Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T12:04:08.665Z Has data issue: false hasContentIssue false

20 - Nicotinic modulation of attentional deficits in schizophrenia

from Current topics in latent inhibition research

Published online by Cambridge University Press:  04 August 2010

Robert Lubow
Affiliation:
Tel-Aviv University
Ina Weiner
Affiliation:
Tel-Aviv University
Get access

Summary

An introduction: nicotine, schizophrenia, and tobacco use

The purpose of this chapter is to review the role of nicotine in the modulation of attention, with particular application to the latent inhibition model of schizophrenia. Nicotine is the primary psychoactive chemical in tobacco. It is addictive and promotes continued tobacco use. According to the Centers for Disease Control and Prevention, the adverse health effects from cigarette smoking account for an estimated 438,000 deaths, or nearly 1 of every 5 deaths, each year in the United States – more than all deaths from human immunodeficiency virus (HIV), illegal drug use, alcohol use, motor vehicle injuries, suicides, and murders combined. The current estimate of cigarette smoking among adults in the United States is 20.8%; however, people with mental illness are much more likely to smoke, and consume a disproportionately large number of cigarettes (Goff, Sullivan, McEvoy et al., 2005; Grant, Hasin, Chou et al., 2004; Lasser, Boyd, Woolhander et al., 2000).

Schizophrenia is a cognitive disorder characterized by hallucinations and disturbances in memory, attention, and executive function. It is also characterized by an extremely high prevalence of smoking. Reliable estimates indicate that approximately 85–90% of schizophrenics smoke cigarettes (Hughes, Hatsukami, Mitchell, & Dahlgren, 1986). The co-morbidity between schizophrenia and nicotine addiction is striking and suggests that there may be common mechanisms in the pathways that lead to these diseases.

Type
Chapter
Information
Latent Inhibition
Cognition, Neuroscience and Applications to Schizophrenia
, pp. 477 - 499
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acri, J. B., Morse, D. E., Popke, E. J., & Grunberg, N. E. (1994). Nicotine increases sensory gating measured as inhibition of the acoustic startle reflex in rats. Psychopharmacology (Berl.), 114, 369–374.CrossRefGoogle ScholarPubMed
Adler, L. E., Hoffer, L. D., Wiser, A., & Freedman, R. (1993). Normalization of auditory physiology by cigarette smoking in schizophrenic patients. American Journal of Psychiatry, 150, 1856–1861.Google ScholarPubMed
Adler, L. E., Hoffer, L. J., Griffith, J., Waldo, M. C., & Freedman, R. (1992). Normalization by nicotine of deficient auditory sensory gating in the relatives of schizophrenics. Biological Psychiatry, 32, 607–616.CrossRefGoogle ScholarPubMed
AhnAllen, C. G., Nestor, P. G., Shenton, M. E., McCarley, R. W., & Niznikiewicz, M. A. (2008). Early nicotine withdrawal and transdermal nicotine effects on neurocognitive performance in schizophrenia. Schizophrenia Research, 100, 261–269.CrossRefGoogle Scholar
Allan, L. M., Williams, J. H., Wellman, N. A., et al. (1995). Effects of tobacco smoking, schizotypy and number of pre-exposures on latent inhibition in healthy subjects. Personality and Individual Differences, 19, 893–902.CrossRefGoogle Scholar
Alves, C. R., Delucia, R., & Silva, M. T. (2002). Effects of fencamfamine on latent inhibition. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 26, 1089–1093.CrossRefGoogle ScholarPubMed
Anfang, M. K., & Pope, H. G.. (1997). Treatment of neuroleptic-induced akathisia with nicotine patches. Psychopharmacology (Berl.), 134, 153–156.CrossRefGoogle ScholarPubMed
Anthony, B. (1990). Blink modulation in attention-deficit disorder. Psychophysiology, 27, S6.Google Scholar
