Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T04:47:02.522Z Has data issue: false hasContentIssue false

1 - The laws of thermodynamics

Published online by Cambridge University Press:  06 July 2010

Tomoyasu Tanaka
Affiliation:
Ohio University
Get access

Summary

The thermodynamic system and processes

A physical system containing a large number of atoms or molecules is called the thermodynamic system if macroscopic properties, such as the temperature, pressure, mass density, heat capacity, etc., are the properties of main interest. The number of atoms or molecules contained, and hence the volume of the system, must be sufficiently large so that the conditions on the surfaces of the system do not affect the macroscopic properties significantly. From the theoretical point of view, the size of the system must be infinitely large, and the mathematical limit in which the volume, and proportionately the number of atoms or molecules, of the system are taken to infinity is often called the thermodynamic limit.

The thermodynamic process is a process in which some of the macroscopic properties of the system change in the course of time, such as the flow of matter or heat and/or the change in the volume of the system. It is stated that the system is in thermal equilibrium if there is no thermodynamic process going on in the system, even though there would always be microscopic molecular motions taking place. The system in thermal equilibrium must be uniform in density, temperature, and other macroscopic properties.

The zeroth law of thermodynamics

If two thermodynamic systems, A and B, each of which is in thermal equilibrium independently, are brought into thermal contact, one of two things will take place: either (1) a flow of heat from one system to the other or (2) no thermodynamic process will result.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×