Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T07:33:06.470Z Has data issue: false hasContentIssue false

12 - A comparison of mechanisms underlying the CS–US association and the CS–nothing association

from Current topics in latent inhibition research

Published online by Cambridge University Press:  04 August 2010

Robert Lubow
Affiliation:
Tel-Aviv University
Ina Weiner
Affiliation:
Tel-Aviv University
Get access

Summary

The ability to adapt to environmental change is essential for the survival of any organism. Adaptations to environmental change include the ability to learn associations and the ability to modify those associations. Numerous studies have demonstrated that deficits in the ability to modify or modulate learning are associated with multiple mental illnesses and disorders (Amieva, Phillips, Della, & Henry, 2004; Baron-Cohen & Belmonte, 2005; Baruch, Hemsley, & Gray, 1988; Clark & Goodwin, 2004; Kaplan et al., 2006; Lubow & Gewirtz, 1995; Lubow & Josman, 1993; Vaitl, Lipp, Bauer et al., 1999; Weiner, Schiller, & Gaisler-Salomon, 2003). Because of the strong link between mental illness and deficits in processes that modulate learning, understanding the neural substrates of these processes could facilitate development of treatments for many diseases. Latent inhibition is one process that can modulate learned associations and is also altered in patients with mental illness (see the chapters on schizophrenia in this book for an in-depth discussion).

As described in preceding chapters in this book, latent inhibition is the phenomenon in which pre-exposure to a conditioned stimulus (CS) prior to the pairing of this CS with an unconditioned stimulus (US) decreases the subsequent conditioned responses (CR). There are three phases of latent inhibition: (1) pre-exposure to the CS, (2) training (or conditioning), and (3) testing. The presence of latent inhibition is identified by comparing the degree of conditioned responding between the CS pre-exposed group and the non-pre-exposed group.

Type
Chapter
Information
Latent Inhibition
Cognition, Neuroscience and Applications to Schizophrenia
, pp. 252 - 275
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, T., & Kandel, E. (1998). Positive and negative regulatory mechanisms that mediate long-term memory storage. Brain Research. Brain Research Reviews, 26, 360–378.CrossRefGoogle ScholarPubMed
Abel, T., Nguyen, P. V., Barad, M., et al. (1997). Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell, 88, 615–626.CrossRefGoogle ScholarPubMed
Ackil, J. K., Carman, H. M., Bakner, L., & Riccio, D. C. (1992). Reinstatement of latent inhibition following a reminder treatment in a conditioned taste aversion paradigm. Behavioral and Neural Biology, 58, 232–235.CrossRefGoogle Scholar
Adams, J. P., & Sweatt, J. D. (2002). Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annual Review of Pharmacology and Toxicology, 42, 135–163.CrossRefGoogle ScholarPubMed
Ahi, J., Radulovic, J., & Spiess, J. (2004). The role of hippocampal signaling cascades in consolidation of fear memory. Behavioral Brain Research, 149, 17–31.CrossRefGoogle ScholarPubMed
Amieva, H., Phillips, L. H., Della, S. S., & Henry, J. D. (2004). Inhibitory functioning in Alzheimer's disease. Brain, 127, 949–964.CrossRefGoogle ScholarPubMed
Ammassari-Teule, M., Passino, E., Restivo, L., & Marsanich, B. (2000). Fear conditioning in C57/BL/6 and DBA/2 mice: variability in nucleus accumbens function according to the strain predisposition to show contextual- or cue-based responding. European Journal of Neuroscience, 12, 4467–4474.Google ScholarPubMed
Atkins, C. M., Selcher, J. C., Petraitis, J. J., Trzaskos, J. M., & Sweatt, J. D. (1998). The MAPK cascade is required for mammalian associative learning. Nature Neuroscience, 1, 602–609.CrossRefGoogle ScholarPubMed
Bakner, L., Strohan, K., Nordeen, M., & Riccio, D. C. (1991). Postconditioning recovery from the latent inhibition effect in conditioned taste aversion. Physiology & Behavior, 50, 1269–1272.CrossRefGoogle ScholarPubMed
Barad, M., Blouin, A. M., & Cain, C. K. (2004). Like extinction, latent inhibition of conditioned fear in mice is blocked by systemic inhibition of L-type voltage-gated calcium channels. Learning & Memory, 11, 536–539.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., & Belmonte, M. K. (2005). Autism: a window onto the development of the social and the analytic brain. Annual Review of Neuroscience, 28, 109–126.CrossRefGoogle ScholarPubMed
