Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T14:57:23.824Z Has data issue: false hasContentIssue false

2 - In situ measurement techniques: land ice

Published online by Cambridge University Press:  16 October 2009

Jon Ove Hagen
Affiliation:
Department of Physical Geography, Faculty of Mathematics and Natural Sciences, University of Oslo
Niels Reeh
Affiliation:
Ørsted-DTU, Electromagnetic Systems, Technical University of Denmark
Jonathan L. Bamber
Affiliation:
University of Bristol
Antony J. Payne
Affiliation:
University of Bristol
Get access

Summary

Introduction

Measurement of the mass balance of larger glaciers, ice sheets, ice caps and ice fields requires different field techniques than for the smaller valley glaciers. These larger glaciers are an integral part of the Earth's interactive ice–ocean–land–atmosphere system, and may also provide valuable insight into the cause of changes of the Earth's climate system (Meier, 1998).

In this chapter, we deal with in situ measurement techniques. However, we include measurements based on aerial photography, since such measurements for more than half a century have been used in combination with field studies. Modern, mainly satellite-based, remote-sensing techniques for measuring glacier mass balance are presented in Chapter 4.

Mass balance equations

In glacier context, the term ‘mass balance’ is traditionally used in two ways with different meanings. At a specific point of the glacier, the local mass balance designates the sum of accumulation (supply of mass mainly by snow deposition) and ablation (loss of mass mainly by melting of snow/ice). The local (specific) mass balance may be positive or negative depending on whether accumulation or ablation dominates. However, the sign of the specific mass balance does not say anything about the local change of ice thickness or the local change of mass in a vertical column through the glacier. This is because the specific mass balance may be compensated for, or even be overruled by, mass input/loss due to a gradient of the horizontal ice flux.

