Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T10:47:46.286Z Has data issue: false hasContentIssue false

Chapter 12 - Integrating conservation biological control into IPM systems

Published online by Cambridge University Press:  01 September 2010

Edward B. Radcliffe
Affiliation:
University of Minnesota
William D. Hutchison
Affiliation:
University of Minnesota
Get access

Summary

Most agricultural production systems harbor many species of herbivorous arthropods capable of damaging crops. However, the vast majority of these species do not reach damaging levels. In this chapter we explore the role of predators and parasitoids in suppressing pest abundance and damage. In particular, we focus on factors that influence the abundance of beneficial arthropods in agricultural landscapes. Finally, we address ways to manage these systems to increase the effectiveness of beneficial arthropods.

There are three primary means by which managers influence biological control of insects. Importation of natural enemies against pests of exotic origin is sometimes referred to as classical biological control, while augmentation is the rearing and release of natural enemies already present to increase their effectiveness. Conservation of natural enemies involves improving conditions for existing natural enemies by reducing factors which interfere with natural enemies or increasing access to resources that they require to be successful (Ehler, 1998). Habitat management is considered a subset of conservation practices that focus on manipulating habitats within agricultural landscapes to provide resources to enhance natural enemies (Landis et al., 2000).

Managing agricultural landscapes to improve biological control relies on a detailed understanding of factors that influence both pest and natural enemy abundance (Fig. 12.1). We begin by examining landscape processes that influence pests and beneficial insects at larger spatial scales. Next we focus on processes that influence these organisms and their interactions at local scales.

Type
Chapter
Information
Integrated Pest Management
Concepts, Tactics, Strategies and Case Studies
, pp. 151 - 162
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alomar, O., Goula, M. & Albajes, R. (2002). Colonization of tomato fields by predatory mirid bugs (Hemiptera: Heteroptera) in northern Spain. Agriculture Ecosystems and Environment, 89, 105–115.CrossRefGoogle Scholar
Baggen, L. R., Gurr, G. M. & Meats, A. (1999). Flowers in tri-trophic systems: mechanisms allowing selective exploitation by insect natural enemies for conservation biological control. Entomologia Experimentalis et Applicata, 91, 155–161.CrossRefGoogle Scholar
Barbosa, P. (1998). Conservation Biological Control. San Diego, CA: Academic Press.Google Scholar
Bommarco, R. (1998). Reproduction and energy reserves of a predatory carabid beetle relative to agroecosystem complexity. Ecological Applications, 8, 846–853.CrossRefGoogle Scholar
Brodeur, J. & Rosenheim, J. A. (2000). Intraguild interactions in aphid parasitoids. Entomologia Experimentalis et Applicata, 97, 93–108.CrossRefGoogle Scholar
Bugg, R. L., Ehler, I. E. & Wilson, L. T. (1987). Effect of common knotweed (Polygonum aviculare) on abundance and efficiency of insect predators of crop pests. Hilgardia, 55, 1–51.CrossRefGoogle Scholar
Cardinale, B. J., Harvey, C. T., Gross, K. & Ives, A. R. (2003). Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystem. Ecology Letters, 6, 857–865.CrossRefGoogle Scholar
Chang, G. C. & Kareiva, P. (1999). The case of indigenous generalists in biological control. In Theoretical Approaches to Biological Control, ed. Cornell, H. V., pp. 103–115. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Colfer, R. G. & Rosenheim, J. A. (2001). Predation on immature parasitoids and its impact on aphid suppression. Oecologia, 126, 292–304.CrossRefGoogle ScholarPubMed
Colley, M. R. & Luna, J. M. (2000). Relative attractiveness of potential beneficial insectary plants to aphidophagous hoverflies (Diptera: Syrphidae). Environmental Entomology, 29, 1054–1059.CrossRefGoogle Scholar