Aston-Jones, G., & Kalivas, P. W. (2008). Brain norepinephrine rediscovered in addiction research. Biological Psychiatry, 63, 1005–1006.CrossRefGoogle ScholarPubMed
Azizian, A., Monterossa, J. R., Brody, A. L., Simon, S. L., & London, E. D. (2008). Severity of nicotine dependence moderates performance on perceptual motor tests of attention. Nicotine & Tobacco Research, 10, 599–606.CrossRefGoogle Scholar
Barr, R. S., Culhane, M. A., Jubelt, L. E., et al. (2008). The effects of transdermal nicotine on cognition in nonsmokers with schizophrenia and nonpsychiatric controls. Neuropsychopharmacology, 33, 480–490.CrossRefGoogle ScholarPubMed
Baschnagel, J. S., & Hawk, L. W. (2008). The effects of nicotine on the attentional modification of the acoustic startle response in nonsmokers. Psychopharmacology (Berl.), 198, 93–101.CrossRefGoogle ScholarPubMed
Berns, G. S., McClure, S. M., Pagnoni, G., & Montague, P. R. (2001). Predictability modulates human brain response to reward. Journal of Neuroscience, 21, 2793–2798.CrossRefGoogle ScholarPubMed
Berridge, K. C. (2007). The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology (Berl.), 191, 391–431.CrossRefGoogle ScholarPubMed
Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?Brain Research Reviews, 28, 309–369.CrossRefGoogle ScholarPubMed
Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neuroscience, 26, 507–513.CrossRefGoogle ScholarPubMed
Bethus, I., Muscat, R., & Goodall, G. (2006). Dopamine manipulations limited to preexposure are sufficient to modulate latent inhibition. Behavioral Neuroscience, 120, 554–562.CrossRefGoogle ScholarPubMed
Bierut, L. J., Stitzel, J. A., Wang, J. C., et al. (2008). Variants in nicotinic receptors and risk for nicotine dependence. American Journal of Psychiatry, 165, 1163–1171.CrossRefGoogle ScholarPubMed
Boulter, J., Connolly, J., Deneris, E., et al. (1987). Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proceedings of the National Academy of Sciences of the United States of America, 84, 7763–7767.CrossRefGoogle ScholarPubMed
Boulter, J., O'Shea-Greenfield, A., Duvoisin, R. M., et al. (1990). Alpha 3, alpha 5, and beta 4: three members of the rat neuronal nicotinic acetylcholine receptor-related gene family form a gene cluster. Journal of Biological Chemistry, 265, 4472–4482.Google ScholarPubMed
Braff, D. L., Grillon, C., & Geyer, M. A. (1992). Gating and habituation of the startle reflex in schizophrenic patients. Archives of General Psychiatry, 49, 206–215.CrossRefGoogle ScholarPubMed
Breese, C. R., Lee, M. J., Adams, C. E., et al. (2000). Abnormal regulation of high affinity nicotinic receptors in subjects with schizophrenia. Neuropsychopharmacology, 23, 351–364.CrossRefGoogle ScholarPubMed
Brody, A. L., Mandelkern, M. A., London, E. D., et al. (2006). Cigarette smoking saturates brain alpha 4 beta 2 nicotinic acetylcholine receptors. Archives of General Psychiatry, 63, 907–915.CrossRefGoogle ScholarPubMed
Buhusi, C. V., Gray, J. A., & Schmajuk, N. A. (1998). Perplexing effects of hippocampal lesions on latent inhibition: A neural network solution. Behavioral Neuroscience, 112, 316–351.CrossRefGoogle ScholarPubMed
Bushnell, P. J., Oshiro, W. M., & Padnos, B. K. (1997). Detection of visual signals by rats: effects of chlordiazepoxide and cholinergic and adrenergic drugs on sustained attention. Psychopharmacology (Berl.), 134, 230–241.CrossRefGoogle ScholarPubMed
Chang, T., Meyer, U., Feldon, J., & Yee, B. K. (2007). Disruption of the US pre-exposure effect and latent inhibition in two-way active avoidance by systemic amphetamine in C57BL/6 mice. Psychopharmacology (Berl.), 191, 211–221.CrossRefGoogle ScholarPubMed
Changeux, J. P., & Edelstein, S. J. (2005). Allosteric mechanisms of signal transduction. Science, 308, 1424–1428.CrossRefGoogle ScholarPubMed
