Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T13:49:09.555Z Has data issue: false hasContentIssue false

5 - Regional case studies

Published online by Cambridge University Press:  20 May 2010

Roger G. Barry
Affiliation:
University of Colorado, Boulder
Get access

Summary

The generalized view of the major climatic controls and characteristics provided in the preceding chapters obviously neglects many significant details and local anomalies, although the data are in many cases so sparse that the generalizations can only be preliminary and partial. As a counterbalance, therefore, it is worthwhile examining the climates of particular ranges via a series of complementary case studies. These include mountain systems in equatorial, tropical, mid-latitude (continental and maritime), and sub-polar regions, as well as high plateaus and ice sheets, which have been selected to illustrate both latitudinal and regional climatic differences. The selection is determined in part by the availability of data and adequate literature.

EQUATORIAL MOUNTAINS – NEW GUINEA AND EAST AFRICA

New Guinea

The central ranges of New Guinea form a backbone running through the length of the island. Except for the Owen Stanley Range in eastern Papua New Guinea, which is not considered here due to a total absence of information, the central ranges are orientated west-northwest–east-southeast. The mountains and highlands are most extensive between 143 and 145° E. The general summit level is about 3500–4000 m, but in Irian Jaya (Papua, or western New Guinea) peaks rise to over 4600 m with small ice bodies on Mt. Jaya (Mt. Carstenz) (4° S, 137° E), which have been studied by Australian expeditions (Hope et al., 1976; Peterson et al., 2002).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdalati, W. and Steffen, K. (2001) Greenland ice sheet melt extent: 1979–1999, J. Geophys. Res., 106 (D24), 33 983–9.CrossRefGoogle Scholar
Ageta, A. (1976) Characteristics of precipitation during monsoon season in Khumbu Himal. Seppyo, 38, Special Issue, 84–8.Google Scholar
Aizen, V. B. and Aizen, E. M. (1997) Hydrological cycle on north and south peripheries in mountain-glacial basins of Central Asia. Hydrol. Processes, 11, 451–69.3.0.CO;2-M>CrossRefGoogle Scholar
Aizen, V., et al. (1997) Glacial regime of the highest Tien Shan mountain, Pobeda-Khan Tengry massif. J. Glaciol., 43(145), 503–21.CrossRefGoogle Scholar
Aizen, V. B., Aizena, E. M. and Nikitin, S. A. (2002) Glacier regime on the northern slope of the Himalaya (Xixibangma glaciers)Quatern. Int., 97–8, 27–39.CrossRefGoogle Scholar
Alford, D. and Keeler, C. (1969) Stratigraphic studies of the winter snow layer, Mt Logan, St. Elias Range. Arctic, 21, 245–54.Google Scholar
Allen, B. (1989) Frost and drought through time and space, Part 1: The climatological record (Frost and drought in the highlands of Papua New Guinea, Allen, B. and Brookfield, H. (eds)), Mountain Res. Dev., 9, 252–78.Google Scholar
Allison, I. and Bennett, J. (1976) Climate and microclimate. In Hope, G. S., Peterson, J. A., Allison, I., and Radok, U. (eds), The Equatorial Glaciers of New Guinea, Rotterdam: A. A. Balkema, pp. 61–80.Google Scholar
Atkinson, B. W. and Smithson, P. A. (1976) Precipitation. In Chandler, T. J. and Gregory, S. (eds), The Climate of the British Isles. London: Longman, pp. 129–82.Google Scholar
Banta, R. M. and Schaaf, C. L. B. (1987) Thunderstorm genesis zones in the Colorado Rocky Mountains as determined by traceback of geosynchronous satellite images. Mon. Wea. Rev., 115, 463–76.2.0.CO;2>CrossRefGoogle Scholar
Barros, A. P. and Lang, T. J. (2003) Monitoring the monsoon in the Himalayas: Observations in Central Nepal, June 2001. Mon. Wea. Rev., 131(7), 1408–27.2.0.CO;2>CrossRefGoogle Scholar
Barros, A. P. and Lettenmaier, D. P. 1994. Dynamic modeling of orographically induced precipitation. Rev. Geophysics, 32, 265–94.CrossRefGoogle Scholar
Barry, R. G. (1973) A climatological transect on the east slope of the Front Range, Colorado. Arct. Alp. Res., 5, 89–110.CrossRefGoogle Scholar
Barry, R. G. (1978) Aspects of the precipitation characteristics of the New Guinea mountains. J. Trop. Geog., 47, 13–30.Google Scholar
Barry, R. G. (1980) Mountain climates of New Guinea. In Royen, P. (ed.), The Alpine Flora of New Guinea. Vol. 1. General Part. Vaduz: J. Cramer, pp. 75–110.Google Scholar
Barry, R. G. and Carleton, A. M. (2001) Synoptic and Dynamic Climatology. London: Routledge, Ch. 7.CrossRefGoogle Scholar
Barry, R. G. and Perry, A. H. (1973) Synoptic Climatology: Methods and Applications. London: Methuen.Google Scholar
Barry, R. G. and Seimon, A. S. (2000) Research for mountain area development: climate fluctuations in the mountains of the Americas and their significance. Ambio, 29(7), 364–70. Corrigendum. Ambio, 30(1), 69.CrossRefGoogle Scholar