Type
Chapter
Information
Mass Balance of the Cryosphere
Observations and Modelling of Contemporary and Future Changes
, pp. 11 - 42
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreassen, L. M. 1999. Comparing traditional mass balance measurements with long-term volume change extracted from topographical maps. A case study of Storbreen glacier in Jotunheimen, Norway, for the period 1940–1977. Geograf. Ann. 81 A (4), 467–76CrossRefGoogle Scholar
Arthern, R. A. and Wingham, D. J. 1998. The natural fluctuations of firn densification and their effect on the geodetic determination of ice sheet mass balance. Climate Change 40, 605–24CrossRefGoogle Scholar
Bauer, A., Baussart, M., Carbonnell, M., Kasser, P., Perraud, P. and Renaud, A. 1968. Missions aériennes de reconnaissance au Groenland 1957–1958. Meddr. Grφnland 173 (3), 116 ppGoogle Scholar
Björnsson, H., Björnsson, S. and Sigurgeirsson, Th. 1982. Penetration of water into hot rock boundaries of magma at Grímsvötn. Nature 295, 580–881CrossRefGoogle Scholar
Carbonnell, M. and Bauer, A. 1968. Exploitation des couvertures photographiques aériennes répétées du front des glacier vêlant dans Disko Bugt et Umanak Fjord, Juin–Juillet 1964. Meddr. Grφnland 173 (5), 77 ppGoogle Scholar
Cogley, J. G. 1999. Effective sample size for glacier mass balance. Geograf. Ann. 81 A (4), 497–507CrossRefGoogle Scholar
Davis, C. H., Kluever, C. A. and Haines, B. J. 1998. Elevation change of the Southern Greenland Ice Sheet. Science 279, 2086–8CrossRefGoogle ScholarPubMed
Echelmeyer, K. A.et al. 1996. Airborne surface profiling of glaciers: a case-study in Alaska. J. Glaciol. 142, 538–47CrossRefGoogle Scholar
Eiken, T., Hagen, J. O. and Melvold, K. 1997. Kinematic GPS-survey of geometry changes on Svalbard glaciers. Ann. Glaciol. 24, 157–63CrossRefGoogle Scholar
Engeset, R. V., Kohler, J., Melvold, K. and Lundén, B. 2002. Change detection and monitoring of glacier mass balance and facies using ERS SAR winter images over Svalbard. Int. J. Remote Sensing 23 (10), 2023–50CrossRefGoogle Scholar
Favey, E., Geiger, A., Gudmundsson, G. H. and Wehr, A. 1999. Evaluating the potential of an airborne laser-scanning system for measuring volume changes of glaciers. Geograf. Ann. 81 A (4), 555–61CrossRefGoogle Scholar
Foldvik, A. and Kvinge, T. 1977. Thermohaline convection in the vicinity of an ice shelf. In Dunbar, M. J., ed., Polar Oceans. Proceedings of the Polar Oceans Conference, McGill University, Montreal, May 1974. Calgary, Alberta, Arctic Institute of North America, pp. 247–55
Fountain, A. G. and Vecchia, A. 1999. How many stakes are required to measure the mass balance of a glacier?Geograf. Ann. 81 A (4), 563–72CrossRefGoogle Scholar
Funk, M., Morelli, R. and Stahel, W. 1997. Z. Gletscherkd. Glazialg. 33, 41–56
Hagen, J. O., Melvold, K., Eiken, T., Isaksson, E. and Lefauconnier, B. 1999. Mass balance methods on Kongsvegen, Svalbard. Geograf. Ann. 81 A (4), 593–601CrossRefGoogle Scholar
Hamilton, G., Whillans, I. M. and Morgan, P. J. 1998. First point measurements of ice-sheet thickness change in Antarctica. Ann. Glaciol. 27, 125–9CrossRefGoogle Scholar
Hammer, C. U., Clausen, H. B., Dansgaard, W., Gundestrup, N., Johnsen, S. J. and Reeh, N. 1978. Dating of Greenland ice cores by flow models, isotopes, volcanic debris, and continental dust. J. Glaciol. 20, (82), 326CrossRefGoogle Scholar
Hammer, C. U., Clausen, H. B. and Tauber, H. 1986. Ice-core dating of the Pleistocene/Holocene boundary applied to a calibration of the 14C time scale. Radiocarbon 28, (2A), 284–91CrossRefGoogle Scholar
Henriksen, N. 1973. Regional mapping and palaeomagnetic and glaciological investigations in the Scoresby Sund region, Central East Greenland. Report Grφnlands Geol. Unders. 55, 42–7Google Scholar
Higgins, A. K. 1991. North Greenland glacier velocities and calf ice production. Polarforschung 60, 1–23Google Scholar
Hulbe, C. I. and Whillans, I. M. 1994. A method for determining ice-thickness change at remote locations using GPS. Ann. Glaciol. 20, 263–8CrossRefGoogle Scholar
Isaksson, E., Karlén, W., Gundestrup, N., Mayewski, P., Whitlow, S. and Twickler, M. 1996. A century of accumulation and temperature changes in Dronning Maud Land, Antarctica. J. Geophys. Res. 101 (D3), 7085–94CrossRefGoogle Scholar
Jacobsen, F. M. and Theakstone, W. 1997. Monitoring glacier changes using a global positioning system in differential mode. Ann. Glaciol. 24, 314–19CrossRefGoogle Scholar
Jansson, P. 1999. Effect of uncertainties in measured variables on the calculated mass balance of Storglaciären. Geograf. Ann. 81 A (4), 633–42CrossRefGoogle Scholar