Chausmer, A. L., Smith, B. J., Kelly, R. Y., & Griffiths, R. R. (2003). Cocaine-like subjective effects of nicotine are not blocked by the D1 selective antagonist ecopipam (SCH 39166). Behavioural Pharmacology, 14, 111–120.CrossRefGoogle Scholar
Corrigall, W. A., & Coen, K. M. (1989). Fixed-interval schedules for drug self-administration in the rat. Psychopharmacology (Berl.), 99, 136–139.CrossRefGoogle ScholarPubMed
Day, M., Pan, J. B., Buckley, M. J., et al. (2007). Differential effects of ciproxifan and nicotine on impulsivity and attention measures in the 5-choice serial reaction time test. Biochemical Pharmacology, 73, 1123–1134.CrossRefGoogle ScholarPubMed
Della Casa, V., Hofer, I., & Feldon, J. (1999). Latent inhibition in smokers vs. nonsmokers: Interaction with number or intensity of preexposures?Pharmacology, Biochemistry and Behavior, 62, 353–359.CrossRefGoogle ScholarPubMed
Deneris, E. S., Connolly, J., Boulter, J., et al. (1988). Primary structure and expression of beta 2: a novel subunit of neuronal nicotinic acetylcholine receptors. Neuron, 1, 45–54.CrossRefGoogle ScholarPubMed
Di Chiara, G. (2000). Role of dopamine in the behavioural actions of nicotine related to addiction. European Journal of Pharmacology, 393, 295–314.CrossRefGoogle ScholarPubMed
Dolan, R. J., Fletcher, P., Frith, C. D., et al. (1995). Dopaminergic modulation of impaired cognitive activation in the anterior cingulate cortex in schizophrenia. Nature, 378, 180–182.CrossRefGoogle Scholar
Dunn, L. A., Atwater, G. E., & Kilts, C. D. (1993). Effects of antipsychotic drugs on latent inhibition: sensitivity and specificity of an animal behavioral model of clinical drug action. Psychopharmacology (Berl.), 112, 315–323.CrossRefGoogle ScholarPubMed
Durany, N., Zöchling, R., Boissl, K. W., et al. (2000). Human post-mortem striatal α4β2 nicotinic acetylcholine receptor density in schizophrenia and Parkinson's syndrome. Neuroscience Letters, 287, 109–112.CrossRefGoogle ScholarPubMed
Evans, L. H., Gray, N. S., & Snowden, R. J. (2007). A new continuous within-participants latent inhibition task: examining associations with schizotypy dimensions, smoking status and gender. Biological Psychology, 74, 365–373.CrossRefGoogle ScholarPubMed
Feldon, J., & Weiner, I. (1991). Effects of haloperidol on the multitrial partial reinforcement extinction effect (PREE): evidence for neuroleptic drug action on nonreinforcement but not on reinforcement. Psychopharmacology (Berl.), 105, 407–414.CrossRefGoogle Scholar
Freedman, R., Adams, C. E., & Leonard, S. (2000). The alpha7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia. Journal of Chemical Neuroanatomy, 20, 299–306.CrossRefGoogle Scholar
Freedman, R., Coon, H., Myles-Worsley, M., et al. (1997). Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proceedings of the National Academy of Sciences of the United States of America, 94, 587–592.CrossRefGoogle ScholarPubMed
Freedman, R., Hall, M., Adler, L. E., & Leonard, S. (1995). Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biological Psychiatry, 38, 22–33.CrossRefGoogle Scholar
Gal, G., Mendlovic, S., Bloch, Y., et al. (2005). Learned irrelevance is disrupted in first-episode but not chronic schizophrenia patients. Behavioural Brain Research, 159, 267–275.CrossRefGoogle Scholar
Gilbert, D. G., Sugai, C., Zuo, Y., et al. (2007). Brain indices of nicotine's effects on attentional bias to smoking and emotional pictures and to task-relevant targets. Nicotine & Tobacco Research, 9, 351–363.CrossRefGoogle ScholarPubMed
Goff, D. C., Sullivan, L. M., McEvoy, J. P., et al. (2005). A comparison of ten-year cardiac risk estimates in schizophrenia patients from the CATIE study and matched controls. Schizophrenia Research, 80, 45–53.CrossRefGoogle ScholarPubMed
Goldberg, S. R., Spealman, R. D., & Goldberg, D. M. (1981). Persistent behavior at high rates maintained by intravenous self-administration of nicotine. Science, 214, 573–575.CrossRefGoogle ScholarPubMed