Barton, J. S. (1984) Observing mountain weather using an automatic station. Weather, 39, 140–5.CrossRefGoogle Scholar
Barton, J. S. and Borthwick, A. S. (1982) August weather on a mountain summit. Weather, 37, 228–40.CrossRefGoogle Scholar
Baudo, R., Tartari, G. and Munawar, M. (eds) (1998) Top of the World Environmental Research: Mount Everest-Himalayan Ecosystem. Leiden:Backhuys Publishers, Ecovision World Monograph Series: 290 pp.Google Scholar
Baumgartner, A., Reichel, E. and Weber, G. (1983) Der Wasserhaushalt der Alpen. Munich: Oldenbourg.Google Scholar
Bénévent, E. (1926) Le Climat des Alpes Françaises. Paris: Mémorial de l'Office Nationale Méteorologique de France, No. 14.Google Scholar
Beniston, M. (2005) Warm winter spells in the Swiss Alps: strong heat waves in a cold season? A study focusing on climate observations at the Saentis high-mountain site. Geophys.Res. Lett., 32, L01812, 5 pp.CrossRefGoogle Scholar
Benjey, W. G. (1969) Upper Air Wind Patterns in the St. Elias Mountains, Summer 1965. Montreal: Arctic Institute of N. America, Research Paper No. 54. pp. 1–50.Google Scholar
Bezinge, A. (1974) Images du climat zur les Alpes. Bull. de la Murithienne, 91, 27–48.Google Scholar
Bhatt, B. C. and Nakamura, K. (2005) Characteristics of monsoon rainfall around the Himalayas revealed by TRMM precipitation radar. Mon. Wea. Rev., 133, 149–65.CrossRefGoogle Scholar
Bhatt, B. C. and Nakamura, K. (2006) A climatological-dynamical analysis associated with precipitation around the southern part of the Himalaya. J. Geophys. Res., 111, D02115, 1–13.CrossRefGoogle Scholar
Bintanja, R. (2001) Snowdrift sublimation in a katabatic wind region of the Antarctic Ice Sheet. J. appl. Met., 40(11), 1952–66.2.0.CO;2>CrossRefGoogle Scholar
Bleasdale, A. (1963) The distribution of exceptionally heavy falls of rain in the United Kingdom, 1863 to 1960. J. Instn. Wat. Engrs., 17, 45–55.Google Scholar
Bleasdale, A. and Chan, Y. K. (1972) Orographic influences on the distribution of precipitation. In Distribution of Precipitation in Mountainous Areas, Vol. II. Geneva: World Meteorological Organization No. 326. pp. 161–70.Google Scholar
Bleeker, W. (1936) Meteorologisches zu den 3 holländischen Karakorum-Expeditionen. Proc. R. Acad. Amsterdam, 39, 746–56, 839–45 and 962–70.Google Scholar
Blumer, F. P. (1994) Höhennabhängigkeit des Niederschlages im Alpenraum. Ph.D. Dissertation. Zurich: ETH, 242 pp.
Bollasina, M., Bertolani, L. and Tartari, G. (2002) Meteorological observations at high altitude in the Khumbu Valley, Nepal Himalayas, 1994–1999. Bull. Glaciol. Res., 19, 1–11.Google Scholar
Bouët, M. (1972) Climat et Météorologie de la Suisse Romande. Lausanne: Payot.Google Scholar
Box, J. E. and Steffen, K. (2001) Sublimation on the Greenland ice sheet from automated weather station observations. J. Geophys. Res., 106(D24), 33 965–81.CrossRefGoogle Scholar
Boy, G. and Allan, I. (1989) Snowcaps on the Equator. The Fabled Mountains of Kenya, Tanzania, Uganda and Zaire. London: Bodley Head, 192 pp.Google Scholar
Bradley, R., Yuretich, R. and Weingarten, B. (1991) Studies of modern climate. In Yuretich, R. (ed.), Late Quaternary Climatic Fluctuations of the Venezuelan Andes, Contrib. No. 65. Amherst, MA: Dept. of Geology and Geography, University of Massachusetts, pp. 45–62.Google Scholar
Brazel, A. J. and Marcus, M. G. (1979) Heat exchange across a snow surface at 5365 metres, Mount Logan, Yukon. Arct. Alp. Res., 11, 1–16.CrossRefGoogle Scholar
Brinkmann, W. A. R. (1973) A Climatological Study of Strong Downslope Winds in the Boulder Area, Institute of Arctic and Alpine Research, Occasional Paper No. 7. Boulder, CO: University of Colorado.Google Scholar
Bromwich, D. H. and Parish, T. R. (1998) Meteorology of the Antarctic. In Karoly, D. J. and Vincent, D. G. (eds), Meteorology of the Southern Hemisphere. Meteorological Monograph, 27(49), pp. 175–200.CrossRefGoogle Scholar
Bromwich, D. H. and Stearns, C. R. (eds) (1993) Antarctic Meteorology and Climatology. Studies based on Automatic Weather Stations. Antarctic Research Series 61. Washington, DC: Amer. Geophysical Union, 207 pp.CrossRefGoogle Scholar
Brookfield, H. and Allen, B. (1989) High-altitude occupation and environment (Frost and drought in the Highlands of Papua New Guinea, Allen, B. and Brookfield, H. (eds), Mountain Res. Dev., 9, 201–9.Google Scholar
Buchan, A. (1890) The meteorology of Ben Nevis. Trans. R. Soc. Edinb., 34.CrossRefGoogle Scholar
Buchan, A. and Omond, R. T. (1902) The meteorology of the Ben Nevis observations. Pt. II. Containing the observations for the years 1888, 1889, 1890, 1891 and 1892, with appendices. Trans. R. Soc. Edinb., 42.Google Scholar