Colunga-Garcia, M., Gage, S. H. & Landis, D. A. (1997). Response of an assemblage of Coccinellidae (Coleoptera) to a diverse agricultural landscape. Environmental Entomology, 26, 797–804.CrossRefGoogle Scholar
Corbett, A. & Rosenheim, J. A. (1996). Impact of a natural enemy overwintering refuge and its interaction with the surrounding landscape. Ecological Entomology, 21, 155–164.CrossRefGoogle Scholar
Costamagna, A. C. & Landis, D. A. (2006). Predators exert top–down control of soybean aphid across a gradient of agricultural management systems. Ecological Applications, 16, 1619–1628.CrossRefGoogle ScholarPubMed
Costamagna, A. C., Landis, D. A. & DiFonzo, C. D. (2007). Suppression of A. glycines by generalist predators results in a trophic cascade in soybean. Ecological Applications, 17, 441–451.CrossRefGoogle Scholar
Croft, B. A. (1990). Arthropod Biological Control Agents and Pesticides. New York: John Wiley.Google Scholar
DeBach, P. & Rosen, D. (1991). Biological Control by Natural Enemies. Cambridge, UK: Cambridge University Press.Google Scholar
Belder, E., Elderson, J., Brink, W. J. & Schelling, G. (2002). Effect of woodlots on thrips density in leek fields: a landscape analysis. Agriculture Ecosystems and Environment, 91, 139–145.CrossRefGoogle Scholar
Desneux, N., O'Neil, R. J. & Yoo, H. J. S. (2006). Suppression of population growth of the soybean aphid, Aphis glycines Matsumura, by predators: the identification of a key predator and the effects of prey dispersion, predator abundance, and temperature. Environmental Entomology, 35, 1342–1349.CrossRefGoogle Scholar
Desneux, N., Decourtye, A. & Delpuech, J. M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81–106.CrossRefGoogle ScholarPubMed
Dyer, L. E. & Landis, D. A. (1996). Effects of habitat, temperature, and sugar availability on longevity of Eriborus terebrans (Hymenoptera: Ichneumonidae). Environmental Entomology, 25, 1192–1201.CrossRefGoogle Scholar
Ehler, L. E. (1998). Conservation biological control: past, present, and future. In Conservation Biological Control, ed. Barbosa, P., pp. 1–8. San Diego, CA: Academic Press.Google Scholar
Elliott, N. C., Kieckhefer, R. W., Lee, J. H. & French, B. W. (1999). Influence of within-field and landscape factors on aphid predator populations in wheat. Landscape Ecology, 14, 239–252.CrossRefGoogle Scholar
Elliott, N. C., Kieckhefer, R. W., Michels, G. J. & Giles, K. L. (2002). Predator abundance in alfalfa fields in relation to aphids, within-field vegetation, and landscape matrix. Environmental Entomology, 31, 253–260.CrossRefGoogle Scholar
Eubanks, M. D. & Denno, R. F. (1999). The ecological consequences of variation in plants and prey for an omnivorous insect. Ecology, 80, 1253–1266.CrossRefGoogle Scholar
Fiedler, A. K. & Landis, D. A. (2007a). Attractiveness of Michigan native plants to arthropod natural enemies and herbivores. Environmental Entomology, 36, 751–776.CrossRefGoogle ScholarPubMed
Fiedler, A. K. & Landis, D. A. (2007b). Plant characteristics associated with natural enemy attractiveness to Michigan native plants. Environmental Entomology, 36, 871–877.Google Scholar
Forehand, L. M., Orr, D. B. & Linker, H. M. (2006). Evaluation of a commercially available beneficial insect habitat for management of Lepidoptera pests. Journal of Economic Entomology, 99, 641–647.CrossRefGoogle ScholarPubMed
Fortin, M. & Mauffette, Y. (2001). Forest edge effects on the biological performance of the forest tent caterpillar (Lepidoptera: Lasiocampidae) in sugar maple stands. Ecoscience, 8, 164–172.CrossRefGoogle Scholar
Fox, T. B., Landis, D. A., Cardoso, F. F. & DiFonzo, C. D. (2004). Predators suppress Aphis glycines Matsumura population growth in soybean. Environmental Entomology, 33, 608–618.CrossRefGoogle Scholar
Frank, S. D. & Shrewsbury, P. M. (2004). Effect of conservation strips on the abundance and distribution of natural enemies and predation of Agrotis ipsilon (Lepidoptera: Noctuidae) on golf course fairways. Environmental Entomology, 33, 1662–1672.CrossRefGoogle Scholar
