Skip to main content
×
×
Home
Magnetohydrodynamics of the Sun
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 4
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Vlahos, Loukas and Isliker, Heinz 2019. Particle acceleration and heating in a turbulent solar corona. Plasma Physics and Controlled Fusion, Vol. 61, Issue. 1, p. 014020.

    Brun, Allan Sacha and Browning, Matthew K. 2017. Magnetism, dynamo action and the solar-stellar connection. Living Reviews in Solar Physics, Vol. 14, Issue. 1,

    González-Avilés, J. J. Guzmán, F. S. and Fedun, V. 2017. JET Formation in Solar Atmosphere Due to Magnetic Reconnection. The Astrophysical Journal, Vol. 836, Issue. 1, p. 24.

    Gilchrist, S. A. Braun, D. C. and Barnes, G. 2016. A Fixed-point Scheme for the Numerical Construction of Magnetohydrostatic Atmospheres in Three Dimensions. Solar Physics, Vol. 291, Issue. 12, p. 3583.

    ×
  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Magnetohydrodynamics of the Sun
    • Online ISBN: 9781139020732
    • Book DOI: https://doi.org/10.1017/CBO9781139020732
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to *
    ×
  • Buy the print book

Book description

Magnetohydrodynamics of the Sun is a completely new up-to-date rewrite from scratch of the 1982 book Solar Magnetohydrodynamics, taking account of enormous advances in understanding since that date. It describes the subtle and complex interaction between the Sun's plasma atmosphere and its magnetic field, which is responsible for many fascinating dynamic phenomena. Chapters cover the generation of the Sun's magnetic field by dynamo action, magnetoconvection and the nature of photospheric flux tubes such as sunspots, the heating of the outer atmosphere by waves or reconnection, the structure of prominences, the nature of eruptive instability and magnetic reconnection in solar flares and coronal mass ejections, and the acceleration of the solar wind by reconnection or wave-turbulence. It is essential reading for graduate students and researchers in solar physics and related fields of astronomy, plasma physics and fluid dynamics. Problem sets and other resources are available at www.cambridge.org/9780521854719.

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×
References
Abbett, W. P. and Fisher, G. H. (2003). A coupled model for the emergence of active region magnetic flux into the solar corona. Astrophys. J. 582, 475–485.
Acheson, D. J. (1978). On the instability of toroidal magnetic fields and differential rotation in stars. Phil.Trans.Roy.Soc. Lond. A 289, 459–500.
Acheson, D. J. (1979). Instability by magnetic buoyancy. Solar Phys. 62, 23–50.
Alexander, D. and Fletcher, L. (1999). High-resolution observations of plasma jets in the solar corona. Solar Phys. 190, 167–184.
Altschuler, M. D. and Newkirk, G. (1969). Magnetic fields and the structure of the solar corona. I. Methods of calculating coronal fields. Solar Phys. 9, 131–149.
Aly, J. J. (1991). How much energy can be stored in a three-dimensional force-free magnetic field?Astrophys. J. Letts. 375, L61–L64.
Amari, T. and Aly, J. J. (1989). Interaction between a line current and a two-dimensional constant-alpha force-free field – an analytical model for quiescent prominences. Astron. Astrophys. 208, 261–270.
Amari, T. and Aly, J. J. (1990). Current sheets in two-dimensional potential magnetic fields. II. Asymptotic limits of indefinitely sheared force-free fields. Astron. Astrophys. 227, 628–633.
Amari, T., Aly, J. J., Luciani, J. F., Boulmezaoud, T. Z., and Mikic, Z. (1997). Reconstructing the solar coronal magnetic field as a force-free magnetic field. Solar Phys. 174, 129–149.
Amari, T., Aly, J. J., Mikic, Z., and Linker, J. (2007). Coronal mass ejection initiation and complex topology configurations in the flux cancellation and breakout models. Astrophys. J. Letts. 671, L189–L192.
Amari, T., Aly, J. J., Mikic, Z., and Linker, J. (2010). Coronal mass ejection initiation: on the nature of the flux cancellation model. Astrophys. J. Letts. 717, L26–L30.
Amari, T., Boulmezaoud, T. Z., and Aly, J. J. (2006). Well-posed reconstruction of the solar coronal magnetic field. Astron. Astrophys. 446, 691–705.
Amari, T., Boulmezaoud, T. Z., and Maday, Y. (1998). A regularization method for the extrapolation of the photospheric solar magnetic field. I. Linear force-free field. Astron. Astrophys. 339, 252–260.
Amari, T., Boulmezaoud, T. Z., and Mikic, Z. (1999). An iterative method for the reconstruction of the solar coronal magnetic field. I. Method for regular solutions. Astron. Astrophys. 350, 1051–1059.
Amari, T. and Luciani, J. F. (2000). Helicity redistribution during relaxation of astrophysical plasmas. Phys. Rev. Letts. 84, 1196–1199.
Amari, T., Luciani, J. F., and Aly, J. J. (2005). Non-current-free coronal closure of subphotospheric MHD models. Astrophys. J. Letts. 629, L37–L40.
Amari, T., Luciani, J. F., Mikic, Z., and Linker, J. (2000). A twisted flux rope model for coronal mass ejections and two-ribbon flares. Astrophys. J. 529, L49–L52.
Anderson, J. E. (1963). MHD Shock Waves. (MIT Press, Cambridge, Mass.).
Antiochos, S. K. (1998). The magnetic topology of solar eruptions. Astrophys. J. Letts. 502, L181–L184.
Antiochos, S. K., Dahlburg, R., and Klimchuk, J. A. (1994). The magnetic field of solar prominences. Astrophys. J. 420, L41–L44.
Antiochos, S. K., DeVore, C. R., Karpen, J. T., and Mikic, Z. (2007). Structure and dynamics of the Sun's open magnetic field. Astrophys. J. 671, 936–946.
Antiochos, S. K., DeVore, C. R., and Klimchuk, J. A. (1999). A model for solar coronal mass ejections. Astrophys. J. 510, 485–493.
Antiochos, S. K., Karpen, J. T., DeLuca, E. E., Golub, L., and Hamilton, P. (2003). Constraints on active region coronal heating. Astrophys. J. 590, 547–553.
Antiochos, S. K. and Klimchuk, J. A. (1991). A model for the formation of solar prominences. Astrophys. J. 378, 372–377.
Antiochos, S. K., MacNeice, P. J., and Spicer, D. S. (2000). The thermal nonequilibrium of prominences. Astrophys. J. 536, 494–499.
Antiochos, S. K., MacNeice, P. J., Spicer, D. S., and Klimchuk, J. A. (1999). The dynamic formation of prominence condensations. Astrophys. J. 512, 985–991.
Antiochos, S. K., Mikic, Z., Titov, V. S., Lionello, R., and Linker, J. A. (2011). A model for the sources of the slow solar wind. Astrophys. J. 731, 112.
Antiochos, S. K. and Sturrock, P. A. (1978). Evaporative cooling of flare plasma. Astrophys. J. 220, 1137–1143.
Antolin, P., Shibata, K., and Vissers, G. (2010). Coronal rain as a marker for coronal heating mechanisms. Astrophys. J. 716, 154–166.
Antolin, P., Vissers, G., and Rouppe, van der Voort|L. (2012). On-disk coronal rain. Solar Phys. 280, 457–474.
Anzer, U. (1968). The stability of force-free magnetic fields with cylindrical symmetry in the context of solar flares. Solar Phys. 3, 298–315.
Anzer, U. (1972). A method to calculate electric currents in quiescent prominences. Solar Phys. 24, 324–335.
Anzer, U. (1978). Can coronal loop transients be driven magnetically?Solar Phys. 57, 111–118.
Arber, T. D., Botha, G. J. J., and Brady, C. S. (2009). Effect of solar chromospheric neutrals on equilibrium field structures. Astrophys. J. 705, 1183–1188.
Arber, T. D., Haynes, M., and Leake, J. E. (2007). Emergence of a flux tube through a partially ionized solar atmosphere. Astrophys. J. 666, 541–546.
Archontis, V. (2008). Magnetic flux emergence in the Sun. J. Geophys. Res. 113, 12, 3–15.
Archontis, V. and Hood, A. W. (2008). A flux emergence model for solar eruptions. Astrophys. J. Letts. 674, L113–L116.
Archontis, V. and Hood, A. W. (2010). Flux emergence and coronal eruption. Astron. Astrophys. 514, A56.
Archontis, V. and Hood, A. W. (2012). Magnetic flux emergence: a precursor of solar plasma expulsion. Astron. Astrophys. 537, A62.
Arendt, U. and Schindler, K. (1988). On the existence of three-dimensional magnetohydrostatic equilibria. Astron. Astrophys. 204, 229–234.
Arnol'd, V. (1974). The asymptotic Hopf invariant and its applications. Sel. Math. Sov. 5, 327–345.
Arregui, I., Oliver, R., and Ballester, J. L. (2012). Prominence oscillations. Liv. Rev. Solar Phys. 9, 2.
Asai, A., Masuda, S., Yokoyama, T., Shimojo, M., Isobe, H., Kurokawa, H., and Shibata, K. (2002). Difference between spatial distributions of the Ha kernels and hard X-ray sources in a solar flare. Astrophys. J. Letts. 578, L91–L94.
Asai, A., Shimojo, M., Isobe, H., Morimoto, T., Yokoyama, T., Shibasaki, K., and Nakajima, H. (2001). Periodic acceleration of electrons in the 1998 November 10 solar flare. Astrophys. J. Letts. 562, L103–L106.
Asai, A., Yokoyama, T., Shimojo, M., and Shibata, K. (2004). Downflow motions associated with impulsive nonthermal emissions observed in the 2002 July 23 solar flare. Astrophys. J. Letts. 605, L77–L80.
Aschwanden, M. J. (2001). An evaluation of coronal heating models for active regions based on Yohkoh, SOHO, and TRACE observations. Astrophys. J. 560, 1035–1044.
Aschwanden, M. J. and Benz, A. O. (1997). Electron densities in solar flare loops, chromospheric evaporation upflows, and acceleration sites. Astrophys. J. 480, 825–839.
Aschwanden, M. J., Fletcher, L., Schrijver, C. J., and Alexander, D. (1999). Coronal loop oscillations observed with the Transition Region and Coronal Explorer. Astrophys. J. 520, 880–894.
Aschwanden, M. J., Schrijver, C. J., and Alexander, D. (2001). Modeling of coronal EUV loops observed with TRACE. I. Hydrostatic solutions with nonuniform heating. Astrophys. J. 550, 1036–1050.
Aschwanden, M. J., Stern, R. A., and Güdel, M. (2008). Scaling laws of solar and stellar flares. Astrophys. J. 672, 659–673.
Aschwanden, M. J., Tarbell, T. D., Nightingale, R. W., Schrijver, C. J., Title, A., Kankelborg, C. C., Martens, P., and Warren, H. P. (2000). Time variability of the “Quiet” Sun observed with TRACE. II. Physical parameters, temperature evolution, and energetics of extreme-ultraviolet nanoflares. Astrophys. J. 535, 1047–1065.
Asplund, M., Grevesse, N., and Sauval, A. J. (2005). The solar chemical composition. Astron.Soc.Pac.Conf.Ser .336, 25–38.
Atanasiu, C. V., Guünter, S., Lackner, K., and Miron, I. G. (2004). Analytical solutions to the Grad-Shafranov equation. Phys. Plasmas 11, 3510–3518.
Athay, R. G. and Moreton, G. E. (1961). Impulsive phenomena of the solar atmosphere. I. Some optical events associated with flares showing explosive phase. Astrophys. J. 133, 935–945.