Buchan, A. and Omond, R. T. (1905) ibid. Pt. III. Containing the observations for the years 1893, 1894, 1895, 1896 and 1897, with appendix. Trans. R. Soc. Edinb., 43.Google Scholar
Buchan, A. and Omond, R. T. (1910) ibid. Pt. IV. Containing the observations for the years 1898, 1899, 1900, 1901 and 1902 and Pt. V. Containing the observations for the years 1903 and 1904, with appendix. Trans. R. Soc. Edinb., 44.Google Scholar
Buchanan, J. Y. (1902) Abstract of paper on the meteorology of Ben Nevis in clear and in foggy weather. Trans. R. Soc. Edinb., 42, 465–78.CrossRefGoogle Scholar
Bushnell, V. and Marcus, M. G. (eds) (1974) Icefield Ranges Research Project. Scientific Results, Vol. 4, New York: American Geographical Society and Montreal: Arctic Institute of North America.Google Scholar
Bushnell, V. C. and Ragle, R. H. (eds) (1969–72) Icefield Ranges Research Project. Scientific Results. New York: American Geographical Society and Montreal: Arctic Institute of North America.Google Scholar
Carrasco, J. F., Casassa, G. and Rivera, A. (2002) Meteorological and climatological aspects of the South Patagonian Icefield. In Casassa, G., Sepulveda, F. and Sinclair, R., (eds), The Patagonian Icefields: A Unique Natural Laboratory for Environmental and Climate Change Studies. Dordrecht: Kluwer, pp. 29–41.CrossRefGoogle Scholar
Carroll, J. J. (1982) Long-term means and short-term variability of the surface energy balance components at the South Pole. J. Geophys. Res., 87, 4277–86.CrossRefGoogle Scholar
Cassardo, C., et al. (2002) The flood of November 1994 in Piedmont, Italy: A quantitative analysis and simulation. Hydrol Processes, 16(6), 1275–99.CrossRefGoogle Scholar
Ceverny, R. (1998) Present climates of South America. In Hobbs, J. E., Lindesay, J. A. and Bridgman, H. A. (eds), Climates of the Southern Continents: Past, Present and Future. Chichester, UK: J. Wiley and Sons., pp. 107–35.Google Scholar
Chaggar, T. S. (1983) Highest mean annual point rainfall in the world. Weather, 38, 220–1.Google Scholar
Chen, Q. S., Bromwich, D. H. and Bai, L. (1997) Precipitation over Greenland retrieved by a dynamic method and its relation to synoptic activity. J. Climate, 10, 839–70.2.0.CO;2>CrossRefGoogle Scholar
Chinn, T. J. (2001) Distribution of the glacial water resources of New Zealand. J. Hydrol., New Zealand, 40(2), 139–87.Google Scholar
Clare, G. R., et al. (2002) Interannual variations in end-of-summer snowlines of the Southern Alps of New Zealand, and relationships with Southern Hemisphere atmospheric circulation and sea surface temperature patterns. Int. J. Climatol., 22, 101–2.CrossRefGoogle Scholar
Clark, J. M. and Peterson, E. B. (1967) Insolation in relation to cloud characteristics in the Colorado Front Range. In Wright, H. E. Jr. and Osburn, W. H. (eds), Arctic and Alpine Environments. Bloomington, IN: Indiana University Press, pp. 3–11.Google Scholar
Coutts, H. H. (1969) Rainfall of the Kilimanjaro area. Weather, 24, 66–9.CrossRefGoogle Scholar
Curran, J. C., et al. (1977) Cairngorm summit automatic weather station. Weather, 32, 61–3.CrossRefGoogle Scholar
Darack, E. (2002) Wild winds of the Andes. Weatherwise, 55(4), 28–38.CrossRefGoogle Scholar
Davies, T. D., Brimbecombe, P. and Vincent, C. (1977) The daily cycle of weather on Mount Kenya. Weather, 32, 406–17.CrossRefGoogle Scholar
Davis, M. E., et al. (2005) Forcing of the Asian monsoon on the Tibetan Plateau: Evidence from high-resolution ice core and tropical coral. J. Geophys. Res., 110 (D4), D04101, 1–13.Google Scholar
Dhar, O. N. and Nandargi, S. (2000) An appraisal of precipitation distribution around the Everest–Kanchengjunga peaks in the Himalyas. Weather, 55(7), 223–34.CrossRefGoogle Scholar
Dhar, O. N. and Nandargi, S. (2004) Rainfall distribution over the Arunachal Pradesh Himalayas. Weather, 59(6), 155–7.CrossRefGoogle Scholar
Dhar, O. N. and Narayanan, J. (1965) A study of precipitation distribution in the neighbourhood of Mount Everest. Ind. J. Met. Geophys., 16, 229–40.Google Scholar
Dhar, O. N. and Rakhecha, P. R. (1980) The effect of elevation on monsoon rainfall distribution in the central Himalayas. In Lighthill, J. and Pearce, R. P. (eds), Monsoon Dynamics. Cambridge: Cambridge University Press, pp. 253–60.Google Scholar
Diaz, H. F., Barry, R. G. and Kiladis, G. (1982) Climatic characteristics of Pike's Peak, Colorado (1874–1888) and comparisons with other Colorado stations. Mountain Res. Devel., 2, 359–71.Google Scholar
Dirks, R. A. and Martner, B. E. (1982) The climate of Yellowstone and Grand Teton National Parks. National Park Service, Occasional Paper No. 6. Washington, DC: US Dept. of the Interior.