Baruch, I., Hemsley, D. R., & Gray, J. A. (1988). Differential performance of acute and chronic schizophrenics in a latent inhibition task. Journal of Nervous and Mental Disease, 176, 598–606.CrossRefGoogle Scholar
Baudry, M., & Lynch, G. (2001). Remembrance of arguments past: how well is the glutamate receptor hypothesis of LTP holding up after 20 years?Neurobiology of Learning and Memory, 76, 284–297.CrossRefGoogle ScholarPubMed
Berman, D. E., Hazvi, S., Neduva, V., & Dudai, Y. (2000). The role of identified neurotransmitter systems in the response of insular cortex to unfamiliar taste: activation of ERK1–2 and formation of a memory trace. Journal of Neuroscience, 20, 7017–7023.CrossRefGoogle ScholarPubMed
Blankenship, M. R., Huckfeldt, R., Steinmetz, J. J., & Steinmetz, J. E. (2005). The effects of amygdala lesions on hippocampal activity and classical eyeblink conditioning in rats. Brain Research, 1035, 120–130.CrossRefGoogle ScholarPubMed
Blum, S., Moore, A. N., Adams, F., & Dash, P. K. (1999). A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. Journal of Neuroscience, 19, 3535–3544.CrossRefGoogle ScholarPubMed
Bourtchuladze, R., Frenguelli, B., Blendy, J., et al. (1994). Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell, 79, 59–68.CrossRefGoogle ScholarPubMed
Bouton, M. E. (1993). Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychological Bulletin, 114, 80–99.CrossRefGoogle ScholarPubMed
Bouton, M. E. (2004). Context and behavioral processes in extinction. Learning & Memory, 11, 485–494.CrossRefGoogle ScholarPubMed
Bucci, D. J., Phillips, R. G., & Burwell, R. D. (2000). Contributions of postrhinal and perirhinal cortex to contextual information processing. Behavioral Neuroscience, 114, 882–894.CrossRefGoogle ScholarPubMed
Caldarone, B. J., Duman, C. H., & Picciotto, M. R. (2000). Fear conditioning and latent inhibition in mice lacking the high affinity subclass of nicotinic acetylcholine receptors in the brain. Neuropharmacology, 39, 2779–2784.CrossRefGoogle Scholar
Chen, R. H., Sarnecki, C., & Blenis, J. (1992). Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Molecular and Cellular Biology, 12, 915–927.CrossRefGoogle ScholarPubMed
Chetkovich, D. M., Gray, R., Johnston, D., & Sweatt, J. D. (1991). N-methyl-D-aspartate receptor activation increases cAMP levels and voltage-gated Ca2+ channel activity in area CA1 of hippocampus. Proceedings of the National Academy of Sciences USA, 88, 6467–6471.CrossRefGoogle ScholarPubMed
Clark, A. J., Feldon, J., & Rawlins, J. N. (1992). Aspiration lesions of rat ventral hippocampus disinhibit responding in conditioned suppression or extinction, but spare latent inhibition and the partial reinforcement extinction effect. Neuroscience, 48, 821–829.CrossRefGoogle ScholarPubMed
Clark, L., & Goodwin, G. M. (2004). State- and trait-related deficits in sustained attention in bipolar disorder. European Archives of Psychiatry and Clinical Neuroscience, 254, 61–68.CrossRefGoogle ScholarPubMed
Corcoran, K. A., & Quirk, G. J. (2007). Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears. Journal of Neuroscience, 27, 840–844.CrossRefGoogle Scholar
Coutureau, E., Galani, R., Gosselin, O., Majchrzak, M., & Di Scala, G. (1999). Entorhinal but not hippocampal or subicular lesions disrupt latent inhibition in rats. Neurobiology of Learning and Memory, 72, 143–157.CrossRefGoogle ScholarPubMed
Coutureau, E., Lena, I., Dauge, V., & Di, S. G. (2002). The entorhinal cortex-nucleus accumbens pathway and latent inhibition: a behavioral and neurochemical study in rats. Behavioral Neuroscience, 116, 95–104.CrossRefGoogle ScholarPubMed
Crowell, C. R., & Anderson, D. C. (1972). Variations in intensity, interstimulus interval, and interval between preconditioning CS exposures and conditioning with rats. Journal of Comparative and Physiological Psychology, 79, 291–298.CrossRefGoogle ScholarPubMed
Curtin, J. F., & Cotter, T. G. (2002). Anisomycin activates JNK and sensitises DU 145 prostate carcinoma cells to Fas mediated apoptosis. British Journal of Cancer, 87, 1188–1194.CrossRefGoogle ScholarPubMed