Freeman-Long, R. F., Corbett, , Lamb, A., , C.et al. (1998). Beneficial insects move from flowering plants to nearby crops. California Agriculture, 52, 23–26.CrossRefGoogle Scholar
Gardiner, M. M. & Landis, D. A. (2007). Impact of intraguild predation by adult Harmonia axyridis (Coleoptera: Coccinellidae) on Aphis glycines (Hemiptera: Aphididae) biological control in cage studies. Biological Control, 40, 386–395.CrossRefGoogle Scholar
Gurr, G. M., Emden, H. F. & Wratten, S. D. (1998). Habitat manipulation and natural enemy efficiency: implications for the control of pests. In Conservation Biological Control, ed. Barbosa, P., pp. 155–183. San Diego, CA: Academic Press.CrossRefGoogle Scholar
Harmon, J. P., Ives, A. R., Losey, J. E., Olson, A. C. & Rauwald, K. S. (2000). Coleomegilla maculata (Coleoptera: Coccinellidae) predation on pea aphids promoted by proximity to dandelions. Oecologia, 125, 543–548.CrossRefGoogle ScholarPubMed
Hickman, J. M. & Wratten, S. D. (1996). Use of Phacelia tanacetifolia strips to enhance biological control of aphids by hoverfly larvae in cereal fields. Journal of Economic Entomology, 89, 832–840.CrossRefGoogle Scholar
Hossain, Z., Gurr, G. M., Wratten, S. D. & Raman, A. (2002). Habitat manipulation in lucerne Medicago sativa: arthropod population dynamics in harvested and “refuge” crop strips. Journal of Applied Ecology, 39, 445–454.CrossRefGoogle Scholar
Hunter, M. D. (2002). Landscape structure, habitat fragmentation, and the ecology of insects. Agricultural and Forest Entomology, 4, 159–166.CrossRefGoogle Scholar
Idris, A. B. & Grafius, E. (1995). Wildflowers as nectar sources for Diadegma insulare (Hymenoptera: Ichneumonidae), a parasitoid of diamondback moth (Lepidoptera: Yponomeutidae). Environmental Entomology, 24, 1726–1735.CrossRefGoogle Scholar
Johnson, M. W. & Tabashnik, B. E. (1999). Enhanced biological control through pesticide selectivity. In Handbook of Biological Control, eds. Bellows, T. S. & Fisher, T. W., pp. 297–317. San Diego, CA: Academic Press.CrossRefGoogle Scholar
Landis, D. A. & Werf, W. (1997). Early-season predation impacts the establishment of aphids and spread of beet yellows virus in sugar beet. Entomophaga, 42, 499–516.CrossRefGoogle Scholar
Landis, D. A., Wratten, S. D. & Gurr, G. M. (2000). Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, 45, 175–201.CrossRefGoogle ScholarPubMed
Lang, A. (2003). Intraguild interference and biocontrol effects of generalist predators in a winter wheat field. Oecologia, 134, 144–153.CrossRefGoogle Scholar
Lee, J. C. & Heimpel, G. E. (2005). Impact of flowering buckwheat on Lepidopteran cabbage pests and their parasitoids at two spatial scales. Biological Control, 34, 290–301.CrossRefGoogle Scholar
Lee, J. C., Menalled, F. B. & Landis, D. A. (2001). Refuge habitats modify impact of insecticide disturbance on carabid beetle communities. Journal of Applied Ecology, 38, 472–483.CrossRefGoogle Scholar
Lemke, A. & Poehling, H. M. (2002). Sown weed strips in cereal fields: overwintering site and “source” habitat for Oedothorax apicatus (Blackwall) and Erigone atra (Blackwall) (Araneae: Erigonidae). Agriculture Ecosystems and Environment, 90, 67–80.CrossRefGoogle Scholar
Losey, J. E. & Denno, R. F. (1998). Positive predator–predator interactions: enhanced predation rates and synergistic suppression of aphid populations. Ecology, 79, 2143–2152.Google Scholar
Mansfield, S., Dillon, M. L. & Whitehouse, M. E. A. (2006). Are arthropod communities in cotton really disrupted? An assessment of insecticide regimes and evaluation of the beneficial disruption index. Agriculture Ecosystems and Environment, 113, 326–335.CrossRefGoogle Scholar
Marino, P. C. & Landis, D. A. (1996). Effect of landscape structure on parasitoid diversity and parasitism in agroecosystems. Ecological Applications, 6, 276–284.CrossRefGoogle Scholar
Menalled, F. D., Marino, P. C., Gage, S. H. & Landis, D. A. (1999). Does agricultural landscape structure affect parasitism and parasitoid diversity? Ecological Applications, 9, 634–641.CrossRefGoogle Scholar