Dittmann, E. (1970) Statistische Untersuchungen zur Struktur der Niederschläge in Nepal. Khumbu Himal., 7 (2), 47–60.Google Scholar
Dobesch, H. (ed.) (1983) Die klimatologischen Untersuchungen in den Hohen Tauern von 1974–1980, (Veröff. Òsterreich, MaB-Programs, Band 6). Innsbruck: Universitätsverlag Wagner.Google Scholar
Dobremez, J. F. (1976) Climatologie. In Le Népal. Écologie et Biogéographie, Paris: L C.N.R.S., pp. 31–91.Google Scholar
Dubieff, J. (1963) Résultats tirées d'enregistrements automatiques récents dans des stations élevées du Massif Central Saharien. Geofis. Met., 11, 119–25.Google Scholar
Erickson, T. A., Williams, M. W. and Winstral, A. (2005) Persistence of topographic controls on the spatial distribution of snow in rugged mountainous terrain, Colorado, United States. Water Resour. Res., 41, W04014, 1–17.CrossRefGoogle Scholar
Erikson, W. (1984) Eco-climatological aspects of the Bolivian puna with special reference to frost frequency and moisture conditions. In Lauer, W. (ed.) Natural Environment and Man in Tropical Mountain Ecosystems. Stuttgart: F. Steiner Verlag, pp. 197–209.Google Scholar
Falvey, M. and Garreaud, R. D. (2005) Moisture variability over the South American Altiplano during the South American Low Level Jet Experiment (SALLJEX) observing season. J. Geophys. Res., 110(D22), D22105, 1–12.Google Scholar
Ficker, H. and Rudder, B. (1943) Föhn und Föhnwirkung. Leipzig: Akad. Verlag, Becker u. Erlerkom. Ges.Google Scholar
Finklin, A. I. (1983) Weather and Climate of the Selway-Bitterroot Wilderness. Moscow, ID: University Press of Idaho.Google Scholar
Finklin, A. I. (1986) A Climatic Handbook for Glacier National Park – with data for Waterton Lakes National Park. Forest Service, Intermountain Research Station, Technical Report INT-204. Ogden, UT: US Deptartment of Agriculture.CrossRefGoogle Scholar
Fliri, F. (1962) Wetterlagenkunde von Tirol, Innsbruck: Universitäts-Verlag Wagner.Google Scholar
Fliri, F. (1968) Beiträge zur Hydrologie und Glaziologie der Cordillera Blanca/Peru. Alpenkundliche Studien, Veröff. Univ. Innsbruck, Vol. 1. Innsbruck: Universität, pp. 25–52.Google Scholar
Fliri, F. (1971) Neue klimatologische Querprofile der Alpen – ein Energiehaushalt. Ann. Met., N.F. 5, 93–7.Google Scholar
Fliri, F. (1974) Niederschlag und Lufttemperatur im Alpenraum. Innsbruck: Universitäts-Verlag Wagner.Google Scholar
Fliri, F. (1975) Das Klima der Alpen im Raume von Tirol. Innsbruck: Universitäts-Verlag Wagner.Google Scholar
Fliri, F. (1977) Das physiogeographische Regionen des Alpenraumes. In Wolkinger, F. (ed.), Natur und Mensch im Alpenraum. Graz, Austria: Ludwig Boltzmann-Institute, pp. 13–26.Google Scholar
Fliri, F. (1982) Tirol-Atlas, D. Klima. Innsbruck: Universitätsverlag Wagner, 23 plates.Google Scholar
Fliri, F. (1984) Synoptische Klimatographie der Alpen zwischen Mont Blanc und Hohe Tauern, (with Schüepp, M. Alpine Witterungslagen und europäische Luftdruck-verteilung). Innsbruck: Universitätsverlag Wagner.Google Scholar
Flohn, H. (1954) Witterung und Klima in Mitteleuropa. Stuttgart: Forsch. dt. Landeskunde, p. 78.Google Scholar
Flohn, H. (1968a) Contributions to a Meteorology of the Tibetan Highlands. Atmospheric Science Paper No. 130. Ft. Collins, CO: Colorado State University.Google Scholar
Flohn, H. (1968b) Ein Klimaprofil durch die Sierra Nevada de Mérida (Venezuela), Wetter u. Leben, 20, 181–91.Google Scholar
Flohn, H. (1970) Beiträge zur Meteorologie des Himalaya. Khumbu Himal., 7(2), 25–45.Google Scholar
Flohn, H. (1974) A comparative meteorology of mountain areas. In Ives, J. D. and Barry, R. G. (eds), Arctic and Alpine Environments. London: Methuen, pp. 55–71.Google Scholar
Frauenfeld, O. W., Zhang, T.-J. and Serreze, M. C. (2005) Climate change and variability using European Centre for Medium-range Weather Forecasting reanalysis (ERA-40) temperatures on the Tibetan Plateau. J. Geophys. Res., 110, D02101, 9 pp.CrossRefGoogle Scholar
Frei, C. and Schär, C. (1998) A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol., 18, 873–900.3.0.CO;2-9>CrossRefGoogle Scholar
Frey, K. (1953) Die Entwicklung des Sud- und des Nordföhns, Arch. Met. Geophys. Biokl., A 5, 432–77.CrossRefGoogle Scholar
Frey, K. (1984) Der “Jahrhundertföhn” von 8 XI.81, Met. Rdsch., 37, 209–20.Google Scholar