Gould, T. J., Collins, A. C., & Wehner, J. M. (2001). Nicotine enhances latent inhibition and ameliorates ethanol-induced deficits in latent inhibition. Nicotine & Tobacco Research, 3, 17–24.CrossRefGoogle ScholarPubMed
Gould, T. J., & Lewis, M. C. (2005). Coantagonism of glutamate receptors and nicotinic acetylcholinergic receptors disrupts fear conditioning and latent inhibition of fear conditioning. Learning & Memory, 12, 389–398.CrossRefGoogle ScholarPubMed
Grant, P. F., Hasin, D. S., Chou, S. P., Stinson, F. S., & Dawson, D. A. (2004). Nicotine dependence and psychiatric disorders in the United States. Archives of General Psychiatry, 61, 1107–1115.CrossRefGoogle ScholarPubMed
Gray, N. S., Pickering, A. D., Hemsley, D. R., Dawling, S., & Gray, J. A. (1992). Abolition of latent inhibition by a single 5 mg dose of d-amphetamine in man. Psychopharmacology (Berl.), 107, 425–430.CrossRefGoogle ScholarPubMed
Gray, N. S., & Snowden, R. J. (2005). The relevance of irrelevance to schizophrenia. Neuroscience and Biobehavioral Reviews, 29, 989–999.CrossRefGoogle Scholar
Halliwell, R. F. (2007). A short history of the rise of the molecular pharmacology of ionotropic drug receptors. Trends in Pharmacological Sciences, 28, 214–218.CrossRefGoogle Scholar
Harvey, D. M., Yasar, S., Heishman, S. J., et al. (2004). Nicotine serves as an effective reinforcer of intravenous drug-taking behavior in human cigarette smokers. Psychopharmacology (Berl.), 175, 134–142.CrossRefGoogle ScholarPubMed
Heishman, S. J. (1998). What aspects of human performance are truly enhanced by nicotine?Addiction, 93, 317–320.Google ScholarPubMed
Heishman, S. J., Snyder, F. R., & Henningfield, J. E. (1993). Performance, subjective, and physiological effects of nicotine in non-smokers. Drug and Alcohol Dependence, 34, 11–18.CrossRefGoogle ScholarPubMed
Hitsman, B., Spring, B., Pingitore, R., Munafo, M., & Hedeker, D. (2007). Effect of tryptophan depletion on the attentional salience of smoking cues. Psychopharmacology (Berl.), 192, 317–324.CrossRefGoogle ScholarPubMed
Holmes, A. D., Chenery, H. J., & Copland, D. A. (2008). Transdermal nicotine modulates strategy-based attentional semantic processing in non-smokers. Neuropsychopharmacology, 11, 389–399.Google ScholarPubMed
Hughes, J. R., Hatsukami, D. K., Mitchell, J. E., & Dahlgren, L. A. (1986). Prevalence of smoking among psychiatric outpatients. American Journal of Psychiatry, 143, 993–997.Google ScholarPubMed
Hunt, S. P., & Schmidt, J. (1978). The electron microscopic autoradiographic localization of α-bungarotoxin binding sites within the central nervous system. Brain Research, 142, 152–159.CrossRefGoogle ScholarPubMed
Jackson, K. J., Martin, B. R., Changeux, J. P., & Damaj, M. I. (2008). Differential role of nicotinic acetylcholine receptor subunits in physical and affective nicotinic withdrawal signs. Journal of Pharmacology and Experimental Therapeutics, 325, 302–312.CrossRefGoogle ScholarPubMed
Jacobsen, L. K., D'Souza, D. C., Mencl, W. E., et al. (2004). Nicotine effects on brain function and functional connectivity in schizophrenia. Biological Psychiatry, 55, 850–858.CrossRefGoogle Scholar
James, W. (1890). Principles of Psychology. New York: Henry Holt.Google Scholar
Joseph, M. H., Datla, K., & Young, A. M. (2003). The interpretation of the measurement of nucleus accumbens dopamine by in vivo dialysis: the kick, the craving or the cognition?Neuroscience and Biobehavioral Reviews, 27, 527–541.CrossRefGoogle ScholarPubMed
Joseph, M. H., Peters, S. L., & Gray, J. A. (1993). Nicotine blocks latent inhibition in rats: evidence for a critical role of increased functional activity of dopamine in the mesolimbic system at conditioning rather than pre-exposure. Psychopharmacology (Berl.), 110, 187–192.CrossRefGoogle ScholarPubMed