Menalled, F. D., Costamagna, A. C., Marino, P. C. & Landis, D. A. (2003). Temporal variation in the response of parasitoids to agricultural landscape structure. Agriculture Ecosystems and Environment, 96, 29–35.CrossRefGoogle Scholar
Müller, C. B. & Brodeur, J. (2002). Intraguild predation in biological control and conservation biology. Biological Control, 25, 216–223.CrossRefGoogle Scholar
Nicholls, C. I., Parrella, M. & Altieri, M. A. (2000). Reducing the abundance of leafhoppers and thrips in a northern California organic vineyard through maintenance of full season floral diversity with summer cover crops. Agricultural and Forest Entomology, 2, 107–113.CrossRefGoogle Scholar
Östman, O. (2002). Distribution of bird cherry-oat aphids (Rhopalosiphum padi (L.)) in relation to landscape and farming practices. Agriculture Ecosystems and Environment, 93, 67–71.CrossRefGoogle Scholar
Östman, O., Ekbom, B. & Bengtsson, J. (2001). Landscape heterogeneity and farming practice influence biological control. Basic and Applied Ecology, 2, 365–371.CrossRefGoogle Scholar
Patt, J. M., Hamilton, G. C. & Lashomb, J. H. (1997). Impact of strip-insectary intercropping with flowers on conservation biological control of the Colorado potato beetle. Advances in Horticultural Science, 11, 175–181.Google Scholar
Pickett, C. H., Roltsch, W. & Corbett, A. (2004). The role of a rubidium marked natural enemy refuge in the establishment and movement of Bemisia parasitoids. International Journal of Pest Management, 50, 183–191.CrossRefGoogle Scholar
Pike, K. S., Stary, , Miller, P., , T.et al. (1999). Host range and habitats of the aphid parasitoid Diaeretiella rapae (Hymenoptera: Aphidiidae) in Washington state. Environmental Entomology, 28, 61–71.CrossRefGoogle Scholar
Polis, G. A., Myers, C. A. & Holt, R. D. (1989). The ecology and evolution of intraguild predation: potential competitors that eat each other. Annual Review of Ecology and Systematics, 20, 297–330.CrossRefGoogle Scholar
Pontin, D. R., Wade, M. R., Kehrli, P. & Wratten, S. D. (2006). Attractiveness of single and multiple species flower patches to beneficial insects in agroecosystems. Annals of Applied Biology, 148, 39–47.CrossRefGoogle Scholar
Prasad, R. P. & Snyder, W. E. (2006a). Polyphagy complicates conservation biological control that targets generalist predators. Journal of Applied Ecology, 43, 343–352.CrossRefGoogle Scholar
Prasad, R. P. & Snyder, W. E. (2006b). Diverse trait-mediated interactions in a multi-predator, multi-prey community. Ecology, 87, 1131–1137.CrossRefGoogle Scholar
Pywell, R. F., James, , Herbert, K. L., , I.et al. (2005). Determinants of overwintering habitat quality for beetles and spiders on arable farmland. Biological Conservation, 123, 79–90.CrossRefGoogle Scholar
Rebek, E. J., Sadof, C. S. & Hanks, L. M. (2005). Manipulating the abundance of natural enemies in ornamental landscapes with floral resource plants. Biological Control, 33, 203–216.CrossRefGoogle Scholar
Roland, J. & Embree, D. G. (1995). Biological control of the winter moth. Annual Review of Entomology, 40, 475–492.CrossRefGoogle Scholar
Rosenheim, J. A. (2001). Source–sink dynamics for a generalist insect predator in habitats with strong higher-order predation. Ecological Monographs, 71, 93–116.Google Scholar
Rosenheim, J. A. & Harmon, J. P. (2006). The influence of intraguild predation on the suppression of a shared prey population: an empirical reassessment. In Trophic and Guild Interactions in Biological Control, ed. Boivin, G., pp. 1–20. Dordrecht, Netherlands: Springer-Verlag.Google Scholar
Rosenheim, J. A., Kaya, H. K., Ehler, L. E., Marois, J. J. & Jaffee, B. A. (1995). Intraguild predation among biological control agents: theory and evidence. Biological Control, 5, 303–335.CrossRefGoogle Scholar
Ruberson, J. R., Nemoto, H. & Hirose, Y. (1998). Pesticides and conservation of natural enemies in pest management. In Conservation Biological Control, ed. Barbosa, P., pp. 207–220. San Diego, CA: Academic Press.CrossRefGoogle Scholar