Davis, J. A., & Gould, T. J. (2005). Rolipram attenuates MK-801-induced deficits in latent inhibition. Behavioral Neuroscience, 119, 595–602.CrossRefGoogle ScholarPubMed
Davis, S., Vanhoutte, P., Pages, C., Caboche, J., & Laroche, S. (2000). The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. Journal of Neuroscience, 20, 4563–4572.CrossRefGoogle ScholarPubMed
Casa, L. G., Diaz, E., & Lubow, R. E. (2003). Effects of post-treatment retention interval and context on neophobia and conditioned taste aversion. Behavioural Processes, 63, 159–170.CrossRefGoogle ScholarPubMed
Ellison, G. (1995). The N-methyl-D-aspartate antagonists phencyclidine, ketamine and dizocilpine as both behavioral and anatomical models of the dementias. Brain Research. Brain Research Reviews, 20, 250–267.CrossRefGoogle ScholarPubMed
Evrard, A., Laporte, A. M., Chastanet, M., et al. (1999). 5-HT1A and 5-HT1B receptors control the firing of serotoninergic neurons in the dorsal raphe nucleus of the mouse: studies in 5-HT1B knock-out mice. European Journal of Neuroscience, 11, 3823–3831.CrossRefGoogle ScholarPubMed
Farb, C. R., Aoki, C., & Ledoux, J. E. (1995). Differential localization of NMDA and AMPA receptor subunits in the lateral and basal nuclei of the amygdala: a light and electron microscopic study. Journal of Comparative Neurology, 362, 86–108.CrossRefGoogle ScholarPubMed
Feldon, J., & Weiner, I. (1991). The latent inhibition model of schizophrenic attention disorder. Haloperidol and sulpiride enhance rats' ability to ignore irrelevant stimuli. Biological Psychiatry, 29, 635–646.CrossRefGoogle ScholarPubMed
Gaisler-Salomon, I., & Weiner, I. (2003). Systemic administration of MK-801 produces an abnormally persistent latent inhibition which is reversed by clozapine but not haloperidol. Psychopharmacology (Berl.), 166, 333–342.CrossRefGoogle Scholar
Gal, G., Schiller, D., & Weiner, I. (2005). Latent inhibition is disrupted by nucleus accumbens shell lesion but is abnormally persistent following entire nucleus accumbens lesion: the neural site controlling the expression and disruption of the stimulus preexposure effect. Behavioural Brain Research, 162, 246–255.CrossRefGoogle ScholarPubMed
Goosens, K. A., & Maren, S. (2003). Pretraining NMDA receptor blockade in the basolateral complex, but not the central nucleus, of the amygdala prevents savings of conditional fear. Behavioral Neuroscience, 117, 738–750.CrossRefGoogle Scholar
Gould, T. J., Collins, A. C., & Wehner, J. M. (2001). Nicotine enhances latent inhibition and ameliorates ethanol-induced deficits in latent inhibition. Nicotine & Tobacco Research, 3, 17–24.CrossRefGoogle ScholarPubMed
Gould, T. J., & Lewis, M. C. (2005). Coantagonism of glutamate receptors and nicotinic acetylcholinergic receptors disrupts fear conditioning and latent inhibition of fear conditioning. Learning & Memory, 12, 389–398.CrossRefGoogle ScholarPubMed
Gould, T. J., & Wehner, J. M. (1999). Genetic influences on latent inhibition in mice. Behavioral Neuroscience, 113, 1291–1296.CrossRefGoogle Scholar
Han, J. S., Gallagher, M., & Holland, P. (1995). Hippocampal lesions disrupt decrements but not increments in conditioned stimulus processing. Journal of Neuroscience, 15, 7323–7329.CrossRefGoogle Scholar
Hashimoto, K., Iyo, M., Freedman, R., & Stevens, K. E. (2005). Tropisetron improves deficient inhibitory auditory processing in DBA/2 mice: role of alpha 7 nicotinic acetylcholine receptors. Psychopharmacology (Berl.), 183, 13–19.CrossRefGoogle ScholarPubMed
Hernandez, P. J., & Abel, T. (2008). The role of protein synthesis in memory consolidation: progress amid decades of debate. Neurobiology of Learning and Memory, 89, 293–311.CrossRefGoogle ScholarPubMed
Hitchcock, J. M., Lister, S., Fischer, T. R., & Wettstein, J. G. (1997). Disruption of latent inhibition in the rat by the 5-HT2 agonist DOI: effects of MDL 100,907, clozapine, risperidone and haloperidol. Behavioural Brain Research, 88, 43–49.CrossRefGoogle ScholarPubMed
Holt, W., & Maren, S. (1999). Muscimol inactivation of the dorsal hippocampus impairs contextual retrieval of fear memory. Journal of Neuroscience, 19, 9054–9062.CrossRefGoogle ScholarPubMed
Honey, R. C., & Good, M. (1993). Selective hippocampal lesions abolish the contextual specificity of latent inhibition and conditioning. Behavioral Neuroscience, 107, 23–33.CrossRefGoogle ScholarPubMed
