J., Bueno, O. C., Arruda, V. M. (2010). Relationship among Apis mellifera L. stings, swarming and climate conditions in the city of Rio Claro, SP, Brazil. The Journal of Venomous Animals and Toxins including Tropical Diseases, 16(4), 647653.CrossRefGoogle Scholar
Pramova, E., Locatelli, B., Djoudi, H., Somorin, O. A. (2012). Forests and trees for social adaptation to climate variability and change. Wiley Interdisciplinary Reviews: Climate Change, 3(6), 581596.Google Scholar
Prasad, A. M., Gardiner, J. D., Iverson, L. R., Matthews, S. N., Peters, M. (2013). Exploring tree species colonization potentials using a spatially explicit simulation model: implications for four oaks under climate change. Global Change Biology, 19(7), 21962208.CrossRefGoogle ScholarPubMed
Qin, Z., Ditommaso, A., Wu, R. S., Huang, H. Y. (2014). Potential distribution of two Ambrosia species in China under projected climate change. Weed Research, 54(5), 520531.CrossRefGoogle Scholar
Richter, R., Berger, U. E., Dullinger, S., et al. (2013). Spread of invasive ragweed: climate change, management and how to reduce allergy costs. Journal of Applied Ecology, 50(6), 14221430.CrossRefGoogle Scholar
Roura-Pascual, N., Suarez, A. V., Gómez, C., et al. (2004). Geographical potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change. Proceedings of the Royal Society of London B, 271(1557), 25272534.CrossRefGoogle ScholarPubMed
Ruiz-Labourdette, D., Nogués-Bravo, D., Ollero, H. S., Schmitz, M. F., Pineda, F. D. (2012). Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. Journal of Biogeography, 39(1), 162176.CrossRefGoogle Scholar
Salo, L. F. (2005). Red brome (Bromus rubens subsp. madritensis) in North America: possible modes for early introductions, subsequent spread. Biological Invasions, 7(2), 165180.CrossRefGoogle Scholar
SandesJr, R. L., Oliveira, C. L., Ferreira, E. S., et al. (2009). Spatial analysis of migrating Apis mellifera colonies in Salvador, Bahia, Brazil. Geospatial Health, 4(1), 129134.CrossRefGoogle ScholarPubMed
Sang, W., Liu, X., Axmacher, J. C. (2011). Germination and emergence of Ambrosia artemisiifolia L. under changing environmental conditions in China. Plant Species Biology, 26(2), 125133.CrossRefGoogle Scholar
Scanlan, J. C., Vanderwoude, C. (2006). Modelling the potential spread of Solenopsis invicta Buren (Hymenoptera: Formicidae) (red imported fire ant) in Australia. Australian Journal of Entomology, 45(1), 19.CrossRefGoogle Scholar
Scott, J., Batchelor, K., Ota, N., Yeoh, P. (2008). Modelling Climate Change Impacts on Sleeper and Alert Weeds: Final Report. Wembley, Australia: CSIRO Entomology.Google Scholar
Searle, S. Y., Turnbull, M. H., Boelman, N. T., et al. (2012). Urban environment of New York City promotes growth in northern red oak seedlings. Tree Physiology, 32(4), 389400.CrossRefGoogle ScholarPubMed
Singer, B. D., Ziska, L. H., Frenz, D. A., Gebhard, D. E., Straka, J. G. (2005). Increasing Amb a 1 content in common ragweed (Ambrosia artemisiifolia) pollen as a function of rising atmospheric CO2 concentration. Functional Plant Biology, 32(7), 667670.CrossRefGoogle Scholar
Song, U., Mun, S., Ho, C.-H., Lee, E. J. (2012). Responses of two invasive plants under various microclimate conditions in the Seoul Metropolitan Region. Environmental Management, 49(6), 12381246.CrossRefGoogle ScholarPubMed
Staffolani, L., Velasco-Jiménez, M. J., Galán, C., Hruska, K. (2011). Allergenicity of the ornamental urban flora: ecological and aerobiological analyses in Córdoba (Spain) and Ascoli Piceno (Italy). Aerobiologia, 27(3), 239246.CrossRefGoogle Scholar
Steen, C. J., Janniger, C. K., Schutzer, S. E., Schwartz, R. A. (2005). Insect sting reactions to bees, wasps, and ants. International Journal of Dermatology, 44(2), 9194.CrossRefGoogle ScholarPubMed
Storkey, J., Stratonovitch, P., Chapman, D. S., Vidotto, F., Semenov, M. A. (2014). A process-based approach to predicting the effect of climate change on the distribution of an invasive allergenic plant in Europe. PLoS One, 9(2), e88156.CrossRefGoogle ScholarPubMed
Sugiyama, S. (2003). Geographical distribution and phenotypic differentiation in populations of Dactylis glomerata L. in Japan. Plant Ecology, 169(2), 295305.CrossRefGoogle Scholar