Jenkins, A., Vaughan, D. G., Jacobs, S. S., Helmer, H. H. and Keys, J. R. 1997. Glaciological and oceanographic evidence of high melt rates beneath Pine Island Glacier, West Antarctica. J. Glaciol. 43 (143), 114–21CrossRefGoogle Scholar
Kääb, A. and Funk, M. 1999. Modelling mass balance using photogrammetric and geophysical data: a pilot study at Griesgletscher Swiss alps. J. Glaciol. 45 (151), 575–83CrossRefGoogle Scholar
Kaser, G., Hastenrath, S. and Ames, A. 1996. Mass balance profiles on tropical glaciers. Z. Gletscherk. Glazialg. 32, 91–9Google Scholar
Kock, H. 1993. Height determinations along the EGIG line and in the GRIP area. In Reeh, N. and Oerter, H., eds., Mass Balance and Related Topics of the Greenland Ice Sheet. Open File Series Grφnlands Geologiske Undersφgelse, 93/5, pp. 68–70
Koerner, R. M. 1970. Some observations on superimposition of ice on the Devon Island ice cap, N. W. T. Canada. Geograf. Ann. 52A (1), 57–67CrossRefGoogle Scholar
Koerner, R. M. 1986. A new method for using glaciers as monitors of climate. Mater. Glyatsiol. Issled. 57, 175–9Google Scholar
Kohler, J., Moore, J., Kennett, M., Engeset, R. and Elvehφy, H. 1997. Using ground penetrating radar to image previous years' summer surfaces for mass balance measurements. Ann. Glaciol. 24, 355–60CrossRefGoogle Scholar
Kovacs, A., Gow, A. J. and Morey, R. M. 1995. The in-situ dielectric constant of polar firn revisited. Cold Regions Sci. & Technol. 23 (3), 245–56CrossRefGoogle Scholar
Krabill, W.et al. 2000: Greenland Ice Sheet: high-elevation balance and peripheral thinning. Science 289, 428–30CrossRefGoogle ScholarPubMed
Krimmel, R. M. 1999. Analysis of differences between direct and geodetic mass balance measurements at South Cascade glacier, Washington. Geograf. Ann. 81 A (4), 653–8CrossRefGoogle Scholar
Kuhn, M., Dreiseitl, E., Hofinger, S., Markl, G., Span, N. and Kaser, G. 1999. Measurements and models of the mass balance of Hintereisferner. Geograf. Ann. 81 A (4), 659–70CrossRefGoogle Scholar
Lambrecht, A., Nixdorf, U. and Zürn, W. 1995. Ablation rates under the Ekström Ice Shelf deduced from different methods. Filchner-Ronne Ice Shelf Programme, report no. 9, pp. 50–6. Bremerhaven, Alfred-Wegener Institut für Polar-und Meeresforschung
Meier, M. 1994. Columbia glacier during rapid retreat: interaction between glacier flow and iceberg calving dynamics. In Reeh, N., ed., Report on the Workshop on the Calving Rate of West Greenland Glaciers in Response to Climate Change. Copenhagen, Danish Polar Center, pp. 63–84
Meier, M. 1998. Monitoring ice sheets, ice caps and large glaciers. In Haeberli, W., Hoelzle, M. and Suter, S., eds., Into the Second Century of Worldwide Glacier Monitoring – Prospects and Strategies. UNESCO, Studies and reports in hydrology no. 56, pp. 209–14
Melvold, K. and Hagen, J. O. 1998. Evolution of a surge-type glacier in its quiescent phase: Kongsvegen, Spitsbergen, 1964–1995. J. Glaciol. 44 (147), 394–404CrossRefGoogle Scholar
Möller, D. 1996. Die Höhen und Höhenänderungen des Inlandeises. Die Weiterfürung der geodätischen Arbeiten der Internationalen Glaziologischen GrÖnland-Expedition (EGIG) durch das Institut für Vermessungskunde der TU Braunschweig 1987–1993. Deutsche Geodätische Kommission bei der Bayrischen Akademie der Wissenschaften, Reihe B, Angewandte Geodäsie, Heft Nr. 303. Verlag der Bayrischen Akademie der Wissenschaften, pp. 49–58
Morgan, V. I. 1972. Oxygen isotope evidence for bottom freezing on the Amery Ice Shelf. Nature 238 (5364), 321–5CrossRefGoogle Scholar
Nixdorf, U., Rohardt, G., Lambrecht, A. and Oerter, H. 1995. Deployment of oceanographic-glaciological strings under the Filchner-Ronne Schelfeis in 1995. Filchner-Ronne Ice Shelf Programme, report no. 9. Bremerhaven, Alfred-Wegener Institut für Polar-und Meeresforschung, pp. 87–90
Oerter, H.et al. 1992. Evidence for basal marine ice in the Filcher-Ronne ice shelf. Nature 358, 399–401CrossRefGoogle Scholar
Olesen, O. B. 1999. The GEUS/AWI programs during Polarstern Cruise XV/2
Olesen, O. B. and Reeh, N. 1969. Preliminary report on observations in Nordvestfjord, East Greenland. Report Grφnlands Geol. Unders. 115, 107–11Google Scholar
Olesen, O. B., Thomsen, H. H., Reeh, N. and Bφggild, C. E. 1998. Attempts at measuring bottom melting at Nioghalvfjerdsfjorden glacier in Dowdeswell, J. A., Dowdeswell, E. K. and Hagen, J. O., eds., International Arctic Science Committee (IASC), Arctic Glaciers Working Group Meeting and Workshop on Arctic Glaciers Mass Balance held at Gregynog, Wales 29–30 January 1998. Centre for Glaciology Report 98–01. Prifysgol Cymru Aberystwyth, The University of Wales
Østrem, G. and Brugman, M. 1991. Glacier and Mass Balance Measurements – A Manual for Field and Office Work. Canadian National Hydrology Research Institute (NHRI) Science report no. 4