Aulanier, G., DeLuca, E. E., Antiochos, S. K., McMullen, R. A., and Golub, L. (2000). The topology and evolution of the Bastille Day flare. Astrophys. J. 540, 1126–1142.
Aulanier, G. and Demoulin, P. (1998). 3D magnetic configurations supporting prominences. I. The natural presence of lateral feet. Astron. Astrophys. 329, 1125–1137.
Aulanier, G. and Demoulin, P. (2003). Amplitude and orientation of prominence magnetic fields from constant-alpha magnetohydrostatic models. Astron. Astrophys. 402, 769–780.
Aulanier, G., Demoulin, P., Mein, N., van Driel-Gesztelyi, L., Mein, P., and Schmieder, B. (1999). 3D magnetic configurations supporting prominences. III. Evolution of fine structures observed in a filament channel. Astron. Astrophys. 342, 867–880.
Aulanier, G., Demoulin, P., Schmieder, B., Fang, C., and Tang, Y. H. (1998). Magnetohydrostatic model of a bald-patch flare. Solar Phys. 183, 369-388.
Aulanier, G., Demoulin, P., van Driel-Gesztelyi, L., Mein, P., and Deforest, C. (1998). 3D magnetic configurations supporting prominences. II. The lateral feet as a perturbation of a twisted flux-tube. Astron. Astrophys. 335, 309–322.
Aulanier, G., DeVore, C., and Antiochos, S. K. (2002). Prominence magnetic dips in three-dimensional sheared arcades. Astrophys. J. Letts. 567, L97–L101.
Aulanier, G., Golub, L., DeLuca, E. E., Cirtain, J. W., Kano, R., Lundquist, L. L., Narukage, N., Sakao, T., and Weber, M. A. (2007). Slipping magnetic reconnection in coronal loops. Science 318, 1588–1591.
Aulanier, G., Pariat, E., and Demoulin, P. (2005). Current-sheet formation in quasi-separatrix layers and hyperbolic flux tubes. Astron. Astrophys. 444, 961–976.
Aulanier, G., Pariat, E., Demoulin, P., and DeVore, C. R. (2006). Slip-running reconnection in quasi-separatrix layers. Solar Phys. 238, 347–376.
Aulanier, G. and Schmieder, B. (2002). The magnetic nature of wide EUV filament channels and their role in the mass loading of CMEs. Astron. Astrophys. 386, 1106–1122.
Aulanier, G., Srivastava, N., and Martin, S. F. (2000). Model prediction for an observed filament. Astrophys. J. 543, 447–456.
Aulanier, G., Torok, T., Demoulin, P., and DeLuca, E. E. (2010). Formation of torus-unstable flux ropes and electric currents in erupting sigmoids. Astrophys. J. 708, 314–333.
Aurass, H., Vrsnak, B., and Mann, G. (2002). Shock-excited radio burst from reconnection outflow jet?Astron. Astrophys. 384, 273–281.
Avrett, E. H. and Loeser, R. (2008). Models of the solar chromosphere and transition region from SUMER and HRTS observations: formation of the extreme-ultraviolet spectrum of Hydrogen, Carbon, and Oxygen. Astrophys. J. Suppl. 175, 229–276.
Axford, W. and McKenzie, J. (1992). The origin of high-speed solar-wind streams. In Solar Wind Seven, E., Marsch, and R., Schwenn, eds. COSPAR Colloquia Series, vol. 3. (Pergamon Press Ltd, Oxford), 1–5.
Babcock, H. W. (1961). The topology of the Sun's magnetic field and the 22-year cycle. Astrophys. J. 133, 572–587.
Babcock, H. W. and Babcock, H. D. (1952). Mapping the magnetic fields of the Sun. Pub. Astron.Soc.Pac. 64, 282–287.
Babcock, H. W. and Babcock, H. D. (1955). The Sun's magnetic field, 1952–1954. Astrophys. J. 121, 349–366.
Bak-Steslicka, U., Gibson, S. E., Fan, Y. E., Bethge, C. W., Forland, B., and Rachmeler, L. A. (2013). The magnetic structure of solar prominence cavities: New observational signature revealed by coronal magnetometry. Astrophys. J. Letts., 770, L28.
Bagenal, F. and Gibson, S. (1991). Modeling the large-scale structure of the solar corona. J. Geophys. Res. 96, 17663–17674.
Balbus, S. A. and Hawley, J. F. (1991). A powerful local shear instability in weakly magnetized disks. I. Linear analysis. Astrophys. J. 376, 214–222.
Baldwin, P. and Roberts, P. H. (1972). On resistive instabilities. Phil.Trans.Roy.Soc.Lond .272, 303–330.
Baliunas, S. L., Donahue, R. A., Soon, W. H., Horne, J. H., Frazer, J., Woodard-Eklund, L., Bradford, M., Rao, L. M., Wilson, O. C., Zhang, Q., Bennett, W., Briggs, J., Carroll, S. M., Duncan, D. K., Figueroa, D., Lanning, H. H., Misch, T., Mueller, J., Noyes, R. W., Poppe, D., Porter, A. C., Robinson, C. R., Russell, J., Shelton, J. C., Soyumer, T., Vaughan, A. H., and Whitney, J. H. (1995). Chromospheric variations in main-sequence stars. Astrophys. J. 438, 269–287.
Ballester, J. L. (2006). Seismology of prominence fine structures: observations and theory. Space Sci. Rev. 122, 129–135.
Ballester, J. L. and Priest, E. R. (1987). A 2D model for a solar prominence. Solar Phys. 109, 335–350.
Ballester, J. L. and Priest, E. R. (1989). Model for the fibril structure of solar prominences. Astron. Astrophys. 225, 213–221.
Banerjee, D., Erdelyi, R., Oliver, R., and O'Shea, E. (2007). Present and future observing trends in atmospheric magnetoseismology. Solar Phys. 246, 3–29.
Banerjee, D., Perez-Suarez, D., and Doyle, J. G. (2009). Signatures of Alfven waves in the polar coronal holes as seen by EIS/Hinode. Astron. Astrophys. 501, L15–L18.
Bareford, M. R., Browning, P. K., and van der Linden, R. A. M. (2011). The flare-energy distributions generated by kink-unstable ensembles of zero-net-current coronal loops. Solar Phys. 273, 93–115.
Barta, M., Karlicky, M., and Zemlicka, R. (2008). Plasmoid dynamics in flare reconnection and the frequency drift of the drifting pulsating structure. Solar Phys. 253, 173–189.
Basu, S. and Antia, H. M. (2003). Changes in solar dynamics from 1995 to 2002. Astrophys. J. 585, 553–565.
Batchelor, G. K. (1967). An Introduction to Fluid Dynamics. (Cambridge University Press, Cambridge, UK).
Bateman, G. (1978). MHD Instabilities. (MIT Press, Cambridge, USA).
Baty, H., Priest, E. R., and Forbes, T. G. (2009a). Effect of nonuniform resistivity in Petschek reconnection. Phys. Plasmas 13, 022312/1–7.
Baty, H., Priest, E. R., and Forbes, T. G. (2009b). Petschek reconnection with a nonlocalized resistivity. Phys. Plasmas 16, 012102/1–6.
Baum, P. and Bratenahl, A. (1980). Flux linkages of bipolar sunspot groups – a computer study. Solar Phys. 67, 245–258.
Bazer, J. and Ericson, W. B. (1959). Hydromagnetic shocks. Astrophys. J. 129, 758–785.
Beck, J. G. and Schou, J. (2000). Supergranulation rotation. Solar Phys. 193, 333–343.
Beckers, J. M. (1972). Solar spicules. Ann. Rev. Astron. Astrophys. 10, 73–100.
Beckers, J. M. and Schultz, R. B. (1972). Oscillatory motions in sunspots. Solar Phys. 27, 61–70.
Beckers, J. M. and Tallant, P. (1969). Chromospheric inhomogeneities in sunspot umbrae. Solar Phys. 7, 351–365.
Beer, J. (2000). Long-term indirect indices of solar variability. Space Sci. Rev. 94, 53–66.
Beer, J., Tobias, S., and Weiss, N. O. (1998). An active Sun throughout the Maunder minimum. Solar Phys. 181, 237–249.
Belien, A. J. C., Martens, P. C. H., and Keppens, R. (1999). Coronal heating by resonant absorption: the effects of chromospheric coupling. Astrophys. J. 526, 478–493.
Bellot Rubio, L. R., Balthasar, H., Collados, M., and Schlichenmaier, R. (2003). Field-aligned Evershed flows in the photosphere of a sunspot penumbra. Astron. Astrophys. 403, L47–L50.
Bender, C. M. and Orszag, S. A. (1999). Advanced Mathematical Methods for Scientists and Engineers. (Springer-Verlag, Berlin).
Benz, A. O. and Krucker, S. (2002). Energy distribution of microevents in the quiet solar corona. Astrophys. J. 568, 413–421.
Berdyugina, S. V. (2005). Starspots: a key to the stellar dynamo. Liv. Rev. in Solar Phys. 2, 8, 1–46.
Berger, M. A. (1984). Rigorous new limits on magnetic helicity dissipation in the solar corona. Geophys. Astrophys. Fluid Dyn. 30, 79–104.
Berger, M. A. (1988). An energy formula for nonlinear force-free magnetic fields. Astron. Astrophys. 201, 355–361.
Berger, M. A. (1999). Magnetic helicity in space physics. In Magnetic Helicity in Space and Laboratory Plasmas, M. R., Brown, R. C., Canfield, and A. A., Pevtsov, eds. (Washington, DC), 1–11.
Berger, M. A. and Field, G. (1984). The topological properties of magnetic helicity. J. Fluid Mech. 147, 133–148.
Berger, T. E., De Pontieu, B., Fletcher, L., Schrijver, C. J., Tarbell, T. D., and Title, A. M. (1999). What is moss?Solar Phys. 190, 409–418.
Berger, T. E., Liu, W., and Low, B. C. (2012). SDO/AIA detection of solar prominence formation within a coronal cavity. Astrophys. J. Letts. 758, L37.
Berger, T.E., Rouppe van der Voort, L., and Löfdahl, M. (2007). Contrast analysis of solar faculae and magnetic bright points. Astrophys. J. 661, 1272–1288.
Berger, T.E., RouppevanderVoort, L., Löofdahl, M. G., Carlsson, M., Fossum, A., Hansteen, V. H., Marthinussen, E., Title, A., and Scharmer, G. (2004). Solar magnetic elements at 0.1 arcsec resolution. General appearance and magnetic structure. Astron. Astrophys. 428, 613–628.
Berger, T. E., Shine, R. A., Slater, G. L., Tarbell, T. D., Title, A. M., Okamoto, T. J., Ichimoto, K., Katsukawa, Y., Suematsu, Y., Tsuneta, S., Lites, B. W., and Shimizu, T. (2008). Hinode SOT observations of solar quiescent prominence dynamics. Astrophys. J. Letts. 676, L89–L92.
Berger, T. E., Slater, G., Hurlburt, N., Shine, R., Tarbell, T., Title, A., Lites, B. W., Okamoto, T. J., Ichimoto, K., Katsukawa, Y., Magara, T., Suematsu, Y., and Shimizu, T. (2010). Quiescent prominence dynamics observed with the Hinode Solar Optical Telescope. I. Turbulent upflow plumes. Astrophys. J. 716, 1288–1307.
Berger, T. E., Testa, P., Hillier, A., Boerner, P., Low, B. C., Shibata, K., Schrijver, C., Tarbell, T., and Title, A. (2011). Magneto-thermal convection in solar prominences. Nature 472, 197–200.
Berghmans, D. and Clette, F. (1999). Active region EUV transient brightenings – first Results by EIT of SOHO JOP80. Solar Phys. 186, 207–229.