Fujinami, H. and Yasunari, T. (2001) The seasonal and intraseasonal variability of diurnal cloud activity over the Tibetan Plateau. J. Met. Soc. Japan, 79 (6), 1207–27.CrossRefGoogle Scholar
Fujita, K., et al. (2006) Thirty-year history of melting in the Nepal Himalayas. J. Geophys. Res., 111, D03109, 6 pp.CrossRefGoogle Scholar
Fujiyoshi, T., et al. (1987) Characterisitics of precipitation and vertical structure of air temperature in northern Patagonia. Bull. Glacier Res. (Tokyo), 4, 15–23.Google Scholar
Garnett, A. (1937) Insolation and relief. Trans. Inst. Brit. Geog., 5, 71 pp.Google Scholar
Garreaud, R. (1999) Multi-scale analysis of the summertime precipitation over the central Andes. Mon. Wea. Rev., 127, 901–21.2.0.CO;2>CrossRefGoogle Scholar
Garreaud, R., Vuille, M. and Clement, A. C. (2003) The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeog., Palaeoclimatol., Palaeoecol., 194, 5–22.CrossRefGoogle Scholar
Getker, M. I. (1985) Snezhnye resursy gornykh territoii Srednei Azii (Snow resources of the mountain regions of Middle Asia). Avtoreferat. D.Sc. Dissertation, Institute of Geography, Academy of Sciences, USSR, Moscow, 44 pp. (in Russian).
Getker, M. I. and Shchetinnikov, A. S. (1992) Kharakter raspredeleniya godovykh tverdykh osadkov i summarnyi akkumulatsii v gornykh rainov srednei Azii (Character of the distribution of annual solid precipitation and total accumulation in the mountains of Middle Asia). Glatsiologiya Gornykh Oblastei TrudySredneaziatskogo Regional.Nauchno-Issled. Gidrometeorol. Inst., 146(227): 23–35 (in Russian).Google Scholar
Glasspoole, J. (1953) Frequency of clouds at mountain summits, Met. Mag., 82, 156–7.Google Scholar
Glazyrin, G. E., Kamnyanskii, G. M. and Pertziger, F. I. (1993) Rezhim Lednika Abramova (The regime of the Abramov Glacier), St. Petersburg: Gidrometeoizdat, 228 pp. (in Russian).Google Scholar
Golubchikov, Yu. N. (1996) Geografiya Gornykh i Polyarnykh Stran (The Geography of Mountain and Polar Lands), Moscow: Moscow University Press, 304 pp.Google Scholar
Gosink, J. P. (1989) The extension of a density current model of katabatic winds to include the effects of blowing snow and sublimation. Boundary-layer Met., 49, 367–94.CrossRefGoogle Scholar
Grabs, W. E. and Pokhrel, A. P. (1992) Establishment of a measuring service for snow and glacier hydrology in Nepal – conceptual and operational aspects. In Young, G. Y. (ed.), Snow and Glacier Hydrology. International Association of Hydrological Science, Publ. No. 218, 3–16.Google Scholar
Green, F. H. W. (1955) Climatological work in the Nature Conservancy, Weather, 10, 233–6.CrossRefGoogle Scholar
Green, F. H. W. (1967) Air humidity on Ben Nevis. Weather, 22, 174–84.CrossRefGoogle Scholar
Greenland, D. (1978) Spatial distribution of radiation on the Colorado Front Range. Climat. Bull., Montreal, 24, 1–14.Google Scholar
Greenland, D. (1989) The climate of Niwot Ridge, Front Range, Colorado, U.S.A.Arct. Alp. Res., 21, 380–91.CrossRefGoogle Scholar
Hann, J. (1912) The meteorology of the Ben Nevis Observatories. Q.J.R. Met. Soc., 38, 51–62.CrossRefGoogle Scholar
Harding, R. J. (1978) The variation of the altitudinal gradient of temperature within the British Isles. Geog. Ann., A 60, 43–9.CrossRefGoogle Scholar
Harding, R. J. (1979a) Altitudinal gradients of temperatures in the northern Pennines. Weather, 34, 190–201.CrossRefGoogle Scholar
Harding, R. J. (1979b) Radiation in the British Uplands. J. Appl. Ecol., 16, 161–70.CrossRefGoogle Scholar
Hardy, D. R., et al. (1998) Annual and daily meteorological cycles at high altitude on a tropical mountain. Bull. Amer. Met. Soc., 79(9), 1899–1913.2.0.CO;2>CrossRefGoogle Scholar
Hastenrath, S. (1971) Beobachtungen zur klimatologischen Höhenstufung der Cordillera Real (Boliven), Erdkunde, 25, 102–8.CrossRefGoogle Scholar
Hastenrath, S. (1981) The Glaciation of the Ecuadorian Andes. Rotterdam: A. A. Balkema.Google Scholar
Havlik, D. (1968) Die Höhenstüfe maximaler Niederschlagssummen in den Westalpen. Freiburger Geogr. Hefte, 7, Freiburg.Google Scholar
Heckendorff, W. D. (1972) Zum Klima des Tibestigebirges. Berlin. Geog. Abh., 16, 165–6.Google Scholar
Heinemann, G. and Klein, T. (2002) Modelling and observations of the katabatic flow dynamics over Greenland. Tellus, 54A(5), 542–54.CrossRefGoogle Scholar