Østrem, G. and Stanley, A. D. 1969. Glacier and Mass Balance Measurements – A Manual for Field and Office Work. Canadian Inland Water Branch, reprint series No. 66
Paterson, W. S. B. 1994. The Physics of Glaciers, 3rd edn. Oxford, Pergamon
Pillewizer, W. 1939. Die kartographischen und gletscherkundlichen Ergebnisse der Deutschen Spitzbergenexpedition 1938. Peterm. Geogr. Mitteilungen Erg. H. 238, 36–8Google Scholar
Pinglot, J. F.et al. 1999. Accumulation in Svalbard glaciers deduced from ice cores with nuclear tests and Chernobyl reference layers. Polar Res. 18 (2), 315–21CrossRefGoogle Scholar
Reeh, N. 1989. Dating by ice flow modelling: a useful tool or an exercise in applied mathematics?. In Oeschger, H. and Langway Jr., C. C., eds., The Environmental Record in Glaciers and Ice Sheets. John Wiley & Sons Limited, pp. 141–59
Reeh, N. 1994. Calving from Greenland glaciers: observations, balance estimates of calving rates, calving laws. In Reeh, N., ed., Report on the Workshop on the Calving Rate of West Greenland Glaciers in Response to Climate Change. Copenhagen, Danish Polar Center, pp. 85–102
Reeh, N. 1999. Mass balance of the Greenland ice sheet: can modern observation methods reduce the uncertainty?Geograf. Ann. 81 A (4), 735–42CrossRefGoogle Scholar
Reeh, N. and Gundestrup, N. 1985. Mass balance of the Greenland ice sheet at Dye 3. J. Glaciol. 31 (108), 198–200CrossRefGoogle Scholar
Reeh, N. and Olesen, O. B. 1986. Velocity measurements on Daugaard-Jensen Gletscher, Scoresby Sund, East Greenland. Ann. Glaciol. 8, 146–50CrossRefGoogle Scholar
Richardson, C. E. and Holmlund, P. 1999. Spatial variability at shallow snow depths in central Dronning Maud Land, East Antarctica. Ann. Glaciol. 29, 10–16CrossRefGoogle Scholar
Richardson, C., Aarholt, E., Hamran, S. E., Holmlund, P. and Isaksson, E. 1997. Spatial distribution of snow in western Dronning Maud Land, east Antarctica, mapped by a ground-based snow radar. J. Geophys. Res. 102 (B9), 20 343–53CrossRefGoogle Scholar
Richardson-Näslund, C. 2001. Spatial distribution of snow in Antarctica and other glaciers using ground-penetrating radar. Doctoral dissertation, Department of Physical Geography and Quaternary Geology, Stockholm University: Dissertation series, no. 18
Rignot, E. J., Gogineni, S. P., Krabill, W. B. and Ekholm, S. 1997. North and Northeast Greenland ice discharge from satellite radar inferometry. Science 276, 934–7CrossRefGoogle Scholar
Robin, G. de Q. 1979. Formation, flow, and disintegration of ice shelves. J. Glaciol. 24 (90), 259–71CrossRefGoogle Scholar
Seckel, H. 1977. Das geometrische Nivellement über das Grönländische Inlandeis der Gruppe Nivellement an der internationalen glaziologischen Grönland-Expedition 1967–68. Meddr. Grφnland 187 (3)Google Scholar
Steffensen, J. P. 1988. Analysis of the seasonal variation in dust, Cl-, NO3-, and SO42- in two Central Greenland firn cores. Ann. Glaciol. 10, 171–7CrossRefGoogle Scholar
Thomsen, H. H.et al. 1997. The Nioghalvfjerdsfjorden glacier project, North-East Greenland: a study of ice sheet response to climatic change. Geol. Greenland Surv. Bull. 176, 95–103Google Scholar
Veen, C. J. 1993. Interpretation of short-term ice sheet elevation changes inferred from satellite altimetry. Climate Change 23, 383–405CrossRefGoogle Scholar
Ward, W. H. and Orvig, S. 1953. The glaciological studies of the Baffin Island Expedition, 1950. Part IV: The heat exchange at the surface of the Barnes Ice Cap during the ablation period. J. Glaciol. 2 (13), 158–68CrossRefGoogle Scholar
Warrick, R. A., Provost, C. le, Meier, M. F., Oerlemans, J. and Woodworth, P. L. 1996. Changes in sea level. In Houghton, J. T. et al., eds., Climate Change 1995. Cambridge University Press, pp. 358–405
Weidick, A. 1968. Observation on some Holocene glacier fluctuations in West Greenland. Meddr. Grφnland 165 (6)Google Scholar
Weidick, A. 1994. Fluctuations of West Greenland calving glaciers. In Reeh, N., ed., Report on the Workshop on the Calving Rate of West Greenland Glaciers in Response to Climate Change. Copenhagen, Danish Polar Center, pp. 141–68
Weidick, A. 1995. Satellite Image Atlas of Glaciers of the World, Greenland. US Geological Survey Professional Paper 1386-C. Washington, United States Government Printing Office
Weidick, A., Andreasen, C., Oerter, H. and Reeh, N. (1996). Neoglacial glacier changes around Storstrφmmen, North-East Greenland. Polarforschung 64 (3), 95–108Google Scholar
Woodward, J., Sharp, M. and Arendt, A. 1997. The influence of superimposed-ice formation on the sensitivity of glacier mass balance to climate change. Ann. Glaciol. 24, 186–90.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×