Skip to main content Accesibility Help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 12
  • Cited by
    This chapter has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Bahorik, Amber L. Newhill, Christina E. and Eack, Shaun M. 2014. Neurocognitive Functioning of Individuals With Schizophrenia: Using and Not Using Drugs. Schizophrenia Bulletin, Vol. 40, Issue. 4, p. 856.

    Degenhardt, Louisa Hall, Wayne D. Lynskey, Michael McGrath, John McLaren, Jennifer Calabria, Bianca Whiteford, Harvey and Vos, Theo 2009. Should Burden of Disease Estimates Include Cannabis Use as a Risk Factor for Psychosis?. PLoS Medicine, Vol. 6, Issue. 9, p. e1000133.

    MINOZZI, SILVIA DAVOLI, MARINA BARGAGLI, ANNA M. AMATO, LAURA VECCHI, SIMONA and PERUCCI, CARLO A. 2009. An overview of systematic reviews on cannabis and psychosis: Discussing apparently conflicting results. Drug and Alcohol Review, Vol. 29, Issue. 3, p. 304.

    Carroll, Andrew McSherry, Bernadette Wood, Debra and Yannoulidis, L.L.B.(Hons.), Steven 2008. Drug-associated psychoses and criminal responsibility. Behavioral Sciences & the Law, Vol. 26, Issue. 5, p. 633.

    HALL, WAYNE and DEGENHARDT, LOUISA 2008. Cannabis use and the risk of developing a psychotic disorder. World Psychiatry, Vol. 7, Issue. 2, p. 68.

    Hall, Wayne D. 2006. Cannabis use and the Mental Health of Young People. Australian & New Zealand Journal of Psychiatry, Vol. 40, Issue. 2, p. 105.

    Hall, Wayne D. 2006. Cannabis use and the Mental Health of Young People. Australian & New Zealand Journal of Psychiatry, Vol. 40, Issue. 2, p. 105.

    Degenhardt, Louisa and Hall, Wayne 2006. Is Cannabis Use a Contributory Cause of Psychosis?. The Canadian Journal of Psychiatry, Vol. 51, Issue. 9, p. 556.

    Maddock, Clementine and Babbs, Michelle 2006. Interventions for cannabis misuse. Advances in Psychiatric Treatment, Vol. 12, Issue. 6, p. 432.

    Hall, Wayne and Degenhardt, Louisa 2006. What are the Policy Implications of the Evidence on Cannabis and Psychosis?. The Canadian Journal of Psychiatry, Vol. 51, Issue. 9, p. 566.


    Fergusson, David M. Horwood, L. John and Ridder, Elizabeth M. 2005. Tests of causal linkages between cannabis use and psychotic symptoms. Addiction, Vol. 100, Issue. 3, p. 354.

  • Print publication year: 2004
  • Online publication date: December 2009

10 - Cannabinoid ‘model’ psychosis, dopamine–cannabinoid interactions and implications for schizophrenia


Hypotheses relating to the association between cannabis and psychosis may be divided into two groups. The exogenous hypothesis, which has received far greater attention, suggests that the consumption of cannabinoid compounds produces psychotic disorders by mechanisms that are extrinsic to the pathophysiology of naturally occurring psychoses. As discussed elsewhere in this book, converging evidence from epidemiological, genetic, neurochemical, pharmacological and postmortem studies have provided support for an association between ‘cannabis and madness’ (see Chapters 3, 6, 8 and 9). These data also suggest a second, relatively nascent endogenous hypothesis, according to which cannabinoid (CB1) receptor dysfunction may contribute to the pathophysiology of psychosis and/or schizophrenia, and further, that the putative CB1 receptor dysfunction may be unrelated to the consumption of cannabinoid compounds.

This chapter addresses the exogenous hypothesis of cannabis consumption and psychosis. First, we review studies from a number of sources, supporting an association between cannabis consumption and the manifestation of psychotic symptoms in humans (the interested reader is referred to Chapters 3 and 5 for a more detailed exposition). We then detail a recent pharmacological study that assessed the effects of exposure to the principal psychoactive constituent of cannabis, Δ9- tetrahydrocannabinol (Δ9-THC) in patients with schizophrenia and normal controls. We conclude by suggesting possible mechanisms by which cannabis may induce psychosis and articulate the implications of these findings for a potential endocannabinoid contribution to the pathophysiology of schizophrenia.