Jeanblanc, J., Peterschmitt, Y., Hoeltzel, A., & Louilot, A. (2004). Influence of the entorhinal cortex on accumbal and striatal dopaminergic responses in a latent inhibition paradigm. Neuroscience, 128, 187–200.CrossRefGoogle Scholar
Joel, D., Weiner, I., & Feldon, J. (1997). Electrolytic lesions of the medial prefrontal cortex in rats disrupt performance on an analog of the Wisconsin Card Sorting Test, but do not disrupt latent inhibition: implications for animal models of schizophrenia. Behavioural Brain Research, 85, 187–201.CrossRefGoogle Scholar
Joseph, M. H., Peters, S. L., & Gray, J. A. (1993). Nicotine blocks latent inhibition in rats – evidence for a critical role of increased functional activity of dopamine in the mesolimbic system at conditioning rather than preexposure. Psychopharmacology, 110, 187–192.CrossRefGoogle Scholar
Kaplan, O., Dar, R., Rosenthal, L., et al. (2006). Obsessive-compulsive disorder patients display enhanced latent inhibition on a visual search task. Behavior Research and Therapy, 44, 1137–1145.CrossRefGoogle ScholarPubMed
Kasprow, W. J., Catterson, D., Schachtman, T. R., & Miller, R. R. (1984). Attenuation of latent inhibition by post-acquisition reminder. Quarterly Journal of Experimental Psychology: Comparative & Physiological Psychology, 36b, 53–63.CrossRefGoogle Scholar
Kaye, H., & Pearce, J. M. (1987). Hippocampal lesions attenuate latent inhibition of CS and a neutral stimulus. Psychobiology, 15, 293–299.Google Scholar
Killcross, A. S., Stanhope, K. J., Dourish, C. T., & Piras, G. (1997). WAY100635 and latent inhibition in the rat: selective effects at preexposure. Behavioural Brain Research, 88, 51–57.CrossRefGoogle ScholarPubMed
Kim, J. J., Fanselow, M. S., DeCola, J. P., & Landeira-Fernandez, J. (1992). Selective impairment of long-term but not short-term conditional fear by the N-methyl-D-aspartate antagonist APV. Behavioral Neuroscience, 106, 591–596.CrossRefGoogle Scholar
Kim, J. J., & Jung, M. W. (2006). Neural circuits and mechanisms involved in Pavlovian fear conditioning: a critical review. Neuroscience & Biobehavioral Reviews, 30, 188–202.CrossRefGoogle ScholarPubMed
Kim, J. J., Rison, R. A., & Fanselow, M. S. (1993). Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear. Behavioral Neuroscience, 107, 1093–1098.CrossRefGoogle Scholar
Lacroix, L., Broersen, L. M., Weiner, I., & Feldon, J. (1998). The effects of excitotoxic lesion of the medial prefrontal cortex on latent inhibition, prepulse inhibition, food hoarding, elevated plus maze, active avoidance and locomotor activity in the rat. Neuroscience, 84, 431–442.CrossRefGoogle ScholarPubMed
Lacroix, L., Spinelli, S., White, W., & Feldon, J. (2000). The effects of ibotenic acid lesions of the medial and lateral prefrontal cortex on latent inhibition, prepulse inhibition and amphetamine-induced hyperlocomotion. Neuroscience, 97, 459–468.CrossRefGoogle ScholarPubMed
LeDoux, J. E., Iwata, J., Cicchetti, P., & Reis, D. J. (1988). Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. Journal of Neuroscience, 8, 2517–2529.CrossRefGoogle ScholarPubMed
LeDoux, J. E., Iwata, J., Pearl, D., & Reis, D. J. (1986). Disruption of auditory but not visual learning by destruction of intrinsic neurons in the rat medial geniculate body. Brain Research, 371, 395–399.CrossRefGoogle Scholar
Lee, H., & Kim, J. J. (1998). Amygdalar NMDA receptors are critical for new fear learning in previously fear-conditioned rats. Journal of Neuroscience, 18, 8444–8454.CrossRefGoogle ScholarPubMed
Lee, T., & Kim, J. J. (2004). Differential effects of cerebellar, amygdalar, and hippocampal lesions on classical eyeblink conditioning in rats. Journal of Neuroscience, 24, 3242–3250.CrossRefGoogle ScholarPubMed
Levita, L., Dalley, J. W., & Robbins, T. W. (2002). Disruption of Pavlovian contextual conditioning by excitotoxic lesions of the nucleus accumbens core. Behavioral Neuroscience, 116, 539–552.CrossRefGoogle ScholarPubMed
Lewis, M. C., Davis, J. A., & Gould, T. J. (2004). Inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase disrupts latent inhibition of cued fear conditioning in C57BL/6 mice. Behavioral Neuroscience, 118, 1444–1449.CrossRefGoogle ScholarPubMed