Bernstein, I., Frieman, E., Kruskal, M. D., and Kulsrud, R. M. (1958). An energy principle for hydromagnetic stability problems. Proc.Roy.Soc.Lond. A244, 17–40.
Beveridge, C. and Longcope, D. W. (2006). A hierarchical application of the minimum current corona. Astrophys. J. 636, 453–461.
Bewsher, D., Innes, D. E., Parnell, C. E., and Brown, D. S. (2005). Comparison of blinkers and explosive events: a case study. Astron. Astrophys. 432, 307–317.
Bhattacharjee, A., Huang, Y. M., Yang, H., and Rogers, B. (2009). Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16, 11 (Nov.), 112102.
Biermann, L. (1941). Der gegenwrtige Stand der Theorie konvektiver Sonnenmodelle. Vierteljahresschr. Astron. Ges. 76, 194–200.
Biermann, L. (1946). Zur Deutung der chromosphaörischen Turbulenz und des Exzesses der UV-Strahlung der Sonne. Naturwissenschaften 33, 118–119.
Biermann, L. (1951). Kometenschweife und solare Korpuskularstrahlung. Zeitschrift fr Astrophysik 29, 274–286.
Biernat, H. K. (1987). Unsteady Petschek reconnection. J. Geophys. Res. 92, 3392–3396.
Bineau, M. (1972). Existence of force-free magnetic fields. Comm. on Pure and Applied Mathematics 25, 77.
Bingert, S. and Peter, H. (2011). Intermittent heating in the solar corona employing a 3D MHD model. Astron. Astrophys. 530, A112.
Birn, J., Drake, J. F., Shay, M. A., Rogers, B. N., Denton, R. E., Hesse, M., Kuznetsova, M., Ma, Z. W., Bhattacharjee, A., Otto, A., and Pritchett, P. L. (2001). Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 3715–3720.
Birn, J., Goldstein, H., and Schindler, K. (1978). A theory of the onset of solar eruptive processes. Solar Phys. 57, 81–101.
Birn, J., Hesse, M., and Schindler, K. (1989). Filamentary structure of a three-dimensional plasmoid. J. Geophys. Res. 94, 241–251.
Birn, J. and Priest, E. R. (2007). Reconnection of Magnetic Fields: MHD and Collisionless Theory and Observations. (Cambridge University Press, Cambridge, UK).
Biskamp, D. (1982). Effect of secondary tearing instability on the coalescence of magnetic islands. Phys. Lett 87A, 357–360.
Biskamp, D. (1986). Magnetic reconnection via current sheets. Phys. Fluids 29, 1520–1531.
Biskamp, D. (1993). Nonlinear Magnetohydrodynamics. (Cambridge University Press, Cambridge, UK).
Biskamp, D. (1994). Magnetic reconnection. Physics Reports 237, 4, 179–247.
Bloomfield, D. S., Lagg, A., and Solanki, S. K. (2007). The nature of running penumbral waves revealed. Astrophys. J. 671, 1005–1012.
Bobra, M. G., van Ballegooijen, A. A., and DeLuca, E. E. (2008). Modeling nonpotential magnetic fields in solar active regions. Astrophys. J. 672, 1209–1220.
Bobrova, N. A. and Syrovatsky, S. I. (1979). Singular lines of one-dimensional force-free magnetic fields. Solar Phys. 61, 379–387.
Bogdan, T. J., Carlsson, M., Hansteen, V. H., McMurry, A., Rosenthal, C. S., Johnson, M., Petty-Powell, S., Zita, E. J., Stein, R. F., Mcintosh, S. W., and Nordlund, A. (2003). Waves in the magnetized solar atmosphere. II. Waves from localized sources in magnetic flux concentrations. Astrophys. J. 599, 626–660.
Bogdan, T. J. and Judge, P. G. (2006). Observational aspects of sunspot oscillations. Phil. Trans. Roy. Soc. Lond. Series A 364, 313–331.
Bogdan, T. J. and Knölker, M. (1991). Scattering of acoustic waves from a magnetic flux tube embedded in a radiating fluid. Astrophys. J. 369, 219–2236.
Bogdan, T. J. and Low, B. C. (1986). The three-dimensional structure of magnetostatic atmospheres. II – Modeling the large-scale corona. Astrophys. J. 306, 271–283.
Böhm-Vitense, Z. (1958). Uber die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. Zeitschrift fur Astrophysik 46, 108–143.
Bommier, V. and Leroy, J. L. (1998). Global pattern of the magnetic field vectors above neutral lines from 1974 to 1982: Pic-du-Midi observations of prominences. Astron.Soc.Pac.Conf.Ser .150, 434–438.
Bommier, V. and Stein, R. (2013). The internetwork magnetic flux tube diameter inferred from THEMIS and HINODE observations compared to simulations. Solar Phys., in press.
Bondi, H. (1952). On spherically symmetrical accretion. Mon. Not. Roy. Astron. Soc. 112, 195–204.
Bonet, J. A., Márquez, I., Sanchez Almeida, J., Cabello, I., and Domingo, V. (2008). Convectively driven vortex flows in the Sun. Astrophys. J. Letts. 687, L131–L134.
Bonet, J. A., Márquez, I., Sanchez Almeida, J., Palacios, J., Martínez Pillet, V., Solanki, S. K., del Toro Iniesta, J. C., Domingo, V., Berkefeld, T., Schmidt, W., Gandorfer, A., Barthol, P., and Knolker, M. (2010). SUNRISE/IMaX observations of convectively driven vortex flows in the Sun. Astrophys. J. Letts. 723, L139–L143.
Bonnet, R. M. and Dupree, A. K. (1981). Solar Phenomena in Stars and Stellar Systems.(D.Reidel, Dordrecht).
Boström, R. (1973). Models of force-free magnetic fields in a passive medium. Astrophys. Space Sci. 22, 353–380.
Botha, G. J. J., Arber, T. D., Nakariakov, V. M., and Zhugzhda, Y. D. (2011). Chromospheric resonances above sunspot umbrae. Astrophys. J. 728, 84.
Boulmezaoud, T. Z. and Amari, T. (2000). On the existence of non-linear force-free fields in three-dimensional domains. Zeitschrift Angewandte Mathematik und Physik 51, 942–967.
Boyd, T. J. M. and Sanderson, J. J. (2003). The Physics of Plasmas.(Cambridge University Press, Cambridge, UK).
Bradshaw, S. J. and Cargill, P. J. (2006). Explosive heating of low-density coronal plasma. Astron. Astrophys. 458, 987–995.
Bradshaw, S. J. and Cargill, P. J. (2010). A new enthalpy-based approach to the transition region in an impulsively heated corona. Astrophys. J. Letts. 710, L39–L43.
Bradshaw, S. J., Klimchuk, J. A., and Reep, J. W. (2012). Diagnosing the Time-dependence of Active Region Core Heating from the Emission Measure. I. Low-frequency Nanoflares. Astrophys. J. 758, 53.
Braginsky, S. I. (1965a). Self-excitation of a magnetic field during the motion of a highly conducting fluid. Sov. Phys. JETP 20, 726–735.
Braginsky, S. I. (1965b). Transport processes in a plasma. In Reviews of Plasma Physics, M. A., Leontovich, ed. (Consultants Bureau, New York), 205–311.
Braithwaite, J. (2006). A differential rotation driven dynamo in a stably stratified star. Astron. Astrophys. 449, 451–460.
Brandenburg, A. and Schmidt, D. (1998). Simulations of an alpha-effect due to magnetic buoyancy. Astron. Astrophys. 338, L55–L58.
Brandt, J. C. (1970). Introduction to the Solar Wind. (Freeman, San Francisco).
Brizard, A. J. and Hahm, T. S. (2007). Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421–468.
Brooks, D. H. and Warren, H. P. (2011). Establishing a connection between active region outflows and the solar wind: abundance measurements with EIS/Hinode. Astrophys. J. Letts. 727, L13.
Brown, D. S. and Priest, E. R. (1999). Topological bifurcations in 3D magnetic fields. Proc. Roy. Soc. Lond. A455, 3931–3951.
Brown, D. S. and Priest, E. R. (2001). The topological behaviour of 3D null points in the Sun's corona. Astron. Astrophys. 367, 339–346.
Brown, J. C. (1971). The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts. Solar Phys. 18, 489–502.
Brown, T. M., Christensen-Dalsgaard, J., Dziembowski, W. A., Goode, P. R., Gough, D. O., and Morrow, C. A. (1989). Inferring the Sun's angular velocity from observed p-mode frequency splittings. Astrophys. J. 343, 526–546.
Browning, M. K., Brun, A. S., Miesch, M. S., and Toomre, J. (2007). Dynamo action in simulations of penetrative solar convection with an imposed tachocline. Astron. Nachr. 328, 1100–1103.
Browning, P. K., Gerrard, C., Hood, A. W., Kevis, R., and van der Linden, R. A. M. (2008). Heating the corona by nanoflares: simulations of energy release triggered by a kink instability. Astron. Astrophys. 485, 837–848.
Browning, P. K. and Priest, E. R. (1982). The structure of untwisted magnetic flux tubes. Geophys. Astrophys. Fluid Dyn. 21, 237–263.
Browning, P. K. and Priest, E. R. (1984). Kelvin-Helmholtz instability of a phased-mixed Alfvyen wave. Astron. Astrophys. 131, 283–290.
Browning, P. K., Sakurai, T., and Priest, E. R. (1986). Coronal heating in closely-packed flux tubes – a Taylor-Heyvaerts relaxation theory. Astron. Astrophys. 158, 217–227.
Brueckner, G. and Bartoe, J.-D. F. (1983). Observations of high-energy jets in the corona above the quiet Sun, the heating of the corona, and the acceleration of the solar wind. Astrophys. J. 272, 329–348.
Brummell, N. H., Hurlburt, N. E., and Toomre, J. (1996). Turbulent compressible convection with rotation. I. Flow structure and evolution. Astrophys. J. 473, 494–513.
Brummell, N. H., Hurlburt, N. E., and Toomre, J. (1998). Turbulent compressible convection with rotation. II. Mean flows and differential rotation. Astrophys. J. 493, 955–969.
Brun, A. S. (2004). On the interaction between differential rotation and magnetic fields in the Sun. Solar Phys. 220, 333–345.
Brun, A. S., Miesch, M. S., and Toomre, J. (2004). Global-scale turbulent convection and magnetic dynamo action in the solar envelope. Astrophys. J. 614, 1073–1098.
Brun, A. S., Miesch, M. S., and Toomre, J. (2011). Modeling the dynamical coupling of solar convection with the radiative interior. Astrophys. J. 742, 79.
Brun, A. S., Turcke-Chieze, S., and Zahn, J.-P. (1999). Standard solar models in the light of new helioseismic constraints. II. Mixing below the convective zone. Astrophys. J. 525, 1032–1041.
Brun, A. S. and Zahn, J.-P. (2006). Magnetic confinement of the solar tachocline. Astron. Astrophys. 457, 665–674.
Bruno, R. and Carbone, V. (2005). The solar wind as a turbulence laboratory. Liv. Rev. in Solar Phys. 2, 4.
Buöchner, J. (2006). Locating current sheets in the solar corona. Space Sci. Rev. 122, 149–160.
Böhler, D., Lagg, A., and Solanki, S. K. (2013). Quiet Sun magnetic fields observed by Hinode: support for a local dynamo. Astron. Astrophys., 555, A33.
Bulanov, S. V., Sakai, D. I., and Syrovatsky, S. I. (1979). Tearing instability in quasi-stationary magnetohydrodynamic configurations. Soviet J. Plasma Phys. 5, 280–290.