Tang, G., Beckage, B., Smith, B. (2012). The potential transient dynamics of forests in New England under historical and projected future climate change. Climatic Change, 114(2), 357377.CrossRefGoogle Scholar
Taramarcaz, P., Lambelet, C., Clot, B., Keimer, C., Hauser, C. (2005). Ragweed (Ambrosia) progression and its health risks: will Switzerland resist this invasion? Swiss Medical Weekly, 135(37–38), 538548.Google ScholarPubMed
Taylor, S., Kumar, L., Reid, N. (2012). Impacts of climate change and land-use on the potential distribution of an invasive weed: a case study of Lantana camara in Australia. Weed Research, 52(5), 391401.CrossRefGoogle Scholar
Treyger, A. L., Nowak, C. A. (2011). Changes in tree sapling composition within powerline corridors appear to be consistent with climatic changes in New York State. Global Change Biology, 17(11), 34393452.CrossRefGoogle Scholar
Truong, C., Palmé, A. E., Felber, F. (2007). Recent invasion of the mountain birch Betula pubescens ssp. tortuosa above the treeline due to climate change: genetic and ecological study in northern Sweden. Journal of Evolutionary Biology, 20(1), 369380.CrossRefGoogle ScholarPubMed
Vogl, G., Smolik, M., Stadler, L.-M., et al. (2008). Modelling the spread of ragweed: effects of habitat, climate change and diffusion. The European Physical Journal Special Topics, 161(1), 167173.CrossRefGoogle Scholar
Ward, S. M., Webster, T. M., Steckel, L. E. (2013). Palmer amaranth (Amaranthus palmeri): a review. Weed Technology, 27(1), 1227.CrossRefGoogle Scholar
Wayne, P., Foster, S., Connolly, J., Bazzaz, F., Epstein, P. (2002). Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. Annals of Allergy, Asthma & Immunology, 88(3), 279282.CrossRefGoogle Scholar
Webster, T. M., Nichols, R. L. (2012). Changes in the prevalence of weed species in the major agronomic crops of the southern United States: 1994/1995 to 2008/2009. Weed Science, 60(2), 145157.CrossRefGoogle Scholar
Wetterer, J. K. (2013). Exotic spread of Solenopsis invicta Buren (Hymenoptera: Formicidae) beyond North America. Sociobiology, 60(1), 5055.CrossRefGoogle Scholar
Willis, K. J., MacDonald, G. M. (2011). Long-term ecological records and their relevance to climate change predictions for a warmer world. Annual Review of Ecology, Evolution, and Systematics, 42, 267287.CrossRefGoogle Scholar
Woodall, C. W., Oswalt, C. M., Westfall, J. A., et al. (2009). An indicator of tree migration in forests of the eastern United States. Forest Ecology and Management, 257(5), 14341444.CrossRefGoogle Scholar
Wopfner, N., Gadermaier, G., Egger, M., et al. (2005). The spectrum of allergens in ragweed and mugwort pollen. International Archives of Allergy and Immunology, 138(4), 337346.CrossRefGoogle ScholarPubMed
Wyckoff, P. H., Bowers, R. (2010). Response of the prairie–forest border to climate change: impacts of increasing drought may be mitigated by increasing CO2. Journal of Ecology, 98(1), 197208.CrossRefGoogle Scholar
Xu, Y., Huang, J., Zhou, A., Zeng, L. (2012). Prevalence of Solenopsis invicta (Hymenoptera: Formicidae) venom allergic reactions in mainland China. Florida Entomologist, 95(4), 961965.CrossRefGoogle Scholar
Zhang, F., Li, Y., Guo, Z., Murray, B. R. (2009). Climate warming and reproduction in Chinese alligators. Animal Conservation, 12(2), 128137.CrossRefGoogle Scholar
Zhu, K., Woodall, C. W., Clark, J. S. (2012). Failure to migrate: lack of tree range expansion in response to climate change. Global Change Biology, 18(3), 10421052.CrossRefGoogle Scholar
Ziska, L. H., Caulfield, F. A. (2000). Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia), a known allergy-inducing species: implications for public health. Australian Journal of Plant Physiology, 27(10), 893898.Google Scholar
Ziska, L. H., Gebhard, D. E., Frenz, D. A., et al. (2003). Cities as harbingers of climate change: common ragweed, urbanization, and public health. The Journal of Allergy and Clinical Immunology, 111(2), 290295.CrossRefGoogle ScholarPubMed
Ziska, L., Knowlton, K., Rogers, C., et al. (2011). Recent warming by latitude associated with increased length of ragweed pollen season in central North America. Proceedings of the National Academy of Sciences of the United States of America, 108(10), 42484251.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×