Joseph, M. H., Peters, S. L., Moran, P. M., et al. (2000). Modulation of latent inhibition in the rat by altered dopamine transmission in the nucleus accumbens at the time of conditioning. Neuroscience, 101, 921–930.CrossRefGoogle ScholarPubMed
Kalivas, P. W. (2007). Cocaine and amphetamine-like psychostimulants: neurocircuitry and glutamate neuroplasticity. Dialogues in Clinical Neuroscience, 9, 389–397.Google ScholarPubMed
Kalivas, P. W., Lalumiere, R. T., Knackstedt, L., & Shen, H. (2009). Glutamate transmission in addiction. Neuropharmacology, 56 (Suppl. 1), 169–173.CrossRefGoogle ScholarPubMed
Kalivas, P. W., & O'Brien, C. (2008). Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology, 33, 166–180.CrossRefGoogle ScholarPubMed
Kumari, V., Cotter, P. A., Mulligan, O. F., et al. (1999). Effects of d-amphetamine and haloperidol on latent inhibition in healthy male volunteers. Journal of Psychopharmacology, 13, 398–405.CrossRefGoogle ScholarPubMed
Kumari, V., & Postma, P. (2005). Nicotine use in schizophrenia: the self medication hypotheses. Neuroscience and Biobehavioral Reviews, 29, 1021–1034.CrossRefGoogle ScholarPubMed
Lalumiere, R. T., & Kalivas, P. W. (2008). Glutamate release in the nucleus accumbens core is necessary for heroin seeking. Journal of Neuroscience, 28, 3170–3177.CrossRefGoogle ScholarPubMed
Lasser, K., Boyd, J. W., Woolhander, S., Himmelstein, D. A., & McCormick, D. M. (2000). Smoking and mental illness: a population-based prevalence study. Journal of the American Medical Association, 284, 2606–2610.CrossRefGoogle ScholarPubMed
Leonard, S., Adler, L. E., Benhammou, K., et al. (2001). Smoking and mental illness. Pharmacology, Biochemistry and Behavior, 70, 561–570.CrossRefGoogle ScholarPubMed
Levin, E. D., McClernon, F. J., & Rezvani, A. H. (2006). Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology (Berl.), 184, 523–539.CrossRefGoogle ScholarPubMed
Levin, E. D., & Rezvani, A. H. (2006). Nicotinic-antipsychotic drug interactions and cognitive function. EXS, 98, 185–205.Google ScholarPubMed
Levin, E. D., & Rezvani, A. H. (2007). Nicotinic interactions with antipsychotic drugs, models of schizophrenia and impacts on cognitive function. Biochemical Pharmacology, 74, 1182–1191.CrossRefGoogle ScholarPubMed
Levin, E. D., Wilson, W., Rose, J. E., & McEvoy, J. (1996). Nicotine–haloperidol interactions and cognitive performance in schizophrenics. Neuropsychopharmacology, 15, 429–436.CrossRefGoogle ScholarPubMed
Liu, C. M., Chang, S. S., Liao, S. C., et al. (2007). Absent response to niacin skin patch is specific to schizophrenia and independent of smoking. Psychiatry Research, 152, 181–187.CrossRefGoogle ScholarPubMed
Lubow, R., Schnur, P., & Rifkin, B. (1976). Latent inhibition and conditioned attention theory. Journal of Experimental Psychology. Animal Behavior Processes, 2, 163–174.CrossRefGoogle Scholar
Lubow, R. E. (2005). Construct validity of the animal latent inhibition model of selective attention deficits in schizophrenia. Schizophrenia Bulletin, 31, 139–153.CrossRefGoogle Scholar
Luetje, C. W., & Patrick, J. (1991). Both α and β subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors. Journal of Neuroscience, 11, 837–845.CrossRefGoogle ScholarPubMed
Mackintosh, N. J. (1975). A theory of attention: variations in the associability of stimuli with reinforcement. Psychological Review, 82, 276–298.CrossRefGoogle Scholar
Mansvelder, H. D., Aerde, K. I., Couey, J. J., & Brussaard, A. B. (2006). Nicotinic modulation of neuronal networks: from receptors to cognition. Psychopharmacology (Berl.), 184, 292–305.CrossRefGoogle Scholar
Mathew, S. V., Law, A. J., Lipska, B. K., et al. (2007). α7 nicotinic acetylcholine receptor mRNA expression and binding in postmortem human brain are associated with genetic ariation in neuroregulin 1. Human Molecular Genetics, 16, 2921–2932.CrossRefGoogle Scholar