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Marijuana and Madness
  • Online ISBN: 9780511543630
  • Book DOI:
Please enter your name
Please enter a valid email address
Who would you like to send this to *
American Psychiatric Association (1994). Diagnostic and Statistical Manual of Mental Disorders, 4th edn. Washington, DC: American Psychiatric Association
Ames, F. (1958). A clinical and metabolic study of acute intoxication with Cannabis sativa and its role in model psychoses. J. Mental Sci., 104, 972–999
Anderson, J. J., Kask, A. M. and Chase, T. N. (1996). Effects of cannabinoid receptor stimulation and blockade on catalepsy produced by dopamine receptor antagonists. Eur. J. Pharmacol., 295, 163–168
Ashton, C. H. (2001). Pharmacology and effects of cannabis: a brief review. Br. J. Psychiatry, 179, 270–271
Auclair, N., Otani, S., Soubrie, P. and Crepel, F. (2000). Cannabinoids modulate synaptic strength and plasticity at glutamatergic synapses of rat prefrontal cortex pyramidal neurons. J. Neurophysiol., 83, 3287–3293
Azorlosa, J. L., Heishman, S. J., Stitzer, M. L. and Mahaffey, J. M. (1992). Marijuana smoking: effect of varying delta 9-tetrahydrocannabinolcontent and number of puffs. J. Pharmacol. Exp. Ther., 261, 114–122
Baker, P. B., Taylor, B. J. and Gough, T. A. (1981). The tetrahydrocannabinol and tetrahydrocannabinolic acid content of cannabis products. J. Pharm. Pharmacol., 33, 369–372
Banerjee, S. P., Snyder, S. H. and Mechoulam, R. (1975). Cannabinoids: influence on neurotransmitter uptake in rat brain. J. Pharmacol. Exp. Ther., 194, 74–81
Berk, M., Brook, S. and Trandafir, A. I. (1998). A comparison of olanzapine with haloperidol in cannabis-induced psychotic: a double-blind randomized controlled trial. Int. Clin. Psychopharmacol., 14, 177–180
Bloom, A. S. (1982). Effect of delta-9-tetrahydrocannabinol on the synthesis of dopamine and norepinephrine in mouse brain synaptosomes. J. Pharmacol. Exp. Ther., 221, 97–103
Bonnin, A., de-Miguel, R., Castro, J. G., Raos, J. A. and Fernadez-Ruiz, J. J. (1996). Effects of perinatal exposure to delta-9-THC on the fetal and early postnatal development of tyrosine hydroxylase-containing neurons in rat brain. J. Mol. Neurosci., 7, 291–308
Bornheim, L. M. and Grillo, M. P. (1998). Characterization of cytochrome P450 3A inactivation by cannabidiol: possible involvement of cannabidiol-hydroxyquinone as a P450 inactivator. Chem. Res. Toxicol., 11, 1209–1216
Bremner, J. D., Krystal, J. H., Putnam, F. al. (1998). Measurement of dissociative states with the Clinician-Administered Dissociative States Scale (CADSS). J. Trauma Stress 11, 125–136
Chait, L. D. and Perry, J. L. (1992). Factors influencing self-administration of, and subjective response to, placebo marijuana, Behav. Pharmacol., 3, 545–552
Chen, J., Paredes, W., Lowinson, J. H. and Gardner, E. L. (1990). Delta-9-tetrahydrocannabinol enhances presynaptic dopamine efflux in the medial prefrontal cortex. Eur. J. Pharmacol., 190, 259–262
Chen, J., Paredes, W., Lowinson, J. H. and Gardner, E. L. (1991). Strain specific facilitation of dopamine efflux by delta-9-tetrahydrocannabinol in the nucleus accumbens of the rats: an in vivo microdialysis study. Neurosci. Lett., 129, 136–140
Chen, J., Marmur, R., Pulles, A., Paredes, W. and Gardner, E. L. (1993). Ventral tegmental microinjection of delta 9-tetrahydrocannabinol enhances ventral tegmental somatodendritic dopamine levels but not forebrain dopamine levels: evidence for local neural action by marijuana's psychoactive ingredient. Brain Res., 621, 65–70