Herrmann, R. (1970) Vertically differentiated water balance in tropical high mountains – with special reference to the Sierra Nevada de Santa Marta/Columbia. In World Water Balance. Reading, UK: International Association of the Science of Hydrology, pp. 266–73.Google Scholar
Hewitt, K. (2005) The Karakoram anomaly? Glacier expansion and the “elevation” effect, Karakoram Himalaya. Mountain Res Dev., 25(4), 332–40.CrossRefGoogle Scholar
Higuchi, K. (ed.) (1976) Glaciers and climate of the Nepal Himalayas. Seppyo, 38, Special Issue.Google Scholar
Hill, S. A. (1881) The meteorology of the north-west Himalaya. Ind. Met. Mem., I(VI), 377–429.Google Scholar
Hjermstad, L. M. (1970) The Influence of Meteorological Parameters on the Distribution of Precipitation across the Central Colorado Mountains. Atmospheric Science Paper No. 163. Fort Collins, CO: Colorado State University.Google Scholar
Hnatiuk, R. J., Smith, J. M. B. and McVean, D. N. (1976) Mt Wilhelm Studies II. The Climate of Mt. Wilhelm, Research School for Pacific Studies. Canberra: Australian National University, Publ. BG/4.Google Scholar
Hoover, M. and Leaf, C. (1967) Process and significance of interception in Colorado subalpine forest. In Sopper, W. E. and Lull, H. W. (eds), Forest Hydrology. Oxford: Pergamon Press, pp. 213–23.Google Scholar
Hope, G. S., Peterson, J. A., Allison, I. and Radok, U. (eds) (1976) The Equatorial Glaciers of New Guinea. Rotterdam: A. A. Balkema, 244 pp.Google Scholar
Houston, J. and Hartley, A. J. (2003) The central Andean west-slope rainshadow and its potential contributions to the origin of the hyper-aridity in the Atacama Desert. Int. J. Climatol., 23, 1453–64.CrossRefGoogle Scholar
Huang, F.-J. and Shen, R.-J. (1986) The source of water vapor and its distribution over the Qinghai-Xizang Plateau during the period of summer monsoon. In Proceedings of the International Symposium on the Qinghai-Xizang Plateau and Mountain Meteorology. Beijing: Science Press, and Boston, MA: American Meteorological Society, pp. 5506–603.Google Scholar
Hudson, S. R. and Brandt, R. E. (2005) A look at the surface-based temperature inversion on the Antarctic plateau. J. Climate, 18(11), 1673–96.CrossRefGoogle Scholar
Hurni, H. and Stähli, P. (1982) Contributions to the climate. In Hurni, H. (ed.), Klima und Dynamik der Höhenstufung von der letzten Kaltzeit bis zur Gegenwart (Hochgebirge von Semien-Äthiopien, Vol. II). Geogr. Bernensia G13. pp. 37–82.Google Scholar
Indermühle, D. (1972) Mikroklimatiche Untersuchung in Tibesti-Gebirge (Sahara). Hochgebirgsforschung, 2, 121–42.Google Scholar
Inoue, H. (1976) Climate of Khumbu Himal. Seppyo, 38, Special Issue, 66–73.Google Scholar
Inoue, J., et al. (1987) Summer climate of the Northern Patagonia Icefield. Bull. Glacier Res. (Tokyo), 4: 7–14.Google Scholar
Ives, J. D. (1973) Permafrost and its relationship to other environmental parameters in a midlatitude, high-altitude setting, Front Range, Colorado Rocky Mountains. In Permafrost: The North American Contribution to the Second International Conference. Washington, DC: National Academy of Science, pp. 121–5.Google Scholar
Jäkel, D. (1977). The work of the field station at Bardai in the Tibesti Mountains. Geog. J., 143, 61–72.CrossRefGoogle Scholar
Jarrett, R. D. (1990a) Paleohydrologic techniques used to define the spatial occurrence of floods. Geomorphology, 3, 181–95.CrossRefGoogle Scholar
Jarrett, R. D. (1990b) Hydrologic and hydraulic research in mountain rivers. Water Resour. Bull., 26, 419–29.CrossRefGoogle Scholar
Judson, A. (1965) The Weather and Climate of a High Mountain Pass in the Colorado Rockies. Forest Service, Research Paper RM-16. Fort Collins, CO: US Department of Agriculture.Google Scholar
Judson, A. (1977) Climatological Data from the Berthoud Pass Area of Colorado. Forest Service, General Technical Report RM-42. Fort Collins, CO: US Department of Agriculture.Google Scholar
Kang, E.-S., et al. (1999) A model for simulating the responses of runoff from the mountainous watersheds of inland river basins in the arid area of northwest China to climatic changes. Science in China, D42, suppl., 52–63.CrossRefGoogle Scholar
Kang, X.-Ch. and Xie, Y.-Q. (1989) The character of weather and climate in the west Kunlun Mountains area in summer, 1987, Bull. Glacier Res. (Tokyo), 7, 77–81.Google Scholar