Mihalak, K. B., Carroll, F. I., & Luetje, C. W. (2006). Varenicline is a partial agonist at alpha4beta2 and a full agonist at alpha7 neuronal nicotinic receptors. Molecular Pharmacology, 70, 801–805.CrossRefGoogle Scholar
Miyazawa, A., Fujiyoshi, Y., & Unwin, N. (2003). Structure and gating mechanism of the acetylcholine receptor pore. Nature, 423, 949–955.CrossRefGoogle ScholarPubMed
Myers, C. S., Taylor, R. C., Moolchan, E. T., & Heishman, S. J. (2008). Dose-related enhancement of mood and cognition in smokers administered nicotine nasal spray. Neuropsychopharmacology, 33, 588–598.CrossRefGoogle ScholarPubMed
Nauright, L. P. (1987). Toward a comprehensive personnel system: the reward system–Part V. Nursing Management, 18, 58–4.Google Scholar
Nef, P., Oneyser, C., Alliod, C., Couturier, S., & Ballivet, M. (1998). Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors. The EMBO Journal, 7, 595–601.Google Scholar
Ochoa, E. L., & Lasalde-Dominicci, J. (2007). Cognitive deficits in schizophrenia: focus on neuronal nicotinic acetylcholine receptors and smoking. Cellular and Molecular Neurobiology, 27, 609–639.CrossRefGoogle ScholarPubMed
Olincy, A., Harris, J. G., Johnson, L. L., et al. (2006). Proof-of-concept trial of an alpha7 nicotinic agonist in schizophrenia. Archives of General Psychiatry, 63, 630–638.CrossRefGoogle Scholar
Orosz, A. T., Feldon, J., Gal, G., Simon, A. E., & Cattapan-Ludewig, K. (2008). Deficient associative learning in drug-naive first-episode schizophrenia: results obtained using a new visual within-subjects learned irrelevance paradigm. Behavioural Brain Research, 193, 101–107.CrossRefGoogle ScholarPubMed
Palmatier, M. I., Liu, X., Caggiula, A. R., Donny, E. C., & Sved, A. F. (2007). The role of nicotinic acetylcholine receptors in the primary reinforcing and reinforcement-enhancing effects of nicotine. Neuropsychopharmacology, 32, 1098–1108.CrossRefGoogle ScholarPubMed
Patkar, A. A., Gopalakrishnan, R., Lundy, A., et al. (2002). Relationship between tobacco smoking and positive and negative symptoms in schizophrenia. Journal of Nervous and Mental Disease, 190, 604–610.CrossRefGoogle Scholar
Postma, P., Gray, J. A., Sharma, T., et al. (2006). A behavioural and functional neuroimaging investigation into the effects of nicotine on sensorimotor gating in healthy subjects and persons with schizophrenia. Psychopharmacology (Berl.), 184, 589–599.CrossRefGoogle ScholarPubMed
Rascle, C., Mazas, O., Vaiva, G., et al. (2001). Clinical features of latent inhibition in schizophrenia. Schizophrenia Research, 51, 149–161.CrossRefGoogle Scholar
Rezvani, A. H., Caldwell, D. P., & Levin, E. D. (2005). Nicotinic-serotonergic drug interactions and attentional performance in rats. Psychopharmacology (Berl.), 179, 521–528.CrossRefGoogle ScholarPubMed
Rezvani, A. H., & Levin, E. D. (2003). Nicotinic-glutamatergic interactions and attentional performance on an operant visual signal detection task in female rats. European Journal of Pharmacology, 465, 83–90.CrossRefGoogle ScholarPubMed
Rezvani, A. H., & Levin, E. D. (2004). Nicotine-antipsychotic drug interactions and attentional performance in female rats. European Journal of Pharmacology, 486, 175–182.CrossRefGoogle ScholarPubMed
Rezvani, A. H., Tizabi, Y., Getachew, B., et al. (2008). Chronic nicotine and dizocilpine effects on nicotinic and NMDA glutamatergic receptor regulation: interactions with clozapine actions and attentional performance in rats. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 32, 1030–1040.CrossRefGoogle ScholarPubMed
Robbins, T. W. (2002). The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berl.), 163, 362–380.CrossRefGoogle ScholarPubMed
Robinson, T. E., & Berridge, K. C. (2000). The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction, 95 Suppl 2, S91–117.Google Scholar