Collins, D. R., Pertwee, R. G. and Davies, S. N. (1994). The action of synthetic cannabinoids on the induction of long-term potentiation in the rat hippocampal slice. Eur. J. Pharmacol., 259, R7–R8
Collins, D. R., Pertwee, R. G. and Davies, S. N. (1995). Prevention by the cannabinoid antagonist, SR141716A, of cannabinoid-mediated blockade of long-term potentiation in the rat hippocampal slice. Br. J. Pharmacol., 115, 869–870
Diana, M., Melis, M. and Gessa, G. L. (1998). Increase in meso-prefrontal dopaminergic activity after stimulation of CB1 receptors by cannabinoids, Eur. J. Neurosci., 10, 2825–2830
Dolan, R. J., Fletcher, P., Frith, C. al. (1995). Dopaminergic modulation of impaired cognitive activation in the anterior cingulate cortex in schizophrenia. Nature, 378, 180–182
Ferrari, F., Ottani, A. and Giuliani, D. (1999). Influence of the cannabinoid agonist HU 210 on cocaine and CQP 201–403-induced behavioural effects in rat. Life Sci., 65, 823–831
French, E. D., Dillon, K. and Wu, X. (1997). Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra. Neuroreport, 8, 649–652
Gellman, R. L. and Aghajanian, G. K. (1993). Pyramidal cells in piriform cortex receive a convergence of inputs from monoamine activated GABAergic interneurons. Brain Res., 600, 63–73
Gessa, G. L., Melis, M., Muntoni, A. L. and Diana, M. (1998). Cannabinoids activate mesolimbic dopamine neurons by an action on cannabinoid CB1 receptors. Eur. J. Pharmacol., 341, 39–44
Gioanni, Y., Thierry, A. M., Glowinski, J. and Tassin, J. P. (1998). Alpha1-adrenergic, D1, and D2 receptors interactions in the prefrontal cortex: implication for modality of action of different types of neuroleptics. Synapse, 30, 362–370
Giuffrida, A., Parsons, L. H., Kerr, T. al. (1999). Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nature Neurosci., 2, 358–363
Goldman-Rakic, P. S. (1987). The circuitry of primate prefrontal cortex and the regulation of behavior by representational memory. In Handbook of Physiology: The Nervous System, ed. V. M. Mountcastle, pp. 373–417. Bethesda, MD: American Physiological Society
Gorriti, M. A., Rodriguez de Fonseca, F., Navarro, M. and Palomo, T. (1999) Chronic (–)-delta9-tetrahydrocannabinol treatment induces sensitization to the psychomotor effects of amphetamine in rats. Eur. J. Pharmacol., 365, 33–42
Grobin, A. C. and Deutch, A. Y. (1998). Dopaminergic regulation of extracellular gamma-aminobutyric acid levels in the prefrontal cortex. J. Pharmacol. Exp. Ther., 285, 350–357
Hájos, N., Katona, I., Naiem, S. al. (2000). Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur. J. Neurosci., 12, 3239–3249
Hampson, A. J., Grimaldi, M., Lolic, al. (2000). Neuroprotective antioxidants from marijuana, Ann. NY Acad. Sci., 899, 274–282
Herkenham, M., Lynn, A. B., Little, M. al. (1990). Cannabinoid receptor localization in brain. Proc. Natl Acad. Sci., 87, 1932–1936
Herkenham, M., Lynn, A. B., Johnson, M. al. (1991). Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J. Neurosci., 11, 563–583
Hernandez, M. L., Garcia-Gil, L., Berrendro, F., Ramos, J. A. and Fernandez-Ruiz, J. J. (1997). δ-9-tetrahydrocannabinol increases the activity of tyrosine hydroxylase in cultured fetal mesencephalic neurons. J. Mol. Neurosci., 8, 83–91
Hershkowitz, M., Goldman, R. and Raz, A. (1977). Effect of cannabinoids on neurotransmitter uptake. ATPase activity and morphology of mouse brain synaptosomes. Biochem. Pharmacol., 26, 1327–1331