Bulanov, S. V. and Sasorov, P. V. (1978). Tearing of a current sheet and reconnection of magnetic lines of force. Soviet J. Plasma Phys. 4, 746–757.
Bulanov, S. V., Shasharaina, S., and Pegoraro, F. (1990). MHD modes near the X-line of a magnetic configuration. Plasma Phys. and Control. Fusion 32, 377–389.
Bungey, T. N. and Priest, E. R. (1995). Current sheet configurations in potential and force-free fields. Astron. Astrophys. 293, 215–224.
Burgess, D. (1995). Collisionless shocks. In Introduction to Space Physics, M. G., Kivelson and C. T., Russell, eds. (Cambridge University Press, Cambridge, UK), 129–163.
Burlaga, L., Sittler, E., Mariani, F., and Schwenn, R. (1981). Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673–6684.
Bushby, P. J., Houghton, S. M., Proctor, M. R. E., and Weiss, N. O. (2008). Convective intensification of magnetic fields in the quiet Sun. Mon. Not. Roy. Astron. Soc. 387, 698–706.
Caligari, P., Moreno-Insertis, F., and Schössler, M. (1995). Emerging flux tubes in the solar convection zone. I. Asymmetry, tilt, and emergence latitude. Astrophys. J. 441, 886–902.
Cally, P. S. and Bogdan, T. J. (1997). Simulation of f- and p-mode interactions with a stratified magnetic field concentration. Astrophys. J. Letts. 486, L67–L70.
Cally, P. S., Crouch, A. D., and Braun, D. C. (2003). Probing sunspot magnetic fields with p-mode absorption and phase shift data. Mon. Not. Roy. Astron. Soc. 346, 381–389.
Cally, P. S. and Goossens, M. (2008). Three-dimensional MHD wave propagation and conversion to Alfvyen waves near the solar surface. I. Direct numerical solution. Solar Phys. 251, 251–265.
Cameron, A. C. (2007). Differential rotation on rapidly rotating stars. Astron. Nach. 328, 1030–1033.
Cameron, R. H., Jiang, J., Schmitt, D., and Schüssler, M. (2010). Surface Flux Transport Modeling for Solar Cycles 15-21: Effects of Cycle-Dependent Tilt Angles of Sunspot Groups. Astrophys. J. 719, 264-270.
Cameron, R. H. and Schüssler, M. (2012). Are the strengths of solar cycles determined by converging flows towards the activity belts?Astron. Astrophys. 548, A57.
Canfield, R. C., Cheng, C.-C., Dere, K. P., Dulk, G. A., McLean, D. J., Schmahl, E. J., Robinson, R. D., and Schoolman, S. A. (1980). Radiative energy output of the 5 September 1973 flare. In Skylab Solar Workshop II, P.A., Sturrock, ed. (Colorado Ass. Univ. Press, Boulder, Colorado), 451–469.
Canfield, R. C., Hudson, H. S., and McKenzie, D. E. (1999). Sigmoidal morphology and eruptive solar activity. Geophys. Res. Lett. 26, 627–630.
Canfield, R. C., Reardon, K. P., Leka, K. D., Shibata, K., Yokoyama, T., and Shimojo, M. (1996). H-alpha surges and X-ray jets in AR 7260. Astrophys. J. 464, 1016–1029.
Canou, A. and Amari, T. (2010). A twisted flux rope as the magnetic structure of a filament in active region 10953 observed by Hinode. Astrophys. J. 715, 1566–1574.
Canou, A., Amari, T., Bommier, V., Schmieder, B., Aulanier, G., and Li, H. (2009). Evidence for a pre-eruptive twisted flux rope using the Themis vector magnetograph. Astrophys. J. Letts. 693, L27–L30.
Canuto, V. and Mazzitelli, I. (1991). Stellar turbulent convection – a new model and applications. Astrophys. J. 370, 295–311.
Carcedo, L., Brown, D. S., Hood, A. W., Neukirch, T., and Wiegelmann, T. (2003). A quantitative method to optimise magnetic field line fitting of observed coronal loops. Solar Phys. 218, 29–40.
Cargill, P. J. (1994). Some implications of the nanoflare concept. Astrophys. J. 422, 381–393.
Cargill, P. J., Bradshaw, S. J., and Klimchuk, J. A. (2012a). Enthalpy-based thermal evolution of loops. II. Improvements to the model. Astrophys. J. 752, 161.
Cargill, P. J., Bradshaw, S. J., and Klimchuk, J. A. (2012b). Enthalpy-based thermal evolution of loops. III. Comparison of zero-dimensional models. Astrophys. J. 758, 5.
Cargill, P. J. and De Moortel, I. (2011). Solar physics: waves galore. Nature 475, 463–464.
Cargill, P. J. and Klimchuk, J. A. (1997). A nanoflare explanation for the heating of coronal loops observed by Yohkoh. Astrophys. J. 478, 799–806.
Cargill, P. J. and Klimchuk, J. A. (2004). Nanoflare heating of the corona revisited. Astrophys. J. 605, 911–920.
Cargill, P. J., Mariska, J. T., and Antiochos, S. K. (1995). Cooling of solar flares plasmas. I. Theoretical considerations. Astrophys. J. 439, 1034–1043.
Cargill, P. J. and Priest, E. R. (1980). Siphon flows in coronal loops. Solar Phys. 65, 251–269.
Cargill, P. J. and Priest, E. R. (1982). Slow shock heating and the Kopp-Pneuman model for post-flare loops. Solar Phys. 76, 357–375.
Carlsson, M. and Hansteen, V. (2005). Chromospheric waves. In Chromospheric and Coronal Magnetic Fields, D. E., Innes, A., Lagg, and S. A., Solanki, eds. (ESA SP-596, Noordwijk), 39.1–39.11.
Carlsson, M., Hansteen, V. H., De Pontieu, B., McIntosh, S., Tarbell, T. D., Shine, D., Tsuneta, S., Katsukawa, Y., Ichimoto, K., Suematsu, Y., Shimizu, T., and Nagata, S. (2007). Can high frequency acoustic waves heat the quiet Sun chromosphere?Publ. Astron. Soc. Japan 59, 663–668.
Carlsson, M., Hansteen, V. H., and Gudiksen, B. V. (2010). Chromospheric heating and structure as determined from high resolution 3D simulations. Mem. della Soc. Astron. Ital. 81, 582–587.
Carlsson, M. and Stein, R. F. (1995). Does a nonmagnetic solar chromosphere exist?Astrophys. J. Letts. 440, L29–L32.
Carlsson, M. and Stein, R. F. (1997). Formation of solar calcium H and K bright grains. Astrophys. J. 481, 500–514.
Carlsson, M., Stein, R. F., Nordlund, A., and Scharmer, G. B. (2004). Observational manifestations of solar magnetoconvection: center-to-limb variation. Astrophys. J. Letts. 610, L137–L140.
Carmichael, H. (1964). A process for flares. In AAS-NASA Symposium on Physics of Solar Flares. (NASA, SP-50, Washington), 451–456.
Cartledge, N., Titov, V. S., and Priest, E. R. (1996). A 2-D model for the support of a polar-crown solar prominence. Solar Phys. 166, 287–310.
Casini, R., Bevilacqua, R., and Lopez Ariste, A. (2005). Principal component analysis of the He I D3 polarization profiles from solar prominences. Astrophys. J. 622, 1265–1274.
Cattaneo, F. (1999). On the origin of magnetic fields in the quiet photosphere. Astrophys. J. 515, L39–L42.
Cattaneo, F., Emonet, T., and Weiss, N. O. (2003). On the interaction between convection and magnetic fields. Astrophys. J. 588, 1183–1198.
Cattaneo, F. and Hughes, D. W. (1988). The nonlinear breakup of a magnetic layer: instability to interchange modes. J. Fluid Mech. 196, 323–344.
Cattaneo, F. and Hughes, D. W. (1996). Nonlinear saturation of the turbulent a-effect. Phs. Rev. E 54, 4532–4535.
Cattaneo, F. and Hughes, D. W. (2006). Dynamo action in a rotating convective layer. J. Fluid Mech. 553, 401–418.
Cattaneo, F. and Hughes, D. W. (2009). Problems with kinematic mean-field electrodynamics at high magnetic Reynolds numbers. Mon. Not. Roy. Astron. Soc. 395, L48–L51.
Centeno, R., Socas-Navarro, H., Lites, B., Kubo, M., Frank, Z., Shine, R., Tarbell, T., Title, A., Ichimoto, K., Tsuneta, S., Katsukawa, Y., Suematsu, Y., Shimizu, T., and Nagata, S. (2007). Emergence of small-scale magnetic loops in the quiet-Sun internetwork. Astrophys. J. Letts. 666, L137–L140.
Chamberlain, J. W. (1960). Interplanetary gas. II. Expansion of a model solar corona. Astrophys. J. 131, 47–58.
Chandran, B. D. G. and Hollweg, J. V. (2009). Alfven wave reflection and turbulent heating in the solar wind from 1 solar radius to 1 AU: an analytical treatment. Astrophys. J. 707, 1659–1667.
Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic Stability. (Cambridge University Press, Cambridge, UK).
Chaplin, W. J. (2006). Music of the Sun. (Oneworld Publications, Oxford).
Chaplin, W. J., Christensen-Dalsgaard, J., Elsworth, Y., Howe, R., Isaak, G. R., Larsen, R. M., New, R., Schou, J., Thompson, M. J., and Tomczyk, S. (1999). Rotation of the solar core from BiSON and LOWL frequency observations. Mon. Not. Roy. Astron. Soc. 308, 405–414.
Chaplin, W. J., Elsworth, Y., Howe, R., Isaak, G. R., McLeod, C. P., Miller, B. A., van der Raay, H. B., Wheeler, S. J., and New, R. (1996). BiSON performance. Solar Phys. 168, 1–18.
Chapman, S. (1929). Solar streams of corpuscles: their geometry, absorption of light, and penetration. Mon. Not. Roy. Astron. Soc. 89, 456–470.
Chapman, S. and Zirin, H. (1957). Notes on the solar corona and the terrestrial ionosphere. Smithsonian Contributions to Astrophysics 2, 1–11.
Charbonneau, P. (2010). Dynamo models of the solar cycle. Liv. Rev. in Solar Phys. 7, 3.
Charbonneau, P. (2013). Solar and Stellar Dynamos. Vol. 39. (Springer-Verlag, Berlin).
Charbonneau, P., Beaubien, G., and St-Jean, C. (2007). Fluctuations in Babcock-Leighton dynamos. II. Revisiting the Gnevyshev-Ohl rule. Astrophys. J. 658, 657–662.
Charbonneau, P. and MacGregor, K. B. (1997). Solar interface dynamos: II linear, kinematic models in spherical geometry. Astrophys. J. 486, 502–520.
Chatterjee, P., Nandy, D., and Choudhuri, A. R. (2004). Full-sphere simulations of a circulation-dominated solar dynamo: exploring the parity issue. Astron. Astrophys. 427, 1019–1030.
Chemin, J.-Y., Gallagher, I., Desjardins, B., and Grenier, E. (2006). Mathematical Geophysics. (Oxford University Press, Oxford).
Chen, C. J. and Lykoudis, P. S. (1972). Velocity oscillations in solar plage regions. Solar Phys. 25, 380–401.
Chen, J. (1989). Effects of toroidal forces in current loops embedded in a background plasma. Astrophys. J. 338, 453–470.
Chen, L. and Hasegawa, A. (1974). Plasma heating by spatial resonance of Alfváen wave. Physics of Fluids 17, 1399–1403.