Kansaker, S. R., et al. (2004) Spatial pattern in the precipitation regime of Nepal. Int. J. Climatol., 24(13), 1645–59.CrossRefGoogle Scholar
Karr, T. W. and Wooten, R. L. (1976) Summer radar echo distribution around Limon, Colorado. Mon. Wea. Rev., 104, 728–34.2.0.CO;2>CrossRefGoogle Scholar
Kaser, G. and Osmaston, H. (eds) (2002) Tropical Glaciers. Cambridge: Cambridge University Press, 206 pp.Google Scholar
Kaser, G., et al. (2004) Modern glacier retreat on Kilimanjaro as evidence of climate change: observations and fact. Int. J. Climatol., 24(3), 329–39.CrossRefGoogle Scholar
Kenworthy, J. M. (1984) Climatic survey in the Kenya Highlands with particular reference to the needs of farmers. In Lauer, W. (ed.), Natural Environment and Man in Tropical Mountain Ecosystems. Stuttgart: Steiner Verlag, pp. 23–39.Google Scholar
Kerschner, H. (1989) Beiträge zur synoptischen Klimatologie der Alpen zwischen Innsbruck und dem Alpenostrand. Innsbrucker Geographische Studien, 17, 253 pp.Google Scholar
Khromova, T. E., Dyurgerov, M. B. and Barry, R. G. (2003) Late-twentieth century changes in glacier extent in the Ak-Shirak Range, Central Asia, determined from historical data and ASTER imagery. Geophys. Res. Lett. 30(16), 1863, pp. HLS 2–1 to 2–5.CrossRefGoogle Scholar
King, J. C., Argentini, S. A. and Anderson, P. S. (2006) Contrast between summertime surface energy balance and boundary layer structure at Dome C and Halley station, Antarctica. J. Geophys. Res., 111, D02105, 1–13.CrossRefGoogle Scholar
Kirchhofer, W. (1976) Stationsbezogene Wetterlagenklassifikation. Veröff. Schweiz. Met. Zentralanst., 34.Google Scholar
Kirchhofer, W. (ed. in chief) (1982) Klimaatlas der Schweiz, Part 1. Zurich: Schweiz. Met. Anst. (Part 2, 1984; Part 3, 1987).Google Scholar
Kistemann, T. and Lauer, W. (1990) Lokale Windsysteme in der Charazani-Talung (Bolivien). Erdkunde, 44, 46–59.Google Scholar
Konzelmann, T. and Ohmura, A. (1995) Radiative fluxes and their impact on the energy balance of the Greenland ice sheet. J. Glaciol., 41(139), 490–502.CrossRefGoogle Scholar
Kraus, H. (1967) Das Klima von Nepal. Khumbu Himal., 1 (4)301–21.Google Scholar
Krinner, G. and Genthon, C. (1999) Altitude dependence of the ice sheet surface climate. Geophys. Res. Lett., 26(15), 2227–30.CrossRefGoogle Scholar
Kuhn, M. (2004) Die Plateau Station in der Antarktis. In 100. Jahresbericht des Sonnblick-Vereinenes fuer das Jahr 2002. Vienna: Sonnblick-Verein, pp. 87–90.Google Scholar
Lang, H. and Rohrer, M. (1987) Temporal and spatial variations of snow cover in the Swiss Alps. In Goodison, B. E., Barry, R. G. and Dozier, J. (eds), Large-Scale Effects of Seasonal Snow Cover, Publication No. 166, International Association for Hydrological Sciences. Wallingford, UK: IAHS Press, pp. 79–92.Google Scholar
Lang, T. J. and Barros, A. P. (2002) An investigation of the onsets of the 1999 and 2000 monsoons in central Nepal. Mon. Wea. Rev., 130, 1299–316.2.0.CO;2>CrossRefGoogle Scholar
Lang, T. J. and Barros, A. P. (2004) Winter storms in the central Himalayas. J. Met. Soc. Japan, 82(3), 829–44.CrossRefGoogle Scholar
Lauer, W. and Klaus, D. (1975) Geoecological investigations on the timberline of Pico de Orizaba, Mexico. Arct. Alp. Res., 7, 315–30.CrossRefGoogle Scholar
Lauscher, F. (1958) Studien zue Wetterlagenklimatologie der Ostalpenlander. Wetter u. Leben, 10, 79–83.Google Scholar
Lauscher, F. (1977) Ergebnisse der Beobachtungen an den nordchilenischen Hochgebirgsstationen Collahuasi und Chuquicamata. 74–75 Jahresbericht, Sonnblick-Vereines, Jahre 1976–1977. Vienna: Sonnblick-Verein, pp. 43–66.Google Scholar
Leroux, M. (1991) La spécificité climatique des montagnes sahariennes. Rev Geogr. Alp., 79(1), 23–42.CrossRefGoogle Scholar
Liang, G. (1982) Net radiation, potential and actual evapotranspiration in Austria. Arch. Met. Geophys. Biokl., B 31, 379–90.CrossRefGoogle Scholar
Liu, X.-D. and Yin, Z.-Y. (2001) Spatial and temporal variations of summer precipitation over the eastern Tibetan Plateau and the North Atlantic Oscillation. J. Climate, 14(13), 2896–909.2.0.CO;2>CrossRefGoogle Scholar
Livingstone, D. A. (1967) Postglacial vegetation of the Ruwenzori Mountains in equatorial Africa. Ecol. Monogr., 37, 25–52.CrossRefGoogle Scholar
Lliboutry, L. (1998) Glaciers of Chile and Argentina. In Williams, R. S. Jr. and Ferrigno, J. G. (eds), Glaciers of South America. Satellite Image Atlas of the World, USGS Professional Paper 1386-I. Washington, DC: USGS, pp. I 109–I 206.Google Scholar