Lewis, M. C., & Gould, T. J. (2004). Latent inhibition of cued fear conditioning: an NMDA receptor-dependent process that can be established in the presence of anisomycin. European Journal of Neuroscience, 20, 818–826.CrossRefGoogle ScholarPubMed
Lewis, M. C., & Gould, T. J. (2007a). Reversible inactivation of the entorhinal cortex disrupts the establishment and expression of latent inhibition of cued fear conditioning in C57BL/6 mice. Hippocampus, 17, 462–470.CrossRefGoogle ScholarPubMed
Lewis, M. C., & Gould, T. J. (2007b). Signal transduction mechanisms within the entorhinal cortex that support latent inhibition of cued fear conditioning. Neurobiology of Learning and Memory, 88, 359–368.CrossRefGoogle ScholarPubMed
Li, X. F., Stutzmann, G. E., & Ledoux, J. E. (1996). Convergent but temporally separated inputs to lateral amygdala neurons from the auditory thalamus and auditory cortex use different postsynaptic receptors: in vivo intracellular and extracellular recordings in fear conditioning pathways. Learning & Memory, 3, 229–242.CrossRefGoogle ScholarPubMed
Lipina, T., Labrie, V., Weiner, I., & Roder, J. (2005). Modulators of the glycine site on NMDA receptors, D-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia. Psychopharmacology (Berl.), 179, 54–67.CrossRefGoogle ScholarPubMed
Lisman, J. (2003). Long-term potentiation: outstanding questions and attempted synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 358, 829–842.CrossRefGoogle ScholarPubMed
Logue, S. F., Paylor, R., & Wehner, J. M. (1997). Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task. Behavioral Neuroscience, 111, 104–113.CrossRefGoogle ScholarPubMed
Lorden, J. F., Rickert, E. J., & Berry, D. W. (1983). Forebrain monoamines and associative learning: I. Latent inhibition and conditioned inhibition. Behavioural Brain Research, 9, 181–199.CrossRefGoogle ScholarPubMed
Loskutova, L. V. (2001). The effects of a serotoninergic substrate of the nucleus accumbens on latent inhibition. Neuroscience and Behavioral Physiology, 31, 15–20.CrossRefGoogle ScholarPubMed
Loskutova, L. V., Luk'yanenko, F. Y., & Il'yuchenok, R. Y. (1990). Interaction of serotonin- and dopaminergic systems of the brain in mechanisms of latent inhibition in rats. Neuroscience and Behavioral Physiology, 20, 500–505.CrossRefGoogle ScholarPubMed
Lubow, R. E. (1973). Latent inhibition. Psychological Bulletin, 79, 398–407.CrossRefGoogle ScholarPubMed
Lubow, R. E. (1989). Latent Inhibition and Conditional Attention Theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lubow, R. E., & Gewirtz, J. C. (1995). Latent inhibition in humans: data, theory, and implications for schizophrenia. Psychological Bulletin, 117, 87–103.CrossRefGoogle Scholar
Lubow, R. E., & Josman, Z. E. (1993). Latent inhibition deficits in hyperactive children. Journal of Child Psychology and Psychiatry, 34, 959–973.CrossRefGoogle ScholarPubMed
Lynch, G., & Baudry, M. (1984). The biochemistry of memory: a new and specific hypothesis. Science, 224, 1057–1063.CrossRefGoogle ScholarPubMed
Maren, S. (2005). Synaptic mechanisms of associative memory in the amygdala. Neuron, 47, 783–786.CrossRefGoogle ScholarPubMed
Maren, S., Ferrario, C. R., Corcoran, K. A., Desmond, T. J., & Frey, K. A. (2003). Protein synthesis in the amygdala, but not the auditory thalamus, is required for consolidation of Pavlovian fear conditioning in rats. European Journal of Neuroscience, 18, 3080–3088.CrossRefGoogle Scholar
McCormick, D. A., & Thompson, R. F. (1984). Cerebellum: Essential involvement in the classically conditioned eyelid response. Science, 223, 296–299.CrossRefGoogle ScholarPubMed
McDonald, A. J., & Mascagni, F. (1997). Projections of the lateral entorhinal cortex to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience, 77, 445–459.CrossRefGoogle ScholarPubMed
McDonald, L. M., Moran, P. M., Vythelingum, G. N., et al. (2003). Enhancement of latent inhibition by two 5-HT2A receptor antagonists only when given at both pre-exposure and conditioning. Psychopharmacology (Berl.), 169, 321–331.CrossRefGoogle ScholarPubMed
Mcintosh, S. M., & Tarpy, R. M. (1977). Retention of latent inhibition in a taste-aversion paradigm. Bulletin of the Psychonomic Society, 9, 411–412.CrossRefGoogle Scholar
Micheau, J., & Riedel, G. (1999). Protein kinases: which one is the memory molecule?Cellular and Molecular Life Sciences, 55, 534–548.CrossRefGoogle ScholarPubMed