Chen, P. F. (2011). Coronal mass ejections: models and their observational basis. Liv. Rev. in Solar Phys. 8, 1.
Chen, P. F., Wu, S. T., Shibata, K., and Fang, C. (2002). Evidence of EIT and Moreton waves in numerical simulations. Astrophys. J. Letts. 572, L99–L102.
Chen, Y., Li, X., Song, H. Q., Shi, Q. Q., Feng, S. W., and Xia, L. D. (2009). Intrinsic instability of coronal streamers. Astrophys. J. 691, 1936–1942.
Cheung, M. C. M., Moreno-Insertis, F., and Schuössler, M. (2006). Moving magnetic tubes: fragmentation, vortex sheets and the limit of the approximation of thin flux tubes. Astron. Astrophys. 451, 303–317.
Cheung, M. C. M., Rempel, M., Title, A. M., and Schuössler, M. (2010). Simulation of the formation of a solar active region. Astrophys. J. 720, 233–244.
Cheung, M. C. M., Schössler, M., and Moreno-Insertis, F. (2007). Magnetic flux emergence in granular convection: radiative MHD simulations and observational signatures. Astron. Astrophys. 467, 703–719.
Chiu, Y. T. and Hilton, H. H. (1977). Exact Green's function method of solar force-free magnetic field computations with constant alpha. I. Theory and basic test cases. Astrophys. J. 212, 873–885.
Chou, Y. P. and Low, B. C. (1994). A class of force-free magnetic fields for modeling pre-flare coronal magnetic configurations. Solar Phys. 153, 255–285.
Choudhuri, A. R. (1990). On the possibility of an «2w-type dynamo in a thin layer inside the Sun. Astrophys. J. 355, 733–744.
Choudhuri, A. R. (1998). Physics of Fluids and Plasmas. (Cambridge University Press, Cambridge, UK).
Choudhuri, A. R. (1999). The solar dynamo. Current Science 77, 1475–1485.
Choudhuri, A. R. (2003). On the connection between mean-field dynamo theory and flux tubes. Solar Phys. 215, 31–55.
Choudhuri, A. R., Chatterjee, P., and Jiang, J. (2007). Predicting solar cycle 24 with a solar dynamo model. Phys. Rev. Letts. 98, 131103–131107.
Choudhuri, A. R., Chatterjee, P., and Nandy, D. (2004). Helicity of solar active regions from a dynamo model. Astrophys. J. Letts. 615, L57–L60.
Choudhuri, A. R. and Dikpati, M. (1999). On the large-scale diffuse magnetic field of the Sun – II. The contribution of active regions. Solar Phys. 184, 61–76.
Choudhuri, A. R. and Gilman, P. A. (1987). The influence of the Coriolis force on flux tubes rising through the solar convection zone. Astrophys. J. 316, 788–800.
Choudhuri, A. R., Schuössler, M., and Dikpati, M. (1995). The solar dynamo with meridional circulation. Astron. Astrophys. 303, L29–L32.
Christensen-Dalsgaard, J., Dappen, W., Ajukov, S. V., Anderson, E. R., Antia, H. M., Basu, S., Baturin, V. A., Berthomieu, G., Chaboyer, B., Chitre, S. M., Cox, A. N., Demarque, P., Donatowicz, J., Dziembowski, W. A., Gabriel, M., Gough, D. O., Guenther, D. B., Guzik, J. A., Harvey, J. W., Hill, F., Houdek, G., Iglesias, C. A., Kosovichev, A. G., Leibacher, J. W., Morel, P., Proffitt, C. R., Provost, J., Reiter, J., Rhodes, Jr., E. J., Rogers, F. J., Roxburgh, I. W., Thompson, M. J., and Ulrich, R. K. (1996). The current state of solar modeling. Science 272, 1286–1292.
Christensen-Dalsgaard, J., Duvall, T. L., Gough, D. O., Harvey, J. W., and Rhodes, E. J. (1985). Speed of sound in the solar interior. Nature 315, 378–382.
Christensen-Dalsgaard, J. and Gough, D. O. (1976). Towards a heliological inverse problem. Nature 259, 89–92.
Christensen-Dalsgaard, J., Gough, D. O., and Thompson, M. J. (1991). The depth of the solar convection zone. Astrophys. J. 378, 431–437.
Ciaravella, A. and Raymond, J. C. (2008). The current sheet associated with the 2003 November 4 coronal mass ejection: density, temperature, thickness, and line width. Astrophys. J. 686, 1372–1382.
Cirtain, J. W., Golub, L., Lundquist, L., van Ballegooijen, A. A., Savcheva, A., Shimojo, M., DeLuca, E., Tsuneta, S., Sakao, T., Reeves, K., Weber, M., Kano, R., Narukage, N., and Shibasaki, K. (2007). Evidence for Alfvyen waves in solar X-ray jets. Science 318, 1580–1582.
Claverie, A., Isaak, G. R., McLeod, C. P., van der Raay, H. B., and Cortes, T. R. (1979). Solar structure from global studies of the 5-minute oscillation. Nature 282, 591–594.
Close, R. M., Parnell, C., Mackay, D. H., and Priest, E. R. (2004). Statistical flux tube properties of 3D magnetic carpet fields. Solar Phys. 212, 251–275.
Close, R. M., Parnell, C. E., Longcope, D. W., and Priest, E. R. (2005). Coronal flux recycling times. Solar Phys. 231, 45–70.
Close, R. M., Parnell, C. E., and Priest, E. R. (2004). Recycling of the solar corona's magnetic field. Astrophys. J. 612, L81–L84.
Coppi, B., Pellat, R., Rosenbluth, M., Rutherford, P., and Galvao, R. (1976). Resistive internal kink modes. Soviet J. Plasma Phys. 2, 961–966.
Courant, R. and Hilbert, D. (1963). Methods of Mathematical Physics, Vol. 2. (Interscience, New York). p. 367.
Courvoisier, A., Hughes, D. W., and Tobias, S. M. (2006). a-effect in a family of chaotic flows. Phys. Rev. Letts. 96,034503, 1–4.
Cowling, T. G. (1934). The magnetic field of sunspots. Mon. Not. Roy. Astron. Soc. 94, 39–48.
Cowling, T. G. (1953). Solar electrodynamics. In The Sun, G., Kuiper, ed. (Univ. Chicago Press, Chicago), 532–591.
Cowling, T. G. (1958). Magnetohydrodynamics. (Interscience, New York).
Cowling, T. G. (1976). Magnetohydrodynamics. (Adam Hilger, Bristol, UK).
Cox, D. P. and Tucker, W. H. (1969). Ionization equilibrium and radiative cooling of a low-density plasma. Astrophys. J. 157, 1157–1167.
Craig, I. J. D. and Fabling, R. B. (1996). Exact solutions for steady-state, spine, and fan magnetic reconnection. Astrophys. J. 462, 969–976.
Craig, I. J. D., Fabling, R. B., Henton, S. M., and Rickard, G. J. (1995). An exact solution for steady-state magnetic reconnection in three dimensions. Astrophys. J. Letts. 455, L197–L199.
Craig, I. J. D. and Henton, S. M. (1995). Exact solutions for steady-state incompressible magnetic reconnection. Astrophys. J. 450, 280–288.
Craig, I. J. D. and McClymont, A. N. (1991). Dynamic magnetic reconnection at an X-type neutral point. Astrophys. J. 371, L41–L44.
Craig, I. J. D. and McClymont, A. N. (1993). Linear theory of fast reconnection at an X-type neutral point. Astrophys. J. 405, 207–215.
Craig, I. J. D., McClymont, A. N., and Underwood, J. H. (1978). The temperature and density structure of active region coronal loops. Astron. Astrophys. 70, 1–11.
Craig, I. J. D. and Sneyd, A. D. (1986). A dynamic relaxation technique for determining the structure and stability of coronal magnetic fields. Astrophys. J. 311, 451–459.
Craig, I. J. D. and Sneyd, A. D. (2005). The Parker problem and the theory of coronal heating. Solar Phys. 232, 41–62.
Cranmer, S. R. (2004). New views of the solar wind with the Lambert W function. American Journal of Physics 72, 1397–1403.
Cranmer, S. R. (2009). Coronal holes. Liv. Rev. in Solar Phys. 6, 3.
Cranmer, S. R. (2010). An efficient approximation of the coronal heating rate for use in global Sun-heliosphere simulations. Astrophys. J. 710, 676–688.
Cranmer, S. R. (2012). Self-consistent models of the solar wind. Space Sci. Rev. 172, 145–156.
Cranmer, S. R., Matthaeus, W. H., Breech, B. A., and Kasper, J. C. (2009). Empirical constraints on proton and electron heating in the fast solar wind. Astrophys. J. 702, 1604–1614.
Cranmer, S. R. and van Ballegooijen, A. A. (2005). On the generation, propagation, and reflection of Alfven waves from the solar photosphere to the distant heliosphere. Astrophys. J. Suppl. 156, 265–293.
Cranmer, S. R. and van Ballegooijen, A. A. (2010). Can the solar wind be driven by magnetic reconnection in the Sun's magnetic carpet?Astrophys. J. 720, 824–847.
Cranmer, S. R. and van Ballegooijen, A. A. (2012). Proton, electron, and ion heating in the fast solar wind from nonlinear coupling between Alfvenic and fast-mode turbulence. Astrophys. J. 754, 92.
Cranmer, S. R., van Ballegooijen, A. A., and Edgar, R. J. (2007). Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Supp. 171, 520–551.
Culhane, L., Harra, L. K., Baker, D., van Driel-Gesztelyi, L., Sun, J., Doschek, G. A., Brooks, D. H., Lundquist, L. L., Kamio, S., Young, P. R., and Hansteen, V. H. (2007). Hinode EUV study of jets in the Sun's south polar corona. Publ. Astron. Soc. Japan 59, 751–756.
Curdt, W., Tian, H., and Kamio, S. (2012). Explosive events: Swirling transition region jets. Solar Phys. 280, 417–424.
Czaykowska, A., De Pontieu, B., Alexander, D., and Rank, G. (1999). Evidence for chromospheric evaporation in the late gradual flare phase from SOHO/CDS observations. Astrophys. J. Letts. 521, L75–L78.
Demoulin, P., Cuperman, S., and Semel, M. (1992). Determination of force-free magnetic fields above the photosphere using three-component boundary conditions. II. Analysis and minimization of scale-related growing modes and of computational induced singularities. Astron. Astrophys. 263, 351–360.
Dahlburg, R. B., Antiochos, S. K., and Klimchuk, J. A. (1998). Prominence formation by localized heating. Astrophys. J. 495, 485–490.
Dahlburg, R. B., Klimchuk, J. A., and Antiochos, S. K. (2005). An explanation for the “switch-on” nature of magnetic energy release and its application to coronal heating. Astrophys. J. 622, 1191–1201.
Dalda, A. S. and Martinez Pillet, V. M. (2008). In-situ flux losses in active regions. Astron.Soc.Pac.Conf. Ser. 383, 115–122.
Danielson, R. E. (1961). The structure of sunspot penumbras. II. Theoretical. Astrophys. J. 134, 289–311.
Danielson, R. E. (1964). The structure of sunspot umbras. I. Observations. Astrophys. J. 139, 45–47.
Danilovic, S., Beeck, B., Pietarila, A., Schössler, M., Solanki, S. K., Martinez Pillet, V., Bonet, J. A., del Toro Iniesta, J. C., Domingo, V., Barthol, P., Berkefeld, T., Gandorfer, A., Knöolker, M., Schmidt, W., and Title, A. M. (2010). Transverse component of the magnetic field in the solar photosphere observed by SUNRISE. Astrophys. J. Letts. 723, L149–L153.
