Skip to main content Accesibility Help
×
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Cited by
    This chapter has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Dickason-Chesterfield, Amy K. Kidd, Stephanie R. Moore, Steven A. Schaus, John M. Liu, Bin Nomikos, George G. and Felder, Christian C. 2006. Pharmacological Characterization of Endocannabinoid Transport and Fatty Acid Amide Hydrolase Inhibitors. Cellular and Molecular Neurobiology, Vol. 26, Issue. 4-6, p. 405.

    ×
  • Print publication year: 2004
  • Online publication date: December 2009

2 - How cannabis works in the brain

Summary

Important advances have been made in the past decade in understanding how cannabis affects the brain. As with morphine 20 years earlier, research on the psychopharmacology of a plant-derived drug led to the discovery of a naturally occurring cannabinoid system in the brain, whose functions are only now beginning to be understood. This chapter will review what is known about the interactions of cannabis with the cannabinoid system in the brain and how the drug affects psychomotor, cognitive, perceptual and appetitive functions. There is also speculation on what brain mechanisms may underly the intoxicant effects of cannabis, and a review of its addictive properties.

Cannabinoid receptors

In Chapter 1 the identification of Δ9-tetrahydrocannabinol (THC) was reviewed as the principal active component in the complex mixture of cannabinoids present in extracts of the plant Cannabis sativa, and the discovery of a series of naturally occurring endogenous cannabinoids (endocannabinoids), of which anandamide has so far been most intensively studied, was outlined. A series of synthetic cannabinoids – some of which are more potent and more water-soluble than THC – is also available (Pertwee, 1999) (Fig. 2.1). All of these compounds act as agonists at the CB1 cannabinoid receptor (Matsuda et al., 1990), which is the only one known to be expressed in the brain. A second cannabinoid receptor, CB2, is expressed only in peripheral tissues, principally in the immune system (Munro et al., 1993; Felder and Glass, 1998; Pertwee, 1999).

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Marijuana and Madness
  • Online ISBN: 9780511543630
  • Book DOI: https://doi.org/10.1017/CBO9780511543630
Please enter your name
Please enter a valid email address
Who would you like to send this to *
×
REFERENCES
Abel, E. L. (1971). Marihuana and memory: acquisition or retrieval?Science, 173, 1038–1041
Aceto, M. D., Scates, S. M., Lowe, J. A. and Martin, B. R (1996). Dependence on Δ9-tetrahydrocannabinol: studies on precipitated and abrupt withdrawal. J. Pharmacol. Exp. Ther., 278, 1290–1295
Aceto, M. D., Scates, S. M. and Martin, B. R. (2001). Spontaneous and precipitated withdrawal with a synthetic cannabinoid, WIN 55212–2. Eur. J. Pharmacol., 416, 75–81
Adams, I. B. and Martin, B. R. (1996). Cannabis: pharmacology and toxicology in animals and humans. Addiction, 91, 1585–1614
Alger, B. E. and Pitler, T. A. (1995). Retrograde signaling at GABAA-receptor synapses in the mammalian CNS. Trends Neurosci., 18, 333–340
American Psychiatric Association (1994). Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), 4th edn. Washington, DC: American Psychiatric Association
Anthony, J. C., Warner, L. A. and Kessler, R. C. (1994). Comparative epidemiology of dependence on tobacco, alcohol, controlled substances and inhalants. Basic findings from the National Comorbidity Survey. Exp. Clin. Psychopharmacol., 2, 244–268