Rochford, J., Sen, A. P., Rousse, I., & Welner, S. A. (1996). The effect of quisqualic acid-induced lesions of the nucleus basalis magnocellularis on latent inhibition. Brain Research Bulletin, 41, 313–317.CrossRefGoogle ScholarPubMed
Ruob, C., Elsner, J., Weiner, I., & Feldon, J. (1997). Amphetamine-induced disruption and haloperidol-induced potentiation of latent inhibition depend on the nature of the stimulus. Behavioural Brain Research, 88, 35–41.CrossRefGoogle ScholarPubMed
Ruob, C., Weiner, I., & Feldon, J. (1998). Haloperidol-induced potentiation of latent inhibition: interaction with parameters of conditioning. Behavioural Pharmacology, 9, 245–253.Google ScholarPubMed
Rycroft, N., Rusted, J. M., & Hutton, S. B. (2005). Acute effects of nicotine on visual search tasks in young adult smokers. Psychopharmacology (Berl.), 181, 169.CrossRefGoogle ScholarPubMed
Sacco, K. A., Bannon, K. L., & George, T. P. (2004). Nicotinic receptor mechanisms and cognition in normal states and neuropsychiatric disorders. Journal of Psychopharmacology, 18, 457–474.CrossRefGoogle ScholarPubMed
Sacco, K. A., Termine, A., Seyal, A., et al. (2005). Effects of cigarette smoking on spatial working memory and attentional deficits in schizophrenia: involvement of nicotinic receptor mechanisms. Archives of General Psychiatry, 62, 649–659.CrossRefGoogle ScholarPubMed
Salas, R., Main, A., Gangitano, D., & De, B. M. (2007). Decreased withdrawal symptoms but normal tolerance to nicotine in mice null for the alpha7 nicotinic acetylcholine receptor subunit. Neuropharmacology, 53, 863–869.CrossRefGoogle ScholarPubMed
Salvaterra, P. M., & Mahler, H. R. (1976). Nicotinic acetylcholine receptor from rat brain. Journal of Biological Chemistry, 25, 6327–6334.Google Scholar
Schmajuk, N. A., Buhusi, C. V., & Gray, J. A. (1998). Psychopharmacology of latent inhibition: a neural network approach. Behavioural Pharmacology, 9, 711–730.CrossRefGoogle ScholarPubMed
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.CrossRefGoogle ScholarPubMed
Semenova, S., Stolerman, I. P., & Markou, A. (2007). Chronic nicotine administration improves attention while nicotine withdrawal induces performance deficits in the 5-choice serial reaction time task in rats. Pharmacology, Biochemistry and Behavior, 87, 360–368.CrossRefGoogle ScholarPubMed
Severance, E. G., & Yolken, R. H. (2008). Novel α7 nicotinic receptor isoforms and deficient cholinergic transcription in schizophrenia. Genes, Brain, and Behavior, 7, 37–45.Google Scholar
Smith, R. C., Singh, A., Infante, M., Khandat, A., & Kloos, A. (2002). Effects of cigarette smoking and nicotine nasal spray on psychiatric symptoms and cognition in schizophrenia. Neuropsychopharmacology, 27, 479–497.CrossRefGoogle ScholarPubMed
Smith, R. C., Warner-Cohen, J., Matute, M., et al. (2006). Effects of nicotine nasal spray on cognitive function in schizophrenia. Neuropsychopharmacology, 31, 637–643.CrossRefGoogle Scholar
Solomon, P. R., Crider, A., Winkelman, J. W., et al. (1981). Disrupted latent inhibition in the rat with chronic amphetamine or haloperidol-induced supersensitivity: relationship to schizophrenic attention disorder. Biological Psychiatry, 16, 519–537.Google ScholarPubMed
Swerdlow, N. R., Stephany, N., Wasserman, L. C., et al. (2003). Dopamine agonists disrupt visual latent inhibition in normal males using a within-subject paradigm. Psychopharmacology (Berl.), 169, 314–320.CrossRefGoogle ScholarPubMed
Terry, A. V., Risbrough, V. B., Buccafusco, J. J., & Menzaghi, F. (2002). Effects of (+/-)-4-[[2-(1-methyl-2-pyrrolidinyl)ethyl]thio]phenol hydrochloride (SIB-1553A), a selective ligand for nicotinic acetylcholine receptors, in tests of visual attention and distractibility in rats and monkeys. Journal of Pharmacology and Experimental Therapeutics, 301, 284–292.CrossRefGoogle Scholar