Danilovic, S., Schössler, M., and Solanki, S. K. (2010). Magnetic field intensification: comparison of 3D MHD simulations with Hinode/SP results. Astron. Astrophys. 509, A76.
Davis, R. Jr., and Evans, J. C. (1978). Experimental limits on extraterrestrial sources of neutrinos. Proceedings 13th International Cosmic Ray Conference 3, 2001–2006.
De Groof, A. and Goossens, M. (2002). Fast and Alfven waves driven by azimuthal footpoint motions. II. Random driver. Astron. Astrophys. 386, 691–698.
De Moortel, I. and Galsgaard, K. (2006). Numerical modelling of 3D reconnection. II. Comparison between rotational and spinning footpoint motions. Astron. Astrophys. 459, 627–639.
De Moortel, I., Hood, A. W., Ireland, J., and Arber, T. D. (1999). Phase mixing of Alfven waves in a stratified and open atmosphere. Astron. Astrophys. 346, 641–651.
De Moortel, I., Hood, A. W., Ireland, J., and Walsh, R. (2002). Longitudinal intensity oscillations in coronal loops observed with TRACE. I. Overview of measured parameters. Solar Phys. 209, 61–88.
De Moortel, I., Ireland, J., and Walsh, R. W. (2000). Observation of oscillations in coronal loops. Astron. Astrophys. 355, L23–L26.
De Moortel, I. and Nakariakov, V. M. (2012). Magnetohydrodynamic waves and coronal seismology: an overview of recent results. Phil.Trans.Roy.Soc.Lond.A 370, 3193–3216.
De Moortel, I. and Pascoe, D. J. (2012). The effects of line-of-sight integration on multistrand coronal loop oscillations. Astrophys. J. 746, 31.
De Pontieu, B. (2002). High-resolution observations of small-scale emerging flux in the photosphere. Astrophys. J. 569, 474–486.
De Pontieu, B., Carlsson, M., Rouppe van der Voort, L., Rutten, R. J., Hansteen, V. H., and Watanabe, H. (2012). Ubiquitous torsional motions in type II spicules. Astrophys. J. Letts. 752, L12.
De Pontieu, B., Erdeelyi, R., and James, S. P. (2004). Solar chromospheric spicules from the leakage of photospheric oscillations and flows. Nature 430, 536–539.
De Pontieu, B. and McIntosh, S. W. (2010). Quasi-periodic propagating signals in the solar corona: the signature of magnetoacoustic waves or high-velocity upflows?Astrophys. J. 722, 1013–1029.
De Pontieu, B., McIntosh, S. W., Carlsson, M., Hansteen, V. H., Tarbell, T. D., Boerner, P., Martinez-Sykora, J., Schrijver, C. J., and Title, A. M. (2011). The origins of hot plasma in the solar corona. Science 331, 55–58.
DePontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Schrijver, C.J., Title, A.M., Shine, R.A., Tsuneta, S., Katsukawa, Y., Ichimoto, K., Suematsu, Y., Shimizu, T., and Nagata, S. (2007). Chromospheric Alfveenic waves strong enough to power the solar wind. Science 318, 1574–1577.
De Pontieu, B., McIntosh, S. W., Hansteen, V. H., Carlsson, M., Schrijver, C. J., Tarbell, T. D., Title, A. M., Shine, R. A., Suematsu, Y., Tsuneta, S., Katsukawa, Y., Ichimoto, K., Shimizu, T., and Nagata, S. (2007). A tale of two spicules: the impact of spicules on the magnetic chromosphere. Publ. Astron. Soc. Japan 59, 655–662.
De Pontieu, B., McIntosh, S. W., Hansteen, V. H., and Schrijver, C. J. (2009). Observing the roots of solar coronal heating in the chromosphere. Astrophys. J. Letts. 701, L1–L6.
De Rosa, M. L. and Toomre, J. (2004). Evolution of solar supergranulation. Astrophys. J. 616, 1242–1260.
De Wijn, A. G., Stenflo, J. O., Solanki, S. K., and Tsuneta, S. (2009). Small-scale solar magnetic fields. Space Sci. Rev. 144, 275–315.
DeBenedetti, M. and Pegoraro, F. (1995). Resistive modes at a magnetic X-point. Plasma Physics and Controlled Fusion 37, 103–116.
DeForest, C. E. (2007). On the size of structures in the solar corona. Astrophys. J. 661, 532–542.
DeForest, C. E., Lamy, P. L., and Llebaria, A. (2001). Solar polar plume lifetime and coronal hole expansion: determination from long-term observations. Astrophys. J. 560, 490–498.
Degenhardt, D. and Wiehr, E. (1991). Spatial variation of the magnetic field inclination in a sunspot penumbra. Astron. Astrophys. 252, 821–826.
Deinzer, W. (1965). On the magneto-hydrostatic theory of sunspots. Astrophys. J. 141, 548–563.
Del Zanna, G. (2008). Flows in active region loops observed by Hinode EIS. Astron. Astrophys. 481, L49–L52.
Delaboudiniere, J.-P., Artzner, G. E., Brunaud, J., Gabriel, A. H., Hochedez, J. F., Millier, F., Song, X. Y., Au, B., Dere, K. P., Howard, R. A., Kreplin, R., Michels, D. J., Moses, J. D., Defise, J. M., Jamar, C., Rochus, P., Chauvineau, J. P., Marioge, J. P., Catura, R. C., Lemen, J. R., Shing, L., Stern, R. A., Gurman, J. B., Neupert, W. M., Maucherat, A., Clette, F., Cugnon, P., and van Dessel, E. L. (1995). EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291–312.
Delanneee, C., Töoröok, T., Aulanier, G., and Hochedez, J.-F. (2008). A new model for propagating parts of EIT waves: a current shell in a CME. Solar Phys. 247, 123–150.
DeLuca, E. E. and Gilman, P. A. (1986). Dynamo theory for the interface between the convection zone and the radiative interior of a star: I. Model equations and exact solutions. Geophys. Astrophys. Fluid Dyn. 37, 85–127.
Demoulin, P. and Aulanier, G. (2010). Criteria for flux rope eruption: non-equilibrium versus torus instability. Astrophys. J. 718, 1388–1399.
Deemoulin, P., Bagala, L. G., Mandrini, C. H., Heenoux, J. C., and Rovira, M. G. (1997). Quasi-separatrix layers in solar flares. II. Observed magnetic configurations. Astron. Astrophys. 325, 305–317.
Demoulin, P., Henoux, J., and Mandrini, C. H. (1994). Are magnetic null points important in solar flares? Astron. Astrophys. 285, 1023–1037.
Demoulin, P., Henoux, J. C., Mandrini, C. H., and Priest, E. R. (1997). Can we extrapolate a magnetic field when its topology is complex?Solar Phys. 174, 73–89.
Demoulin, P., Henoux, J. C., Priest, E. R., and Mandrini, C. H. (1996). Quasi-separatrix layers in solar flares. I. Method. Astron. Astrophys. 308, 643–655.
Demoulin, P. and Priest, E. R. (1988). Instability of a prominence supported in a linear force-free field. Astron. Astrophys. 206, 336–347.
Demoulin, P. and Priest, E. R. (1989). A twisted flux model for solar prominences. II. Formation of a dip in a magnetic structure before the formation of a solar prominence. Astron. Astrophys. 214, 360–368.
Demoulin, P. and Priest, E. R. (1992). The properties of sources and sinks of a linear force-free field. Astron. Astrophys. 258, 535–541.
Deemoulin, P. and Priest, E. R. (1993). A model for an inverse-polarity prominence supported in a dip of a quadrupolar region. Solar Phys. 144, 283–305.
Deemoulin, P., Priest, E. R., and Anzer, U. (1989). A three-dimensional model for solar prominences. Astron. Astrophys. 221, 326–337.
Deemoulin, P., van Driel-Gesztelyi, L., Schmieder, B., Henoux, J., Csepura, G., and Hagyard, M. (1993). Evidence for magnetic reconnection in solar flares. Astron. Astrophys. 271, 292–307.
Deng, Y. Y., Schmieder, B., Engvold, O., DeLuca, E., and Golub, L. (2000). Emergence of sheared magnetic flux tubes in an active region observed with the SVST and TRACE. Solar Phys. 195, 347–366.
Dere, K. P., Barto, J.-D. F., and Brueckner, G. E. (1989). Explosive events in the solar transition zone. Solar Phys. 123, 41–68.
Dere, K. P., Brueckner, G. E., Howard, R. A., Michels, D. J., and Delaboudiniere, J. P. (1999). LASCO and EIT observations of helical structure in coronal mass ejections. Astrophys. J. 516, 465–474.
Dere, K. P., Landi, E., Young, P. R., Del Zanna, G., Landini, M., and Mason, H. E. (2009). CHIANTI – an atomic database for emission lines. IX. Ionization rates, recombination rates, ionization equilibria for the elements hydrogen through zinc and updated atomic data. Astron. Astrophys. 498, 915–929.
Deubner, F. L. (1975). Observations of low-wavenumber nonradial eigenmodes of the Sun. Astron. Astrophys. 44, 371–375.
DeVore, C. R. and Antiochos, S. K. (2000). Dynamical formation and stability of helical prominence magnetic fields. Astrophys. J. 539, 954–963.
DeVore, C. R. and Antiochos, S. K. (2005). Magnetic free energies of breakout coronal mass ejections. Astrophys. J. 628, 1031–1045.
DeVore, C. R. and Antiochos, S. K. (2008). Homologous confined filament eruptions via magnetic breakout. Astrophys. J. 680, 740–756.
DeVore, C. R., Boris, J. P., and Sheeley, N. R. (1984). The concentration of the large-scale solar magnetic field by a meridional surface flow. Solar Phys. 92, 1–14.
Diamond, P. H., Hazeltine, R. D., An, Z. G., Carreras, B. A., and Hicks, H. R. (1984). Theory of anomalous tearing mode growth and the major tokamak disruption. Phys. Fluids 27, 1449–1462.
Diaz, A. J., Soler, R., and Ballester, J. L. (2012). Rayleigh-Taylor instability in partially ionized compressible plasmas. Astrophys. J. 754, 41.
Dikpati, M. and Choudhuri, A. R. (1994). The evolution of the Sun's poloidal field. Astron. Astrophys. 291, 975–989.
Dikpati, M. and Gilman, P. A. (2006). Simulating and predicting solar cycles using a flux-transport dynamo. Astrophys. J. 649, 498–514.
Dikpati, M. and Gilman, P. A. (2007). Global solar dynamo models: simulations and predictions of cyclic photospheric fields and long-term non-reversing interior fields. New Journal of Physics 9, 297–321.
Dixon, A., Browning, P., and Priest, E. R. (1988). Coronal heating by relaxation in a sunspot magnetic field. Geophys. Astrophys. Fluid Dyn. 40, 294–327.
Dobrowolny, M., Veltri, P., and Mangeney, A. (1983). Dissipative instabilities of magnetic neutral layers with velocity shear. J. Plasma Phys. 29, 393–407.
Donati, J.-F. (1999). Magnetic cycles of HR 1099 and LQ Hydrae. Mon. Not. Roy. Astron. Soc. 302, 457–481.
Donati, J.-F., Cameron, A.C., Semel, M., Hussain, G.A.J., Petit, P.,Carter, B. D., Marsden, S. C., Mengel, M., Lopez Ariste, A., Jeffers, S. V., and Rees, D. E. (2003). Dynamo processes and activity cycles of the active stars AB Doradus, LQ Hydrae and HR 1099. Mon. Not. Roy. Astron. Soc. 345, 1145–1186.