Hoffman, A. F. and Lupica, C. R. (2000). Mechanisms of cannabinoid inhibition of GABA(A) synaptic transmission in the hippocampus. J. Neurosci., 20, 2470–2479
Isbell, H., Gorodetsky, C. W., Jasinski, D. al. (1967). Effects of delta-9-transhydrocannabinol in man. Psychopharmacologia, 11, 184–188
Johnson, K. M., Ho, B. T. and Dewey, W. L. (1976). Effects of delta9-tetrahydrocannabinol on neurotransmitter accumulation and release mechanisms in rat forebrain synaptosomes. Life Sci., 19, 347–356
Jones, R. T. (1971). Tetrahydrocannabinol and the marijuana-induced social “high,” or the effects of the mind on marijuana. Ann. NY Acad. Sci., 191, 155–165
Kay, S. R. and Opler, L. A. (1986). Positive and Negative Symptoms Scale (PANSS) Rating Manual. Bronx, New York: Albert Einstein College of Medicine, Department of Psychiatry
Leweke, F. M., Schneider, U., Thies, M., Munte, T. F. and Emrich, H. M. (1999). Effects of synthetic delta-9-tetrahydrocannabinol on binocular depth inversion of natural and artificial objects in man. Psychopharmacologia, 142, 230–235
Maitre, L., Staehelin, M. and Bein, H. J. (1970). Effect of an extract of cannabis and of some cannabinols on catecholamine metabolism in rat brain and heart. Agents Actions, 1, 136–143
Marsicano, G. and Lutz, B. (1999). Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur. J. Neurosci. 11, 4213–4225
Masserano, J. M., Karoum, F. and Wyatt, R. J. (1999). SR 141716A, a CB1 cannabinoid receptor antagonist, potentiates the locomotor stimulant effects of amphetamine and apomorphine. Behav. Pharmacol., 10, 429–432
Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C. and Bonner, T. I. (1990). Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature, 346, 561–564
Mayor's Committee On Marijuana (1944). The Marijuana Problem in the City of New York. Lancaster, PA: Jacques Catell Press
McPartland, J. M. and Russo, E. B. (2001). Cannabis and cannabis extracts: greater than the sum of their parts?J. Cannabis Ther., 1, 103–132
Mechoulam, R. and Ben-Shabat, S. (1999). From gan-zi-gun-nu to anandamide and 2-arachidonoylglycerol: the ongoing story of cannabis. Nature Prod. Rep., 16, 131–143
Meschler, J. P., Conley, T. J. and Howlett, A. C. (2000). Cannabinoid and dopamine interaction in rodent brain: effects on locomotor activity. Pharmacol. Biochem. Behav., 67, 567–573
Miller, L. L. (1984). Marijuana: acute effects on human memory. In The Cannabinoids: Chemical, Pharmacological and Therapeutic Aspects, ed. S. Agurell, W. L. Dewey and R. E. Willette, pp. 21–46. New York, NY: Academic Press
Miller, L. and Branconnier, R. J. (1983). Cannabis: effects on memory and the cholinergic limbic system. Psychol. Bull., 99, 441–456
Misner, D. L. and Sullivan, J. M. (1999). Mechanism of cannabinoid effects on long-term potentiation and depression in hippocampal CA1 neurons. J. Neurosci., 19, 6795–6805
Miyamoto, A., Yamamoto, T., Ohno, al. (1996). Roles of dopamine D1 receptors in delta 9-tetrahydrocannabinol-induced expression of Fos protein in the rat brain. Brain Res., 710, 234–240
Nicoll, R. A. and Malenka, R. C. (1995). Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature, 377, 115–118
Nowicky, A. V., Teyler, T. J. and Vardaris, R. M. (1987). The modulation of long-term potentiation by delta-9-tetrahydrocannabinol in the rat hippocampus, in vitro. Brain Res. Bull., 19, 663–672