Atha, M. J. and Blanchard, S. (1997). Self Reported Consumption Patterns and Attitudes Towards Drugs Among 1333 Regular Cannabis Users. Wigan, UK: Independent Drug Monitoring Unit
Beal, J. A., Olson, R., Laubenstein, L.et al. (1995). Dronabinol as a treatment for anorexia associated with weight loss in patients with AIDS. J. Pain Symptom Manage., 10, 89–97
Bohme, G. A., Laville, M., Ledent, C., Paramentier, M. and Imperato, A. (2000). Enhanced long-term potentiation in mice lacking cannabinoid CB1 receptors. Neuroscience, 95, 5–7
Breivogel, C. S. and Childers, S. R. (1998). The functional neuroanatomy of brain cannabinoid receptors. Neurobiol. Dis., 5, 417–431
Brett, R., MacKenzie, F. and Pratt, J. (2001). Delta-9-tetrahydrocannabinol-induced alterations in limbic system glucose use in the rat. Neuro-Report, 12, 3573–3577
Budney, A. J., Hughes, J. R., Moore, B. A. and Novy, P. L. (2001). Marijuana abstinence effects in marijuana smokers maintained in their home environment. Arch. Gen. Psychiatry, 58, 917–924
Cadoni, C., Pisanu, A., Solinas, M., Acquas, E. and Di Chiara, G. (2001). Behavioural sensitization after repeated exposure to delta-9-tetrahydrocannabinol and cross-sensitization with morphine. Psychopharmacology, 158, 259–266
Colombo, G., Agabio, R., Diaz, G.et al. (1998). Appetite suppression and weight loss after the cannabinoid antagonist SR141716A. Life Sci., 63, PL113–PL117
Compton, D. R., Aceto, M. D., Lowe, J. and Martin, B. R. (1996). In vivo characterization of a specific cannabinoid receptor antagonist (SR141716A) inhibition of Δ9-tetrahydocannabinol-induced responses and apparent agonist activity. J. Pharmacol. Exp. Ther., 277, 586–594
Deadwyler, S. A., Hampson, R. E. and Childers, S. R. (1995). Functional significance of cannabinoid receptors in brain. In Cannabinoid Receptors, ed. R. G. Pertwee, pp. 206–231. London: Academic Press
DeSanty, K. P. and Dar, M. S. (2001). Cannabinoid-induced motor incoordination through the cerebellar CB1 receptor in mice. Pharmacol. Biochem. Behav., 69, 251–259
Diana, M., Melis, M., Muntoni, A. L. and Gessa, G. L. (1998). Mesolimbic dopaminergic decline after cannabinoid withdrawal. Proc. Natl Acad. Sci. USA, 95, 10269–10273
Dixon, W. E. (1899). The pharmacology of cannabis indica. Br. Med. J. 11, 1354–1357
D'Souza, D. C. and Kosten, T. R. (2001). Cannabinoid antagonists. Arch. Gen. Psychiatry, 58, 330–331
Earlywine, M. (2002). Understanding Marijuana. New York: Oxford University Press
Egertová, M. and Elphick, M. R. (2000). Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C-terminal tail of CB1. J. Comp. Neurol., 422, 159–171
Egertová, M., Giang, D. K., Cravatt, B. F. and Elphick, M. R. (1998). A new perspective on cannabinoid signaling: complementary localization of fatty acid amide hydrolase and the CB1 receptor in the rat brain. Proc. R. Soc. Lond. B, 265, 2081–2085
Elphick, M. R. and Egertová, M. (2001). The neurobiology and evolution of cannabinoid signaling. Phil. Trans. R. Soc. Lond., 356, 381–408
Felder, C. C. and Glass, M. (1998). Cannabinoid receptors and their endogenous agonists. Annu. Rev. Pharmacol. Toxicol., 38, 179–200
Freedland, C. S., Whitlow, C. T., Miller, M. D. and Porrino, L. J. (2002). Dose-dependent effects of delta-9-tetrahydrocannabinol on rates of local cerebral glucose utilization in rat. Synapse, 45, 134–142
French, E. D., Dillon, K. and Wu, X. (1997). Cannabinoids excite dopamine neurons in the ventral tegmentum and substantia nigra. NeuroReport, 8, 649–652
Fride, E., Ginzburg, Y., Breuer, A.et al. (2001). Critical role of the endogenous cannabinoid system in mouse pup suckling and growth. Eur. J. Pharmacol., 419, 207–214