Donati, J.-F., Forveille, T., Cameron, A. C., Barnes, J. R., Delfosse, X., Jardine, M. M., and Valenti, J. A. (2006). The large-scale axisymmetric magnetic topology of a very-low-mass fully convective star. Science 311, 633–635.
Donati, J.-F. and Semel, M. (1990). Zeeman-Doppler imaging – A new option for magnetic field study of AP and solar-type stars. Solar Phys. 128, 227–242.
Dorch, S. B. F. and Nordlund, A. (2001). On the transport of magnetic fields by solar-like stratified convection. Astron. Astrophys. 365, 562–570.
Dormy, E. and Soward, A. M. (2007). Mathematical Aspects of Natural Dynamos. (CRC Press, London).
Doschek, G. A. (2012). The dynamics and heating of active-region loops. Astrophys. J. 754, 153.
Doschek, G. A., Warren, H. P., Mariska, J. T., Muglach, K., Culhane, J. L., Hara, H., and Watanabe, T. (2008). Flows and nonthermal velocities in solar active regions observed with the EUV Imaging Spectrometer on Hinode: a tracer of active region sources of heliospheric magnetic fields?Astrophys. J. 686, 1362–1371.
Dove, J. B., Gibson, S. E., Rachmeler, L. A., Tomczyk, S., and Judge, P. (2011). A ring of polarized light: evidence for twisted coronal magnetism in cavities. Astrophys. J. Letts. 731, L1.
Dowdy, J. F., Rabin, D., and Moore, R. L. (1986). On the magnetic structure of the quiet transition region. Solar Phys. 105, 35–45.
Downs, C., Roussev, I. I., van der Holst, B., Lugaz, N., Sokolov, I. V., and Gombosi, T. I. (2010). Toward a realistic thermodynamic magnetohydrodynamic model of the global solar corona. Astrophys. J. 712, 1219–1231.
Drake, J. F., Cassak, P. A., Shay, M. A., Swisdak, M., and Quataert, E. (2009). A magnetic reconnection mechanism for ion acceleration and abundance enhancements in impulsive flares. Astrophys. J. Letts. 700, L16–L20.
Drazin, P. G. and Reid, W. H. (1981). Hydrodynamic Stability. (Cambridge University Press, Cambridge, UK).
D'Silva, S. and Choudhuri, A. R. (1993). A theoretical model for tilts of bipolar magnetic regions. Astron. Astrophys. 272, 621–633.
Dud ik, J., Aulanier, G., Schmieder, B., Bommier, V., and Roudier, T. (2008). Topological departures from translational invariance along a filament observed by THEMIS. Solar Phys. 248, 29–50.
Dud ik, J., Aulanier, G., Schmieder, B., Zapior, M., and Heinzel, P. (2012). Magnetic topology of bubbles in quiescent prominences. Astrophys. J. 761, 9.
Dungey, J. W. (1953). Conditions for the occurrence of electrical discharges in astrophysical systems. Phil. Mag 44, 725–738.
Dunn, R. B. and Zirker, J. B. (1973). The solar filigree. Solar Phys. 33, 281–304.
Durney, B. (1971). A new type of supersonic solution for the inviscid equations of the solar wind. Astrophys. J. 166, 669–673.
Durney, B. R. (1995). On a Babcock-Leighton dynamo model with a deep-seated generating layer for the toroidal magnetic field. Solar Phys. 160, 213–235.
Durney, B. R. (1997). On a Babcock-Leighton solar dynamo model with a deep-seated generating layer for the toroidal magnetic field. IV. Astrophys. J. 486, 1065–1077.
Duvall, T. L. (1979). Large-scale solar velocity fields. Solar Phys. 63, 3–15.
Duvall, T. L. (1982). A dispersion law for solar oscillations. Nature 300, 242–243.
Duvall, T. L., Dziembowski, W. A., Goode, P. R., Gough, D. O., Harvey, J. W., and Leibacher, J. W. (1984). Internal rotation of the Sun. Nature 310, 22–25.
Duvall, T. L. and Harvey, J. W. (1983). Observations of solar oscillations of low and intermediate degree. Nature 302, 24–27.
Duvall, T. L. and Harvey, J. W. (1984). Rotational frequency splitting of solar oscillations. Nature 310, 19–22.
Duvall, T. L., Jefferies, S. M., Harvey, J. W., Osaki, Y., and Pomerantz, M. A. (1993). Asymmetries of solar oscillation line profiles. Astrophys. J. 410, 829–836.
Duvall, T. L., Jefferies, S. M., Harvey, J. W., and Pomerantz, M. A. (1993). Time-distance helioseismology. Nature 362, 430–432.
Duvall, T. L., Kosovichev, A. G., Scherrer, P. H., Bogart, R. S., Bush, R. I., DeForest, C., Hoeksema, J. T., Schou, J., Saba, J. L. R., Tarbell, T. D., Title, A. M., Wolfson, C. J., and Milford, P. N. (1997). Time-distance helioseismology with the MDI instrument: initial results. Solar Phys. 170, 63–73.
Dymova, M. V. and Ruderman, M. S. (2005). Non-axisymmetric oscillations of thin prominence fibrils. Solar Phys. 229, 79–94.
Eddy, J. A. (1976). The Maunder minimum. Science 192, 1189–1202.
Edenstrasser, J. W. (1980). The only three classes of symmetric MHD equilibria. J. Plasma Phys. 24, 515–518.
Edlen, B. (1943). Die Deutung der Emissionslinien im Spektrum der Sonnenkorona. Mit 6 Abbildungen. Zeitschrift fur Astrophysik 22, 30–64.
Edwin, P. M. and Roberts, B. (1982). Wave propagation in a magnetically structured atmosphere. III. The slab in a magnetic environment. Solar Phys. 76, 239–259.
Edwin, P. M. and Roberts, B. (1983). Wave propagation in a magnetic cylinder. Solar Phys. 88, 179–191.
Egbers, C. and Pfister, G. (2000). Physics of Rotating Fluids. (Springer Verlag, Berlin).
Einaudi, G., Boncinelli, P., Dahlburg, R. B., and Karpen, J. T. (1999). Formation of the slow solar wind in a coronal streamer. J. Geophys. Res. 104, 521–534.
Elsasser, W. M. (1950). The hydromagnetic equations. Physical Review 79, 183–183.
Elsworth, Y., Howe, R., Isaak, G. R., McLeod, C. P., and New, R. (1990). Variation of low-order acoustic solar oscillations over the solar cycle. Nature 345, 322–324.
Emonet, T. and Moreno-Insertis, F. (1998). The physics of twisted magnetic tubes rising in a stratified medium: two-dimensional results. Astrophys. J. 492, 804–821.
Emslie, A. G., Dennis, B. R., Holman, G. D., and Hudson, H. S. (2005). Refinements to flare energy estimates: a followup to “Energy partition in two solar flare/CME events” by A. G. Emslie et al. J. Geophys. Res. 110, A11103.
Evershed, J. (1909). Radial movement in sun-spots. Mon. Not. Roy. Astron. Soc. 69, 454–457.
Fabbian, D., Khomenko, E., Moreno-Insertis, F., and Nordlund, AA. (2010). Solar abundance corrections derived through three-dimensional magnetoconvection simulations. Astrophys. J. 724, 1536–1541.
Falconer, D. A., Moore, R. L., Porter, J. G., and Hathaway, D. H. (1999). Large-scale coronal heating, clustering of coronal bright points, and concentration of magnetic flux. Space Sci. Rev. 87, 181–184.
Fan, Y. (2001). Nonlinear growth of the three-dimensional undular instability of a horizontal magnetic layer and the formation of arching flux tubes. Astrophys. J. 546, 509–527.
Fan, Y. (2005). Coronal mass ejections as loss of confinement of kinked magnetic flux ropes. Astrophys. J. 630, 543–551.
Fan, Y. (2008). The three-dimensional evolution of buoyant magnetic flux tubes in a model solar convective envelope. Astrophys. J. 676, 680–697.
Fan, Y. (2010). On the eruption of coronal flux ropes. Astrophys. J. 719, 728–736.
Fan, Y. and Gibson, S. E. (2004). Numerical simulations of three-dimensional coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes. Astrophys. J. 609, 1123–1133.
Fan, Y. and Gibson, S. E. (2007). Onset of coronal mass ejections due to loss of confinement of coronal flux ropes. Astrophys. J. 668, 1232–1245.
Faurobert-Scholl, M. (1991). Hanle effect with partial frequency redistribution. I. Numerical methods and first applications. Astron. Astrophys. 246, 469–480.
Fedun, V., Shelyag, S., and Erdelyi, R. (2011). Numerical modeling of footpoint-driven magneto-acoustic wave propagation in a localized solar flux tube. Astrophys. J. 727, 17.
Feldman, U., Widing, K. G., and Warren, H. P. (1999). Morphology of the quiet solar upper atmosphere in the 4 x 104 e 1.4 X 106 K temperature regime. Astrophys. J. 522, 1133–1147.
Felipe, T., Khomenko, E., and Collados, M. (2010). Magneto-acoustic waves in sunspots: first results from a new three-dimensional nonlinear magnetohydrodynamic code. Astrophys. J. 719, 357–377.
Ferraro, V. C. A. and Plumpton, C. (1961). An Introduction to Magnetofluid Mechanics. (Oxford University Press, Oxford).
Ferriz-Mas, A., Schmitt, D., and Schüssler, M. (1994). A dynamo effect due to instability of magnetic flux tubes. Astron. Astrophys. 289, 949–956.
Ferriz-Mas, A. and Schüssler, M. (1994). Instabilities of magnetic flux tubes in a stellar convection zone. I. Equatorial flux rings in differentially rotating stars. Geophys. Astrophys. Fluid Dyn. 72, 209–247.
Ferriz-Mas, A. and Schüssler, M. (1995). Instabilities of magnetic flux tubes in a stellar convection zone. II. Flux rings outside the equatorial plane. Geophys. Astrophys. Fluid Dyn. 81, 233–265.
Field, G. B. (1965). Thermal instability. Astrophys. J. 142, 531–567.
Finn, J. M. and Kaw, P. K. (1977). Coalescence instability of magnetic islands. Phys. Fluids 20, 72–78.
Fisher, G. H., Canfield, R. C., and McClymont, A. N. (1985a). Flare loop radiative hydrodynamics – part seven – dynamics of the thick target heated chromosphere. Astrophys. J. 289, 434–441.
Fisher, G. H., Canfield, R. C., and McClymont, A. N. (1985b). Flare loop radiative hydrodynamics – part six – chromospheric evaporation due to heating by nonthermal electrons. Astrophys. J. 289, 425–433.
Fisher, G. H., Fan, Y., Longcope, D. W., Linton, M. G., and Pevtsov, A. A. (2000). The solar dynamo and emerging flux (invited review). Solar Phys. 192, 119–139.
Fisher, G. H., Longcope, D. W., Metcalf, T. R., and Pevtsov, A. A. (1998). Coronal heating in active regions as a function of global magnetic variables. Astrophys. J. 508, 885–898.
Fisk, L. A. (2003). Acceleration of the solar wind as a result of the reconnection of open magnetic flux with coronal loops. J. Geophys. Res. 108, 1157.
Fisk, L. A. (2005). The open magnetic flux of the Sun. I. Transport by reconnections with coronal loops. Astrophys. J. 626, 563–573.
Fisk, L. A., Schwadron, N. A., and Zurbuchen, T. H. (1999). Acceleration of the fast solar wind by the emergence of new magnetic flux. J. Geophys. Res. 104, 19765–19772.
Fletcher, L. and De Pontieu, B. (1999). Plasma diagnostics of transition region “moss” using SOHO/CDS and TRACE. Astrophys. J. Letts. 520, L135–L138.