Milad, M. R., Quirk, G. J., Pitman, R. K., et al. (2007). A role for the human dorsal anterior cingulate cortex in fear expression. Biological Psychiatry, 62, 1191–1194.CrossRefGoogle ScholarPubMed
Murphy, C. A., Pezze, M., Feldon, J., & Heidbreder, C. (2000). Differential involvement of dopamine in the shell and core of the nucleus accumbens in the expression of latent inhibition to an aversively conditioned stimulus. Neuroscience, 97, 469–477.CrossRefGoogle Scholar
Nicholson, D. A., & Freeman, J. H.. (2002). Medial dorsal thalamic lesions impair blocking and latent inhibition of the conditioned eyeblink response in rats. Behavioral Neuroscience, 116, 276–285.CrossRefGoogle ScholarPubMed
Oswald, C. J., Yee, B. K., Rawlins, J. N., et al. (2002). The influence of selective lesions to components of the hippocampal system on the orientating response, habituation and latent inhibition. European Journal of Neuroscience, 15, 1983–1990.CrossRefGoogle ScholarPubMed
Perkinton, M. S., Sihra, T. S., & Williams, R. J. (1999). Ca(2+)-permeable AMPA receptors induce phosphorylation of cAMP response element-binding protein through a phosphatidylinositol 3-kinase-dependent stimulation of the mitogen-activated protein kinase signaling cascade in neurons. Journal of Neuroscience, 19, 5861–5874.CrossRefGoogle ScholarPubMed
Phillips, R. G., & Ledoux, J. E. (1992). Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behavioral Neuroscience, 106, 274–285.CrossRefGoogle ScholarPubMed
Pouzet, B., Zhang, W. N., Weiner, I., Feldon, J., & Yee, B. K. (2004). Latent inhibition is spared by n-methyl–aspartate (NMDA)-induced ventral hippocampal lesions, but is attenuated following local activation of the ventral hippocampus by intracerebral NMDA infusion. Neuroscience, 124, 183–194.CrossRefGoogle Scholar
Quinlan, E. M., & Halpain, S. (1996). Emergence of activity-dependent, bidirectional control of microtubule-associated protein MAP2 phosphorylation during postnatal development. Journal of Neuroscience, 16, 7627–7637.CrossRefGoogle ScholarPubMed
Restivo, L., Passino, E., Middei, S., & Ammassari-Teule, M. (2002). The strain-specific involvement of nucleus accumbens in latent inhibition might depend on differences in processing configural- and cue-based information between C57BL/6 and DBA mice. Brain Research Bulletin, 57, 35–39.CrossRefGoogle ScholarPubMed
Riedel, G., Harrington, N. R., Hall, G., & Macphail, E. M. (1997). Nucleus accumbens lesions impair context, but not cue, conditioning in rats. Neuroreport, 8, 2477–2481.CrossRefGoogle Scholar
Riedel, G., Platt, B., & Micheau, J. (2003). Glutamate receptor function in learning and memory. Behavioural Brain Research, 140, 1–47.CrossRefGoogle ScholarPubMed
Roberson, E. D., English, J. D., Adams, J. P., et al. (1999). The mitogen-activated protein kinase cascade couples PKA and PKC to cAMP response element binding protein phosphorylation in area CA1 of hippocampus. Journal of Neuroscience, 19, 4337–4348.CrossRefGoogle ScholarPubMed
Rochford, J., Sen, A. P., & Quirion, R. (1996). Effect of nicotine and nicotinic receptor agonists on latent inhibition in the rat. Journal of Pharmacology and Experimental Therapeutics, 277, 1267–1275.Google ScholarPubMed
Rochford, J., Sen, A. P., Rousse, I., & Welner, S. A. (1996). The effect of quisqualic acid-induced lesions of the nucleus basalis magnocellularis on latent inhibition. Brain Research Bulletin, 41, 313–317.CrossRefGoogle ScholarPubMed
Rodrigues, S. M., Farb, C. R., Bauer, E. P., LeDoux, J. E., & Schafe, G. E. (2004). Pavlovian fear conditioning regulates Thr286 autophosphorylation of Ca2+/calmodulin-dependent protein kinase II at lateral amygdala synapses. Journal of Neuroscience, 24, 3281–3288.CrossRefGoogle ScholarPubMed
Rodrigues, S. M., Schafe, G. E., & LeDoux, J. E. (2004). Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. Neuron, 44, 75–91.CrossRefGoogle ScholarPubMed
Rogan, M. T., & LeDoux, J. E. (1996). Emotion: systems, cells, synaptic plasticity. Cell, 85, 469–475.CrossRefGoogle ScholarPubMed
Royer, S., Martina, M., & Pare, D. (1999). An inhibitory interface gates impulse traffic between the input and output stations of the amygdala. Journal of Neuroscience, 19, 10575–10583.CrossRefGoogle ScholarPubMed