Fuentes, J. A., Ruiz-Gayo, M., Manzanares, J.et al. (1999). Cannabinoids as potential new analgesics. Life Sci., 65, 675–685
Gerdeman, G. L., Ronesi, J. and Lovinger, D. M. (2002). Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nature Neurosci., 5, 446–451
Ghozland, S., Matthes, H. W., Simonin, F.et al. (2002). Motivational effects of cannabinoids are mediated by mu-opioid and kappa-opioid receptors. J. Neurosci., 22, 1146–1154
Gill, E. W., Paton, W. D. M. and Pertwee, R. G. (1970). Preliminary experiments on the chemistry and pharmacology of cannabis. Nature, 229, 134–136
Giuffrida, A. and Piomelli, D. (2000). The endocannabinoid system: a physiological perspective on its role in psychomotor control. Chem. Physics Lipids, 108, 151–158
Giuffrida, A., Parsons, L. H., Kerr, T. M.et al. (1999). Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nature Neurosci., 2, 358–363
Greenberg, H. S., Werness, S. A. S., Pugh, J. E.et al. (1994). Short-term effects of smoking marijuana on balance in patients with multiple sclerosis and normal volunteers. Clin. Pharmacol. Ther., 55, 324–328
Hájos, N., Katona, I., Naiem, S. S.et al. (2000). Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur. J. Neurosci., 12, 3239–3249
Hampson, R. E. and Deadwyler, S. A. (1999). Cannabinoids, hippocampal function and memory. Life Sci., 65, 715–723
Han, C. J. and Robinson, J. K. (2001). Cannabinoid modulation of time estimation in the rat. Behav. Neurosci., 115, 243–246
Herkenham, M., Lynn, A. B., Johnson, M. R.et al. (1991). Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J. Neurosci., 11, 563–583
Hicks, R. E., Gualtieri, C. T., Mayo, P. Jr and Perez-Reyes, M. (1984). Cannabis, atropine and temporal information processing. Neuropsychobiology, 12, 229–237
Hine, B., Friedman, E., Torrelio, M. and Gershon, S. (1975). Morphine-dependent rats: blockade of precipitated abstinence by tetrahydrocannabinol. Science, 187, 443–445
Hoffman, A. F. and Lupica, C. R. (2000). Mechanisms of cannabinoid inhibition of GABAA synaptic transmission in the hippocampus. J. Neurosci., 20, 2470–2479
Hollister, L. E. (1971). Hunger and appetite after single doses of marihuana, alcohol and dextroamphetamine. Clin. Pharmacol. Ther., 12, 44–49
Hollister, L. E. (1986). Health aspects of cannabis. Pharmacol. Rev., 38, 1–20
Hollister, L. E. (1998). Health aspects of cannabis: revisited. Int. J. Neuropsychopharmacol., 1, 71–80
Huestis, M. A., Gorelick, D. A., Heishman, S. J.et al. (2001). Blockade of effects of smoked marijuana by the CB1-selective cannabinoid receptor antagonist SR141716. Arch. Gen. Psychiatry, 58, 322–328
Iversen, L. L. (2000). The Science of Marijuana. New York: Oxford University Press
Jones, R. T. (1978). Marihuana: human effects. In Handbook of Psychopharmacology, vol. 12, ed. L. L. Iversen, S. D. Iversen and S. H. Snyder, pp. 373–412. New York: Plenum Press
Jones, R. T. (1987). Drug of abuse profile: cannabis. Clin. Chem., 33, 72B–81B
Katona, I., Sperlagh, B., Sik, A.et al. (1999). Presynaptically located CB1 receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J. Neurosci., 19, 4544–4558
Katona, I., Sperlagh, B., Maglóczky, Z.et al. (2000). GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus. Neuroscience, 100, 797–804
Katona, I., Rancz, E. A., Acsády, L.et al. (2001). Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. J. Neurosci., 21, 9506–9518
Kaymakçalan, S., Ayhan, I. H. and Tulunay, F. C. (1977). Naloxone-induced or postwithdrawal abstinence signs in Δ9-tetrahydrocannabinol-tolerant rats. Psychopharmacology, 55, 243–249