Thornton, J. C., Dawe, S., Lee, C., et al. (1996). Effects of nicotine and amphetamine on latent inhibition in human subjects. Psychopharmacology (Berl.), 127, 164–173.CrossRefGoogle ScholarPubMed
Torregrossa, M. M., & Kalivas, P. W. (2008). Microdialysis and the neurochemistry of addiction. Pharmacology, Biochemistry and Behavior, 90, 261–272.CrossRefGoogle Scholar
Tribollet, E., Marguerat, A., & Raggenbass, M. (2004). Comparative distribution of nicotinic receptor subtypes during development, adulthood and aging: an autoradiographic study in the rat brain. Neuroscience, 12, 405–420.CrossRefGoogle Scholar
Vaitl, D., Lipp, O., Bauer, U., et al. (2002). Latent inhibition and schizophrenia: Pavlovian conditioning of autonomic responses. Schizophrenia Research, 55, 147–158.CrossRefGoogle ScholarPubMed
Valenstein, E. S. (2002). The discovery of chemical transmitters. Brain and Cognition, 49, 73–95.CrossRefGoogle Scholar
Volkow, N. D., Fowler, J. S., & Wang, G. J. (2002). Role of dopamine in drug reinforcement and addiction in humans: results from imaging studies. Behavioural Pharmacology, 13, 355–366.CrossRefGoogle ScholarPubMed
Wada, K., Ballivet, M., Boulter, J., et al. (1988). Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor. Science, 240, 330–334.CrossRefGoogle ScholarPubMed
Walters, C. L., Brown, S., Changeux, J. P., Martin, B., & Damaj, M. I. (2006). The beta2 but not alpha7 subunit of the nicotinic acetylcholine receptor is required for nicotine-conditioned place preference in mice. Psychopharmacology (Berl.), 184, 339–344.CrossRefGoogle Scholar
Weiner, I. (1990). Neural substrates of latent inhibition: the switching model. Psychological Bulletin, 108, 442–461.CrossRefGoogle ScholarPubMed
Weiner, I., & Feldon, J. (1987). Facilitation of latent inhibition by haloperidol in rats. Psychopharmacology (Berl.), 91, 248–253.CrossRefGoogle ScholarPubMed
Weiner, I., Lubow, R. E., & Feldon, J. (1981). Chronic amphetamine and latent inhibition. Behavioural Brain Research, 2, 285–286.CrossRefGoogle Scholar
Weiner, I., Lubow, R. E., & Feldon, J. (1984). Abolition of the expression but not the acquisition of latent inhibition by chronic amphetamine in rats. Psychopharmacology (Berl.), 83, 194–199.CrossRefGoogle Scholar
Weiner, I., Lubow, R. E., & Feldon, J. (1988). Disruption of latent inhibition by acute administration of low doses of amphetamine. Pharmacology, Biochemistry and Behavior, 30, 871–878.CrossRefGoogle ScholarPubMed
Weiner, I., Shadach, E., Tarrasch, R., Kidron, R., & Feldon, J. (1996). The latent inhibition model of schizophrenia: further validation using the atypical neuroleptic, clozapine. Biological Psychiatry, 40, 834–843.CrossRefGoogle ScholarPubMed
Williams, J. H., Wellman, N. A., Geaney, D. P., et al. (1996). Antipsychotic drug effects in a model of schizophrenic attentional disorder: a randomized controlled trial of the effects of haloperidol on latent inhibition in healthy people. Biological Psychiatry, 40, 1135–1143.CrossRefGoogle Scholar
Williams, J. H., Wellman, N. A., Geaney, D. P., et al. (1997). Haloperidol enhances latent inhibition in visual tasks in healthy people. Psychopharmacology (Berl.), 133, 262–268.CrossRefGoogle ScholarPubMed
Wise, R. A. (2004). Dopamine, learning and motivation. Nature Reviews. Neuroscience, 5, 483–494.Google Scholar
Yang, Y. K., Nelson, L., Kamaraju, L., Wilson, W., & McEvoy, J. P. (2002). Nicotine decreases bradykinesia-rigidity in haloperidol-treated patients with schizophrenia. Neuropsychopharmacology, 27, 684–686.Google ScholarPubMed
Young, A. M., Kumari, V., Mehrotra, R., et al. (2005). Disruption of learned irrelevance in acute schizophrenia in a novel continuous within-subject paradigm suitable for fMRI. Behavioural Brain Research, 156, 277–288.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×