Ruob, C., Weiner, I., & Feldon, J. (1998). Haloperidol-induced potentiation of latent inhibition: interaction with parameters of conditioning. Behavioural Pharmacology, 9, 245–253.Google ScholarPubMed
Sacchetti, B., Baldi, E., Lorenzini, C. A., & Bucherelli, C. (2002a). From the cover: cerebellar role in fear-conditioning consolidation. Proceedings of the National Academy of Sciences USA, 99, 8406–8411.CrossRefGoogle Scholar
Sacchetti, B., Baldi, E., Lorenzini, C., & Bucherelli, C. (2002b). Differential contribution of some cortical sites to the formation of memory traces supporting fear conditioning. Experimental Brain Research, 146, 223–232.CrossRefGoogle ScholarPubMed
Sacchetti, B., Scelfo, B., Tempia, F., & Strata, P. (2004). Long-term synaptic changes induced in the cerebellar cortex by fear conditioning. Neuron, 42, 973–982.CrossRefGoogle ScholarPubMed
Schafe, G. E., Atkins, C. M., Swank, M. W., et al. (2000). Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. Journal of Neuroscience, 20, 8177–8187.CrossRefGoogle ScholarPubMed
Schafe, G. E., & LeDoux, J. E. (2000). Memory consolidation of auditory pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. Journal of Neuroscience, 20, RC96.CrossRefGoogle ScholarPubMed
Schauz, C., & Koch, M. (1999). Lesions of the nucleus basalis magnocellularis do not impair prepulse inhibition and latent inhibition of fear-potentiated startle in the rat. Brain Research, 815, 98–105.CrossRefGoogle Scholar
Schauz, C., & Koch, M. (2000). Blockade of NMDA receptors in the amygdala prevents latent inhibition of fear-conditioning. Learning & Memory, 7, 393–399.CrossRefGoogle ScholarPubMed
Schiller, D., & Weiner, I. (2004). Lesions to the basolateral amygdala and the orbitofrontal cortex but not to the medial prefrontal cortex produce an abnormally persistent latent inhibition in rats. Neuroscience, 128, 15–25.CrossRefGoogle Scholar
Schiller, D., & Weiner, I. (2005). Basolateral amygdala lesions in the rat produce an abnormally persistent latent inhibition with weak preexposure but not with context shift. Behavioural Brain Research, 163, 115–121.CrossRefGoogle Scholar
Schiller, D., Zuckerman, L., & Weiner, I. (2006). Abnormally persistent latent inhibition induced by lesions to the nucleus accumbens core, basolateral amygdala and orbitofrontal cortex is reversed by clozapine but not by haloperidol. Journal of Psychiatric Research, 40, 167–177.CrossRefGoogle Scholar
Schmajuk, N. A., Lam, Y. W., & Christiansen, B. A. (1994). Latent inhibition of the rat eyeblink response: effect of hippocampal aspiration lesions. Physiology & Behavior, 55, 597–601.CrossRefGoogle ScholarPubMed
Selcher, J. C., Atkins, C. M., Trzaskos, J. M., Paylor, R., & Sweatt, J. D. (1999). A necessity for MAP kinase activation in mammalian spatial learning. Learning & Memory, 6, 478–490.CrossRefGoogle ScholarPubMed
Selcher, J. C., Weeber, E. J., Varga, A. W., Sweatt, J. D., & Swank, M. (2002). Protein kinase signal transduction cascades in mammalian associative conditioning. Neuroscientist, 8, 122–131.
Shohamy, D., Allen, M. T., & Gluck, M. A. (2000). Dissociating entorhinal and hippocampal involvement in latent inhibition. Behavioral Neuroscience, 114, 867–874.CrossRefGoogle ScholarPubMed
Solomon, P. R., Kiney, C. A., & Scott, D. R. (1978). Disruption of latent inhibition following systemic administration of parachlorophenylalanine (PCPA). Physiology & Behavior, 20, 265–271.CrossRefGoogle Scholar
Solomon, P. R., & Moore, J. W. (1975). Latent inhibition and stimulus generalization of the classically conditioned nictitating membrane response in rabbits (Oryctolagus cuniculus) following dorsal hippocampal ablation. Journal of Comparative and Physiological Psychology, 89, 1192–1203.CrossRefGoogle ScholarPubMed
Solomon, P. R., Nichols, G. L., Kiernan, J. M., Kamer, R. S., & Kaplan, L. J. (1980). Differential effects of lesions in medial and dorsal raphe of the rat: latent inhibition and septohippocampal serotonin levels. Journal of Comparative and Physiological Psychology, 94, 145–154.CrossRefGoogle ScholarPubMed
Solomon, P. R., & Staton, D. M. (1982). Differential effects of microinjections of d-amphetamine into the nucleus accumbens or the caudate putamen on the rat's ability to ignore an irrelevant stimulus. Biological Psychiatry, 17, 743–756.Google ScholarPubMed