Koch, J. E. (2001). Δ9-THC stimulates food intake in Lewis rats. Effects on chow, high-fat and sweet high-fat diets. Pharmacol. Biochem. Behav., 68, 539–543
Kreitzer, A. C. and Regehr, W. G. (2001a). Retrograde ion of prinhibitesynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron, 29, 717–727
Kreitzer, A. C. (2001b). Cerebellar depolarization-induced suppression of inhibition is mediated by endogenous cannabinoids. J. Neurosci., 21, RC174–RC179
Ledent, C., Valverde, O., Cossu, G.et al. (1999). Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science, 283, 401–404
Lenz, R. A., Wagner, J. J. and Alger, B. E. (1998). N- and L-type calcium channel involvement in depolarization-induced suppression of inhibition in rat hippocampal CA1 cells. J. Physiol. (Lond.), 512, 61–73
Lepore, M., Vorel, S. R., Lowinson, J. and Gardner, E. L. (1995). Conditioned place preference induced by Δ9-tetrahydrocannabinol: comparison with cocaine, morphine and food reward. Life Sci., 56, 2073–2080
Lichtman, A. H. and Martin, B. R. (1996). Δ9-Tetrahydrocannabinol impairs spatial memory through a cannabinoid mechanism. Psychopharmacology, 126, 125–131
Lichtman, A. H., Fisher, J. and Martin, B. R. (2001a). Precipitated cannabinoid withdrawal is reversed by Δ9-tetrahydrocannabinol or clonidine. Pharmacol. Biochem. Behav., 69, 181–188
Lichtman, A. H., Sheikh, S. M., Loh, H. H. and Martin, B. R. (2001b). Opioid and cannabinoid modulation of precipitated withdrawal in Δ9-tetrahydrocannabinol and morphine-dependent mice. J. Pharmacol. Exp. Ther., 298, 1007–1014
Maejima, T., Hashimoto, K., Yoshida, T., Aiba, A. and Kano, M. (2001). Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors. Neuron, 31, 463–475
Mallet, P. E. and Beninger, R. J. (1998). The cannabinoid CB1 receptor antagonist SR141716A attenuates the memory impairment produced by Δ9-tetrahydrocannabinol or anandamide. Psychopharmacology, 140, 11–19
Manno, J. E., Glenn, M. S., Kiplinger, G. F.et al. (1970). Comparative effects of smoking marihuana or placebo on human motor and mental performance. Clin. Pharmacol. Ther., 11, 808–815
Marsicano, G. and Lutz, B. (1999). Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur. J. Neurosci., 11, 4213–4225
Marsicano, G., Wotjak, C. T., Azad, S. C.et al. (2002). The endogenous cannabinoid system controls extinction of aversive memories. Nature, 418, 530–534
Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C. and Bonner, T. I. (1990). Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature, 346, 561–564
Mattes, R. D., Engelman, K., Shaw, L. M. and Elsohly, M. A. (1994). Cannabinoids and appetite stimulation. Pharmacol. Biochem. Behav., 49, 187–194
Mathew, R. J., Wilson, W. H., Coleman, R. E., Turkington, T. G. and DeGrado, T. R. (1997). Marijuana intoxication and brain activation in marijuana smokers. Life Sci., 60, 2075–2089
Mathew, R. J., Wilson, W. H., Turkington, T. G. and Coleman, R. E. (1998). Cerebellar activity and disturbed time sense after THC. Brain Res., 797, 183–189
Mechoulam, R. and Fride, E. (2001). A hunger for cannabinoids. Nature, 410, 763–765
Mechoulam, R., Fride, E., Hanus, L.et al. (1997). Anandamide may mediate sleep induction. Nature, 389, 25–26
Mendelson, J. H., Babor, T. F., Kuehnle, J. C.et al. (1976). Behavioral and biological aspects of marijuana use. Annal NY Acad. Sci., 282, 186–210
Meng, I. D., Manning, B. H., Martin, W. J. and Fields, H. L. (1998). An analgesia circuit activated by cannabinoids. Nature, 395, 381–383