Schmidt, M. H. & Tscharntke, T. (2005). Landscape context of sheetweb spider (Araneae: Linyphiidae) abundance in cereal fields. Journal of Biogeography, 32, 467–473.CrossRefGoogle Scholar
Schmidt, M. H., Roschewitz, I., Thies, C. & Tscharntke, T. (2005). Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. Journal of Applied Ecology, 42, 281–287.CrossRefGoogle Scholar
Sih, A., Englund, G. & Wooster, D. (1998). Emergent impacts of multiple predators on prey. Trends in Ecology and Evolution, 13, 350–355.CrossRefGoogle ScholarPubMed
Snyder, W. E. & Wise, D. H. (1999). Predator interference and the establishment of generalist predator populations for biocontrol. Biological Control, 15, 283–292.CrossRefGoogle Scholar
Snyder, W. E. & Wise, D. H. (2001). Contrasting trophic cascades generated by a community of generalist predators. Ecology, 82, 1571–1583.CrossRefGoogle Scholar
Snyder, W. E., Snyder, G. B., Finke, D. L. & Straub, C. S. (2006). Predator biodiversity strengthens herbivore suppression. Ecology Letters, 9, 789–796.CrossRefGoogle ScholarPubMed
Stark, J. D. & Banks, J. E. (2003). Population-level effects of pesticides and other toxicants on arthropods. Annual Review of Entomology, 48, 505–519.CrossRefGoogle ScholarPubMed
Straub, C. S. & Snyder, W. E. (2006). Species identity dominates the relationship between predator biodiversity and herbivore suppression. Ecology, 87, 277–282.CrossRefGoogle ScholarPubMed
Symondson, W. O. C., Sunderland, K. D. & Greenstone, M. H. (2002). Can generalist predators be effective biocontrol agents? Annual Review of Entomology, 47, 561–594.CrossRefGoogle ScholarPubMed
Thies, C., Steffan-Dewenter, I. & Tscharntke, T. (2003). Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos, 101, 18–25.CrossRefGoogle Scholar
Thies, C. & Tscharntke, T. (1999). Landscape structure and biological control in agroecosystems. Science, 285, 893–895.CrossRefGoogle ScholarPubMed
Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecology Letters, 8, 857–874.CrossRefGoogle Scholar
Emden, H. F. (2003). Conservation biological control: from theory to practice. In Proceedings of the International Symposium on Biological Control of Arthropods, Honolulu, HI, January 14–18, 2002, ed. Driesch, R., pp. 199–208. Morgantown, WV: US Department of Agriculture Forest Service.Google Scholar
Varchola, J. M. & Dunn, J. P. (2001). Influence of hedgerow and grassy field borders on ground beetle (Coleoptera: Carabidae) activity in fields of corn. Agriculture Ecosystems and Environment, 83, 153–163.CrossRefGoogle Scholar
Weibull, A. C., Östman, O. & Granqvist, A. (2003). Species richness in agroecosystems: the effect of landscape, habitat and farm management. Biodiversity and Conservation, 12, 1335–1355.CrossRefGoogle Scholar
Weiser, L. A., Obrycki, J. J. & Giles, K. L. (2003). Within-field manipulation of potato leafhopper (Homoptera: Cicadellidae) and insect predator populations using an uncut alfalfa strip. Journal of Economic Entomology, 96, 1184–1192.CrossRefGoogle ScholarPubMed
Wilkinson, T. K. & Landis, D. A. (2005). Habitat diversification in biological control: the role of plant resources. In Plant-Provided Food for Carnivorous Insects, eds. Wackers, F. L., Rijn, P. C. J. & Bruin, J., pp. 305–325. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Winkler, K., Wackers, F., Bukovinszkine-Kiss, G. & Lenteren, J. (2006). Sugar resources are vital for Diadegma semiclausum fecundity under field conditions. Basic and Applied Ecology, 7, 133–140.CrossRefGoogle Scholar
With, K. A. & King, A. W. (1999). Extinction thresholds for species in fractal landscapes. Conservation Biology, 13, 314–326.CrossRefGoogle Scholar
Witmer, J. E., Hough-Goldstein, J. A. & Pesek, J. D. (2003). Ground-dwelling and foliar arthropods in four cropping systems. Environmental Entomology, 32, 366–376.CrossRefGoogle Scholar
Wratten, S. D., Bowie, , Hickman, M. H., , J. M.et al. (2003). Field boundaries as barriers to movement of hoverflies (Diptera: Syrphidae) in cultivated land. Oecologia, 134, 605–611.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×