Fletcher, L., Metcalf, T. R., Alexander, D., Brown, D. S., and Ryder, L. A. (2001). Evidence for the flare trigger site and three-dimensional reconnection in multiwavelength observations of a solar flare. Astrophys. J. 554, 451–463.
Fletcher, L., Pollock, J. A., and Potts, H. E. (2004). Tracking of TRACE ultraviolet flare footpoints. Solar Phys. 222, 279–298.
Fontenla, J. M., Curdt, W., Haberreiter, M., Harder, J., and Tian, H. (2009). Semiempirical models of the solar atmosphere. III. Set of non-LTE models for far-ultraviolet/extreme-ultraviolet irradiance computation. Astrophys. J. 707, 482–502.
Forbes, T. G. (1990). Numerical simulation of a catastrophe model for coronal mass ejections. J. Geophys. Res. 95, 11919–11931.
Forbes, T. G. (1996). Reconnection theory for flares. Astron.Soc.Pac.Conf. Ser. 111, 259–267.
Forbes, T. G. (2000). A review on the genesis of coronal mass ejections. J. Geophys. Res. 105, 23153–23166.
Forbes, T. G. (2010). Models of coronal mass ejections and flares. In Heliophysics: Space Storms and Radiation: Causes and Effects, C. J., Schrijver, and G. L., Siscoe, eds. (Cambridge University Press, Cambridge, UK), 159–194.
Forbes, T. G. and Acton, L. W. (1996). Reconnection and field line shrinkage in solar flares. Astrophys. J. 459, 330–341.
Forbes, T. G. and Isenberg, P. (1991). A catastrophe mechanism for coronal mass ejections. Astrophys. J. 373, 294–307.
Forbes, T. G. and Malherbe, J. M. (1986). A shock-condensation mechanism for loop prominences. Astrophys. J. 302, L67–L70.
Forbes, T. G., Malherbe, J. M., and Priest, E. R. (1989). The formation flare loops by magnetic reconnection and chromospheric ablation. Solar Phys. 120, 285–307.
Forbes, T. G. and Priest, E. R. (1983). A numerical experiment relevant to line-tied reconnection in two-ribbon flares. Solar Phys. 84, 169–188.
Forbes, T. G. and Priest, E. R. (1984a). Numerical simulation of reconnection in an emerging magnetic flux region. Solar Phys. 94, 315–340.
Forbes, T. G. and Priest, E. R. (1984b). Reconnection in solar flares. In Solar Terrestrial Phys.: Present and Future, D., Butler and K., Papadopoulos, eds. (NASA RP-1120, Washington, DC), 1–35.
Forbes, T. G. and Priest, E. R. (1987). A comparison of analytical and numerical models for steadily-driven magnetic reconnection. Rev. Geophys. 25, 1583–1607.
Forbes, T. G. and Priest, E. R. (1995). Photospheric magnetic field evolution and eruptive flares. Astrophys. J. 446, 377–389.
Forbes, T. G., Priest, E. R., and Isenberg, P. (1994). On the maximum energy release in flux-rope models of eruptive flares. Solar Phys. 150, 245–266.
Forbes, T. G., Priest, E. R., Seaton, D. B., and Litvinenko, Y. E. (2013). Indeterminacy and instability in Petschek reconnection. Phys. Plasmas 20, 052902.
Fossat, E. (1991). The IRIS network for full disk helioseismology – present status of the programme. Solar Phys. 133, 1–12.
Fossum, A. and Carlsson, M. (2006). Determination of the acoustic wave flux in the lower solar chromosphere. Astrophys. J. 646, 579–592.
Franz, M. and Schlichenmaier, R. (2009). The velocity field of sunspot penumbrae. I. A global view. Astron. Astrophys. 508, 1453–1460.
Frazier, E. N. (1968a). An observational study of the hydrodynamics of the lower solar photosphere. Astrophys. J. 152, 557–575.
Frazier, E. N. (1968b). A spatio-temporal analysis of velocity fields in the solar photosphere. Zeit. f. Astrophys. 68, 345–356.
Friedberg, J. P. (1987). Ideal Magnetohydrodynamics. (Plenum Press, New York).
Frieman, F. and Rotenberg, M. (1960). On hydromagnetic stability of stationary equilibria. Rev. Mod. Phys. 32, 898–902.
Frisch, U., Pouquet, A., Leorat, J., and Mazure, A. (1975). Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. J. Fluid Mech. 68, 769–778.
Fuentes-Fernández, J., Parnell, C. E., Hood, A. W., Priest, E. R., and Longcope, D. W. (2012). Consequences of spontaneous reconnection at a two-dimensional non-force-free current layer. Phys. Plasmas 19,2 (Feb.), 022901.
Fuller, J. and Gibson, S. E. (2009). A survey of coronal cavity density profiles. Astrophys. J. 700, 1205–1215.
Furth, H. P., Killeen, J., and Rosenbluth, M. N. (1963). Finite-resistivity instabilities of a sheet pinch. Phys. Fluids 6, 459–484.
Furth, H. P., Rutherford, P. H., and Selberg, H. (1973). Tearing mode in the cylindrical tokamak. Phys. Fluids 16, 1054–1063.
Gabriel, A. H. (1976). A magnetic model of the solar transition region. Phil. Trans. Roy. Soc. Lond. A 281, 339–352.
Gaizauskas, V. (2008). Development of flux imbalances in solar activity nests and the evolution of filament channels. Astrophys. J. 686, 1432–1446.
Gaizauskas, V., Zirker, J. B., Sweetland, C., and Kovacs, A. (1997). Formation of a solar filament channel. Astrophys. J. 479, 448–457.
Galloway, D. J. and Proctor, M. R. E. (1983). The kinematics of hexagonal magnetoconvection. Geophys. Astrophys. Fluid Dyn. 24, 109–136.
Galloway, D. J., Proctor, M. R. E., and Weiss, N. O. (1978). Magnetic flux ropes and convection. J. Fluid Mech. 87, 243–261.
Galloway, D. J. and Weiss, N. O. (1981). Convection and magnetic fields in stars. Astrophys. J. 243, 945–953.
Galsgaard, K. (2002). Flux braiding in a stratified atmosphere. In ESA SP-505: SOLMAG 2002. Proceedings of the Magnetic Coupling of the Solar Atmosphere Euroconference. Noordwijk, 269–271.
Galsgaard, K., Mackay, D., Priest, E. R., and Nordlund, A. (1999). On the location of energy release and temperature profiles along coronal loops. Solar Phys. 189, 95–108.
Galsgaard, K. and Nordlund, A. (1996a). The heating and activity of the solar corona: I. Boundary shearing of an initially homogeneous magnetic field. J. Geophys. Res. 101, 13445–13460.
Galsgaard, K. and Nordlund, AA. (1996b). Heating and activity of the solar corona. III. Dynamics of a low-beta plasma with 3D null points. J. Geophys. Res. 102, 231–248.
Galsgaard, K., Priest, E. R., and Titov, V. S. (2003). Numerical experiments on wave propagation towards a 3D null point due to rotational motions. J. Geophys. Res. 108, A1, SSH 10.1–10.9.
Garaud, P. (2007). Magnetic confinement of the solar tachocline. In The Solar Tachocline, D.W., HughesR., Rosner, and N. O., Weiss, eds. (Cambridge University Press, Cambridge, UK), 147–181.
Garaud, P. and Garaud, J. (2008). Dynamics of the solar tachocline – II. The stratified case. Mon. Not. Roy. Astron. Soc. 391, 1239–1258.
Gebhardt, U. and Kiessling, M. (1992). The structure of ideal magnetohydrodynamics with incompressible steady flow. Phys. Fluids B 4, 1689–1701.
Gelly, B., Fierry-Fraillon, D., Fossat, E., Palle, P., Cacciani, A., Ehgamberdiev, S., Grec, G., Hoeksema, J. T., Khalikov, S., Lazrek, M., Loudagh, S., Pantel, A., Regulo, C., and Schmider, F. X. (1997). Solar p-mode frequencies from the IRIS network. Astron. Astrophys. 323, 235–242.
Gerrard, C. L. and Hood, A. W. (2004). Current build-up as a result of the kink instability in a loop. Solar Phys. 223, 143–154.
Gerrard, C. L., Hood, A. W., and Brown, D. S. (2004). Effect of photospheric twisting motions on a confined toroidal loop. Solar Phys. 222, 79–94.
Ghizaru, M., Charbonneau, P., and Smolarkiewicz, P. K. (2010). Magnetic cycles in global large-eddy simulations of solar convection. Astrophys. J. Letts. 715, L133–L137.
Gibson, S. E. and Bagenal, F. (1995). Large-scale magnetic field and density distribution in the solar minimum corona. J. Geophys. Res. 100, 19865–19880.
Gibson, S. E. and Fan, Y. (2006). Coronal prominence structure and dynamics: a magnetic flux rope interpretation. J. Geophys. Res. 111, A12103.
Gibson, S. E. and Fan, Y. (2008). Partially ejected flux ropes: implications for interplanetary coronal mass ejections. J. Geophys. Res. 113, A09103.
Gibson, S. E., Fan, Y., Mandrini, C., Fisher, G., and Demoulin, P. (2004). Observational consequences of a magnetic flux rope emerging into the corona. Astrophys. J. 617, 600–613.
Gibson, S. E., Foster, D., Burkepile, J., De Toma, G., and Stanger, A. (2006). The calm before the storm: the link between quiescent cavities and coronal mass ejections. Astrophys. J. 641, 590–605.
Gibson, S. E., Kucera, T. A., Rastawicki, D., Dove, J., De Toma, G., Hao, J., Hill, S., Hudson, H. S., Marque, C., McIntosh, P. S., Rachmeler, L., Reeves, K. K., Schmieder, B., Schmit, D. J., Seaton, D. B., Sterling, A. C., Tripathi, D., Williams, D. R., and Zhang, M. (2010). Three-dimensional morphology of a coronal prominence cavity. Astrophys. J. 724, 1133–1146.
Gilman, P. A. (1970). Instability of magnetohydrostatic stellar interiors from magnetic buoyancy. I. Astrophys. J. 162, 1019–1029.
Gilman, P. A. (1977). Nonlinear dynamics of Boussinesq convection in a deep rotating spherical shell. I. Geophys. Astrophys. Fluid Dyn. 8, 93–135.
Gilman, P. A. (1983). Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell. II – Dynamos with cycles and strong feedbacks. Astrophys. J. Suppl. 53, 243–268.
Gilman, P. A. and Glatzmaier, G. A. (1981). Compressible convection in a rotating spherical shell. I – III. Astrophys. J. Suppl. 45, 335–388.
Gilman, P. A. and Miller, J. (1981). Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell. Astrophys. J. Suppl. 246, 211–238.
Giman, P. A. (2007). Global MHD instabilities of the tachocline. In The Solar Tachocline, D. W., HughesR., Rosner, and N. O., Weiss, eds. (Cambridge University Press, Cambridge, UK), 243–274.
Gingerich, O., Noyes, R. W., Kalkofen, W., and Cuny, Y. (1971). The Harvard-Smithsonian Reference Atmosphere. Solar Phys. 18, 347–365.
Giovanelli, R. G. (1972). Oscillations and waves in a sunspot. Solar Phys. 27, 71–79.
Gizon, L., Birch, A. C., and Spruit, H. C. (2010). Local helioseismology: three-dimensional imaging of the solar interior. Ann. Rev. Astron. Astrophys. 48, 289–338.
Glatzmaier, G. A. (1985). Numerical simulations of stellar convective dynamos. II. Field propagation in the convection zone. Astrophys. J. 291, 300–307.
Glatzmaier, G. A. and Gilman, P. A. (1981).