Miller, L. L. and Branconnier, R. J. (1983). Cannabis: effects on memory and the cholinergic limbic system. Psychol. Bull., 93, 441–456
Misner, D. L. and Sullivan, J. M. (1999). Mechanism of cannabinoid effects on long-term potentiation and depression in hippocampal CA1 neurons. J. Neurosci., 19, 6795–6805
Munro, S., Thomas, K. L. and Abu-Shaar, M. (1993). Molecular characterization of a peripheral receptor for cannabinoids. Nature, 365, 61–65
Nakamura-Palacios, E. M., Winsauer, P. J. and Moerschbaecher, J. M. (2000). Effects of the cannabinoid ligand SR141716A alone or in combination with delta-9-tetrahydrocannabinol or scopolamine on learning in squirrel monkeys. Behav. Pharmacol., 11, 377–386
Ohno-Shosaku, T., Maejima, T. and Kano, M. (2001). Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron, 29, 729–738
O'Leary, D. S., Block, R. I., Koeppel, J. A.et al. (2002). Effects of smoking marijuana on brain perfusion and cognition. Neuropsychopharmacology, 26, 802–816
Patel, S. and Hillard, C. J. (2001). Cannabinoid CB1 receptor agonists produce cerebellar dysfunction in mice. J. Pharmacol. Exp. Ther., 297, 629–637
Perio, A. A., Rinaldi-Carmona, M. M., Maruani, J. J.et al. (1996). Central mediation of the cannabinoid cue: activity of a selective CB1 antagonist SR 141716A. Behav. Pharmacol., 7, 65–71
Pertwee, R. G. (1991). Tolerance to, and dependence on psychotropic cannabinoids. In The Biological Basis of Drug Tolerance, ed. J. Pratt, pp. 232–265. London: Academic Press
Pertwee, R. G. (1999). Pharmacology of cannabinoid receptor ligands. Curr. Med. Chem., 6, 635–664
Pettit, D. A. D., Harrison, M. P., Olson, J. M., Spencer, R. F. and Cabral, G. A. (1998). Immunohistochemical localization of the neural cannabinoid receptor in rat brain. J. Neurosci. Res., 51, 391–402
Pitler, T. A. and Alger, B. E. (1992). Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells. J. Neurosci., 12, 4122–4132
Pitler, T. A. and Alger, B. E. (1994). Depolarization-induced suppression of GABAergic inhibition in rat hippocampal pyramidal cells: G protein involvement in a presynaptic mechanism. Neuron, 13, 1447–1455
Pontieri, F. E., Monnazzi, P., Scontrini, A., Buttarelli, F. R. and Patacchioli, F. R. (2001). Behavioral sensitization to heroin by cannabinoid pretreatment in the rat. Eur. J. Pharmacol., 421, R1–R3
Reibaud, M., Obinu, M. C., Ledent, C.et al. (1999). Enhancement of memory in cannabinoid CB1 receptor knock-out mice. Eur. J. Pharmacol., 379, 1–2
Rinaldi-Carmona, M., Barth, F., Heaulme, M.et al. (1994). SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett., 350, 240–244
Rodríguez de Fonseca, F., Rocio, M., Carrera, A.et al. (1997). Activation of corticotropin-releasing factor in the limbic system during cannabinoid withdrawal. Science, 276, 2050–2054
Rodríguez de Fonseca, F., Del Arco, I., Martín-Calderón, J. L., Gorriti, M. A. and Navarro, M. (1998). Role of the endogenous cannabinoid system in the regulation of motor activity. Neurobiol. Dis., 5, 483–501
Roth, S. (1978). Stereoselective presynaptic inhibitory effect of delta-9-tetrahydrocannabinol on cholinergic transmission in the myenteric plexus of the guinea pig. Can. J. Physiol. Pharmacol., 56, 968–975
Rubino, T., Patrini, G., Massi, P.et al. (1998). Cannabinoid-precipitated withdrawal: a time course study of the behavioral aspect and its correlation with cannabinoid receptors and G protein expression. J. Pharmacol. Exp. Ther., 285, 813–819
Santucci, V., Storme, J. J., Soubrie, P. and Fur, G. (1996). Arousal-enhancing properties of the CB1 cannabinoid receptor antagonist SR141716A in rats as assessed by electroencephalographic spectral and sleep-waking cycle analysis. Life Sci., 58, 103–110
