Skip to main content
  • Print publication year: 2015
  • Online publication date: December 2015

6 - Landau Fermi-liquid theory

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Introduction to Many-Body Physics
  • Online ISBN: 9781139020916
  • Book DOI:
Please enter your name
Please enter a valid email address
Who would you like to send this to *
[1] D., Pines and D., Bohm, A collective description of electron interactions: II. collective vs individual particle aspects of the interactions, Phys. Rev., vol. 85, p. 338, 1952.
[2] L. D., Landau, The theory of a Fermi liquid, J. Exp. Theor. Phys., vol. 3, p. 920, 1957.
[3] A., Abrikosov and I., Khalatnikov, The theory of a Fermi liquid: the properties of liquid 3He at low temperatures, Rep. Prog. Phys., vol. 22, p. 329, 1959.
[4] P., Nozières and D., Pines, The Theory of Quantum Liquids, W. A., Benjamin, 1966.
[5] G., Baym and C., Pethick, Landau Fermi-Liquid Theory: Concepts and Applications, John Wiley & Sons, 1991.
[6] W., B.Ard, G. K., Walters, and W. M., Fairbank, Fermi–Dirac degeneracy in liquid 3He below 1K, Phys. Rev., vol. 95, p. 566, 1954.
[7] L. D., Landau, Oscillations in a Fermi liquid, J. Exp. Theor. Phys., vol. 5, p. 101, 1957.
[8] G. G., Low and T. M., Holden, Proc. Phys. Soc., London, vol. 89, p. 119, 1966.
[9] A., Casey, H., Patel, J., Nyéki, B. P., Cowah, and J., Sanuders, Evidence for a Mott–Hubbard transition in a two-dimensional 3He fluid monolayer, Phys. Rev. Lett., vol. 90, p. 115301, 2003.
[10] V. P., Silin, Theory of a degenerate electron liquid, J. Exp. Theor. Phys., vol. 6, p. 387, 1957.
[11] V. P., Silin, Theory of the anomalous skin effect in metals, J. Exp. Theor. Phys., vol. 6, p. 985, 1957.
[12] P., Morel and P., Nozières, Lifetime effects in condensed helium-3, Phys. Rev., vol. 126, p. 1909, 1962.
[13] G. D., Mahan, Many-Particle Physics, Plenum, 3rd edn., 2000.
[14] H., Tsujii, H., Kontani, and K., Yoshimora, Universality in heavy fermion systems with general degeneracy, Phys. Rev. Lett., vol. 94, p. 057201, 2005.
[15] M., Rice, Electron–electron scattering in transition metals, Phys. Rev. Lett., vol. 20, no. 25, p. 1439, 1968.
[16] K., Kadowaki and S. B., Woods, Universal relationship of the resistivity and specific heat in heavy- fermion compounds, Solid State Commun., vol. 58, p. 507, 1986.
[17] L. D., Landau, On the theory of the Fermi liquid, J. Exp. Theor. Phys., vol. 8, p. 70, 1959.
[18] V. M., Galitskii, The energy spectrum of a non-ideal Fermi gas, J. Exp. Theor. Phys., vol. 7, p. 104, 1958.
[19] P., Nozières and J., Luttinger, Derivation of the Landau theory of Fermi liquids. I: formal preliminaries, Phys. Rev., vol. 127, p. 1423, 1962.
[20] J. M., Luttinger and P., Nozières, Derivation of the Landau theory of Fermi liquids. II: equilibrium properties and transport equation, Phys. Rev., vol. 127, p. 1431, 1962.
[21] F. D. M, Haldane, General relation of correlation exponents and spectral properties of one-dimensional Fermi systems: application to the anisotropic s = 1/2 Heisenberg chain, Phys. Rev. Lett., vol. 45, no. 16, p. 1358, 1980.
[22] G., Benfatto and G., Gallavotti, Renormalization-group approach to the theory of the Fermi surface, Phys. Rev. B, vol. 42, no. 16, p. 9967, 1990.
[23] R., Shankar, Renormalization-group approach to interacting fermions, Rev. Mod. Phys., vol. 66, no. 1, p. 129, 1994.