Patel, S. and Hillard, C. J. (2003). Cannabinoid-induced Fos expression within A10 dopaminergic neurons. Cannabinoid CB(1) receptor agonists produce cerebellar dysfunction in mice. J. Pharmacol. Exp. Ther., 297, 629–637
Perlstein, W. M., Carter, C. S., Noll, D. C. and Cohen, J. D. (2001). Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am. J. Psychiatry, 158, 1105–1113
Pettit, D. A., Harrison, M. P., Olson, J. M., Spencer, R. F. and Cabral, G. A. (1998). Immuno-histochemical localization of the neural cannabinoid receptor in rat brain. J. Neurosci. Res., 51, 391–402
Piomelli, D., Giuffrida, A., Calignano, A. and Rodriguez de Fonseca, F. (2000). The endocannabinoid system as a target for therapeutic drugs. Trends Pharmacol. Sci., 21, 218–224
Pirot, S., Godbout, R., Mantz, al. (1992). Inhibitory effects of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: evidence for the involvement of both dopaminergic and GABAergic components. Neuroscience, 49, 857–865
Pistis, M., Porcu, G., Melis, M., Diana, M. and Gessa, G. L. (2001). Effects of cannabinoids on prefrontal neuronal responses to ventral tegmental area stimulation. Eur. J. Neurosci., 14, 96–102
Poddar, M. K. and Dewey, W. L. (1980). Effects of cannabinoids of catecholamine uptake and release in hypothalmic and striatal synaptosomes. J. Pharmacol. Exp. Ther., 214, 63–67
Rodriguez de Fonseca, F., Del Arco, I., Martin-Calderon, J. L., Gorriti, M. A. and Navarro, M. (1998). Role of the endogenous cannabinoid system in the regulation of motor activity. Neurobiol. Dis., 5, 483–501
Sullivan, J. M. (1999). Mechanisms of cannabinoid-receptor-mediated inhibition of synaptic transmission in cultured hippocampal pyramidal neurons. J. Neurophysiol., 82, 1286–1294
Szabo, B., Siemes, S. and Wallmichrath, I. (2002). Inhibition of GABAergic neurotransmission in the ventral tegmental area by cannabinoids. Eur. J. Neurosci., 5, 2057–2061
Tanda, G., Pontieri, F. E. and Di Chiara, G. (1997). Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science, 276, 2048–2050
Terranova, J. P., Michaud, J. C., Fur, G. and Soubrie, P. (1995). Inhibition of long-term potentiation in rat hippocampal slices by anandamide and WIN55212–2: reversal by SR141716 A, a selective antagonist of CB1 cannabinoid receptors. Naunyn-Schmiedebergs Arch. Pharmakol., 352, 576–579
Tsou, K., Brown, S., Sanudo-Pena, M. C., Mackie, K. and Walker, J. M. (1998). Immuno-histochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience, 83, 393–411
Tsou, K., Mackie, K., Sanudo-Pena, M. C. and Walker, J. M. (1999). Cannabinoid CB1 receptors are localized primarily on cholecystokinin-containing GABAergic interneurons in the rat hippocampal formation. Neuroscience, 93, 969–975
Wilson, R. I. and Nicoll, R. A. (2001). Endogenous cannabinoids mediate retrograde signaling at hippocampal synapses. Nature, 410, 588–592
Wilson, R. I. and Nicoll, R. A. (2002). Endocannabinoid signalling in the brain. Science, 296, 678–682
Wu, X. and French, E. D. (2000). Effects of chronic delta9-tetrahydrocannabinol on rat midbrain dopamine neurons: an electrophysiological assessment. Neuropharmacologia, 39, 391–398
Zuardi, A. W., Shirakawa, I., Finkelfarb, E. and Karniol, I. G. (1982). Action of cannabidiol on the anxiety and other effects produced by delta 9-THC in normal subjects. Psychopharmalogia, 76, 245–250
Zuardi, A. W., Morais, S. L., Guimaraes, F. S. and Mechoulam, R. (1995). Antipsychotic effect of cannabidiol. J. Clin. Psychiatry, 56, 485–486