Sañudo-Peña, M. C., Tsou, K. and Walker, J. M. (2000). Motor actions of cannabinoids in the basal ganglia output nuclei. Life Sci., 65, 703–713
Schlicker, E. and Kathmann, M. (2001). Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol. Sci., 22, 565–572
Shen, M., Piser, T. M., Seybold, V. S. and Thayer, S. A. (1996). Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J. Neurosci., 16, 4322–4334
Smith, F. L., Cichewicz, D., Martin, Z. L. and Welch, S. P. (1998). The enhancement of morphine antinociception in mice by delta-9-tetrahydrocannabinol. Pharmacol. Biochem. Behav., 60, 559–566
Solowij, N. (1998). Cannabis and Cognitive Functioning. Cambridge: Cambridge University Press
Stiglick, A. and Kalant, H. (1985). Residual effects of chronic cannabis treatment on behaviour in mature rats. Psychopharmacology, 85, 436–439
Swift, W., Hall, W. and Teesson, M. (2001). Cannabis use and dependence among Australian adults: results from the National Survey of Mental Health and Wellbeing. Addiction, 96, 737–748
Szabo, B., Siemes, S. and Wallmichrath, I. (2002). Inhibition of GABAergic neurotransmission in the ventral tegmental area by cannabinoids. Eur. J. Neurosci., 15, 2057–2061
Tanda, G., Pontieri, F. E. and Di Chiara, G. (1997). Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common µ1 opioid receptor mechanism. Science, 276, 2048–2050
Tanda, G., Munzar, P. and Goldberg, S. R. (2000). Self-administration behavior is maintained by the psychoactive ingredient of marijuana in squirrel monkeys. Nature Neurosci., 3, 1073–1074
Terranova, J. P., Michaud, J. C., Fur, G.et al. (1995). Inhibition of long-term potentiation in rat hippocampal slices by anandamide and WIN55 212–2; reversal by SR141 716-A, a selective antagonist of CB1 cannabinoid receptors. Naunyn Schmiedbergs Arch. Pharmacol., 352, 576–579
Terranova, J. P., Stomre, J. J., Lafon, N.et al. (1996). Improvement of memory in rodents by the selective CB1 cannabinoid receptor antagonist SR141716A. Psychopharmacology, 126, 165–172
Valverde, O., Maldonado, R., Valjent, E., Zimmer, A. M. and Zimmer, A. (2000). Cannabinoid withdrawal syndrome is reduced in pre-proenkephalin knock-out mice. J. Neurosci., 15, 9284–9289
Valverde, O., Noble, F.et al. (2001). Δ9-Tetrahydrocannabinol releases and facilitates the effects of endogenous enkephalins: reduction in morphine withdrawal syndrome without change in rewarding effect. Eur. J. Neurosci., 13, 1816–1824
Varma, N., Calrson, G. C., Ledent, C. and Alger, B. E. (2001). Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. J. Neurosci., 21, RC188–RC193
Welch, S. P. and Stevens, D. L. (1992). Antinociceptive activity of intrathecally administered cannabinoids alone, and in combination with morphine, in mice. J. Pharmacol. Exp. Ther., 262, 10–18
Williams, C. M. and Kirkham, T. C. (1999). Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors. Psychopharmacology, 143, 315–317
Wilson, R. I. and Nicoll, R. A. (2001). Endogenous cannabinoids mediate retrograde signaling at hippocampal synapses. Nature, 410, 588–592
Yamaguchi, T., Hagiwara, Y., Tanaka, H.et al. (2001). Endogenous cannabinoid 2-arachidonylglycerol, attenuates naloxone-precipitated withdrawal signs in morphine-dependent mice. Brain Res., 909, 121–126
Zimmer, A., Zimmer, A. M., Hohmann, A. G., Herkenham, M. and Bonner, T. I. (1999). Increased mortality, hypoactivity and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc. Natl Acad. Sci. USA, 96, 5780–5785