Szapiro, G., Vianna, M. R., McGaugh, J. L., Medina, J. H., & Izquierdo, I. (2003). The role of NMDA glutamate receptors, PKA, MAPK, and CAMKII in the hippocampus in extinction of conditioned fear. Hippocampus, 13, 53–58.CrossRefGoogle ScholarPubMed
Tai, C. T., Cassaday, H., Feldon, J., & Rawlins, J. N. P. (1995). Both electrolytic and excitotoxic lesions of nucleus accumbens disrupt latent inhibition of learning in rats. Neurobiology of Learning and Memory, 64, 36–48.CrossRefGoogle ScholarPubMed
Talk, A., Stoll, E., & Gabriel, M. (2005). Cingulate cortical coding of context-dependent latent inhibition. Behavioral Neuroscience, 119, 1524–1532.CrossRefGoogle ScholarPubMed
Torocsik, B., & Szeberenyi, J. (2000). Anisomycin uses multiple mechanisms to stimulate mitogen-activated protein kinases and gene expression and to inhibit neuronal differentiation in PC12 phaeochromocytoma cells. European Journal of Neuroscience, 12, 527–532.CrossRefGoogle ScholarPubMed
Trimble, K. M., Bell, R., & King, D. J. (1997). Enhancement of latent inhibition in the rat by the atypical antipsychotic agent remoxipride. Pharmacology, Biochemistry, and Behavior, 56, 809–816.CrossRefGoogle ScholarPubMed
Tsaltas, E., Preston, G. C., Rawlins, J. N., Winocur, G., & Gray, J. A. (1984). Dorsal bundle lesions do not affect latent inhibition of conditioned suppression. Psychopharmacology (Berl.), 84, 549–555.CrossRefGoogle Scholar
Vaitl, D., Lipp, O. V., Bauer, U., Schuler, G., & Stark, R. (1999). Latent inhibition and schizophrenia. Psychophysiology, 36, S117.Google Scholar
Vossler, M. R., Yao, H., York, R. D., et al. (1997). cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell, 89, 73–82.CrossRefGoogle ScholarPubMed
Waltereit, R., & Weller, M. (2003). Signaling from cAMP/PKA to MAPK and synaptic plasticity. Molecular Neurobiology, 27, 99–106.CrossRefGoogle ScholarPubMed
Walz, R., Rockenbach, I. C., Amaral, O. B., Quevedo, J., & Roesler, R. (1999). MAPK and memory. Trends in Neuroscience, 22, 495.CrossRefGoogle ScholarPubMed
Warburton, E. C., Joseph, M. H., Feldon, J., Weiner, I., & Gray, J. A. (1994). Antagonism of amphetamine-induced disruption of latent inhibition in rats by haloperidol and ondansetron – implications for a possible antipsychotic action of ondansetron. Psychopharmacology, 114, 657–664.CrossRefGoogle ScholarPubMed
Weeber, E. J., Atkins, C. M., Selcher, J. C., et al. (2000). A role for the beta isoform of protein kinase C in fear conditioning. Journal of Neuroscience, 20, 5906–5914.CrossRefGoogle ScholarPubMed
Weiner, I. (1990). Neural substrates of latent inhibition: the switching model. Psychological Bulletin, 108, 442–461.CrossRefGoogle ScholarPubMed
Weiner, I. (2003). The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology (Berl.), 169, 257–297.CrossRefGoogle ScholarPubMed
Weiner, I., & Feldon, J. (1992). Phencyclidine does not disrupt latent inhibition in rats: implications for animal models of schizophrenia. Pharmacology, Biochemistry, and Behavior, 42, 625–631.CrossRefGoogle Scholar
Weiner, I., Schiller, D., & Gaisler-Salomon, I. (2003). Disruption and potentiation of latent inhibition by risperidone: the latent inhibition model of atypical antipsychotic action. Neuropsychopharmacology, 28, 499–509.CrossRefGoogle ScholarPubMed
Weiner, I., Shadach, E., Tarrasch, R., Kidron, R., & Feldon, J. (1996a). The latent inhibition model of schizophrenia: further validation using the atypical neuroleptic, clozapine. Biological Psychiatry, 40, 834–843.CrossRefGoogle ScholarPubMed
Weiner, I., Tarrasch, R., & Feldon, J. (1996b). Basolateral amygdala lesions do not disrupt latent inhibition. Behavioural Brain Research, 72, 73–81.CrossRefGoogle Scholar
Wright, I. K., Garratt, J. C., & Marsden, C. A. (1990). Effects of a selective 5-HT2 agonist, DOI, on 5-HT neuronal firing in the dorsal raphe nucleus and 5-HT release and metabolism in the frontal cortex. British Journal of Pharmacology, 99, 221–222.CrossRefGoogle ScholarPubMed
Yee, B. K., Feldon, J., & Rawlins, J. N. (1997). Cytotoxic lesions of the retrohippocampal region attenuate latent inhibition but spare the partial reinforcement extinction effect. Experimental Brain Research, 115, 247–256.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×