Lo, H. and Yanai, M. (1984) The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II. Heat and moisture budgets, Mon. Wea. Rev., 112, 966–89.2.0.CO;2>CrossRefGoogle Scholar
Loewe, F. (1936) The Greenland ice cap as seen by a meteorologist. Q. J. Roy. Met. Soc., 62, 359–77.CrossRefGoogle Scholar
Lu, A. (1939) A brief survey of the climate of Lhasa. Q.J.R. Met. Soc., 65, 297–302.CrossRefGoogle Scholar
Luo, H.-B. and Yanai, N. (1983) The large-scale circulation and heat sources over the Tibetan Plateau and surrounding regions during the early summer of 1979. Part I. Precipitation and kinematic analysis. Mon. Wea. Rev., 111(5), 922–44.2.0.CO;2>CrossRefGoogle Scholar
Luo, H.-B. and Yanai, N. (1984) The large-scale circulation and heat sources over the Tibetan Plateau and surrounding regions during the early summer of 1979: Part II. Heat and moisture budgets. Mon. Wea. Rev., 112(5), 966–89.2.0.CO;2>CrossRefGoogle Scholar
Maddox, R. A., et al. (1978) Comparison of meteorological aspects of the Big Thompson and Rapid City flash floods. Mon. Wea. Rev., 106, 375–89.2.0.CO;2>CrossRefGoogle Scholar
Mani, A. (1981) The climate of the Himalaya. In Lall, J. S. and Moddie, A. D. (eds), The Himalaya: Aspects of Changes. New Delhi: Oxford University Press, pp. 3–15.Google Scholar
Manley, G. (1936) The climate of the northern Pennines. Q.J.R. Met. Soc., 62, 103–15.CrossRefGoogle Scholar
Manley, G. (1942) Meteorological observations on Dun Fell, a mountain station in northern England. Q.J.R. Met. Soc., 68, 151–65.CrossRefGoogle Scholar
Manley, G. (1943) Further climatological averages for the northern Pennines, with a note on topographical effects. Q.J.R. Met. Soc., 69, 251–61.CrossRefGoogle Scholar
Manley, G. (1945) The effective rate of altitudinal change in temperate Atlantic climates. Geog. Rev., 35, 408–17.CrossRefGoogle Scholar
Manley, G. (1980) The northern Pennines revisited: Moor House, 1932–78. Met. Mag., 109, 281–92.Google Scholar
Marcus, M. G. (1965) Summer temperature relationships along a transect in the St. Elias Mountains, Alaska and Yukon territory. In Man and the Earth, No, 3. Boulder, CO: University of Colorado Press, pp. 15–30.Google Scholar
Marcus, M. G. (1974a) Investigations in alpine climatology: The St. Elias Mountains, 1963–1971. In Bushnell, V. C. and Marcus, M. G. (eds), Icefield Ranges Research Project, Scientific Results. Vol. 4. New York: American Geographical Society and Montreal: Arctic Institute of North America, pp. 13–26.Google Scholar
Marcus, M. G. (1974b) A note on snow accumulation and climatic trends in the Icefield Ranges, 1969–1970. In Bushnell, V. C. and Marcus, M. G. (eds), Icefield Ranges Research Project, Scientific Results, Vol. 4. New York: American Geographical Society and Montreal: Arctic Institute of North America, pp. 219–23.Google Scholar
Marcus, M. G. and LaBelle, J. C. (1970) Summer climatic observations at the 5360 meter level, Mt Logan, 1958–1969. Arct. Alp. Res., 2, 103–14.CrossRefGoogle Scholar
Marcus, M. G. and Ragle, R. H. (1970) Snow accumulation in the Icefield Ranges, St. Elias Mountains. Arct. Alp. Res., 2, 277–92.CrossRefGoogle Scholar
Mark, A. F., et al. (2006) Two GLORIA long-term alpine monitoring sites established in New Zealand as part of a global network. J. Roy. Soc. New Zealand, 36, 111–28.CrossRefGoogle Scholar
Marr, J. W. (1961) Ecosystems of the East Slope of the Front Range in Colorado. In University of Colorado Studies Series, Biology 8, Boulder, CO: University of Colorado.Google Scholar
Martius, O., et al. (1931) Zur Meteorologie und Hydrologie des Jungfraugebietes. In Jungfraujoch Hochalpine Forschungstation, pp. 33–45, Zurich.Google Scholar
Martius, O., et al. (2006) Episodes of the Alpine heavy precipitation with an overlying elongated stratospheric intrusion: A climatology. Int. J. Climatol., 26, 1149–64.CrossRefGoogle Scholar
Matulla, C., et al. (2005) Outstanding Past Decadal-scale Climate Events in the Greater Alpine Region Analysed by 250 years Data and Model Runs. GKSS 2005/4. Geesthacht, Germany: GKSS Forschungszentrum, 114 pp.Google Scholar
Maurer, J. and Luetschg, O. (1931) Zur Meteorologie und Hydrologie des Jungfraugebietes. In Jungfraujoch Hochalpine Forschungsstation. Zurich: pp. 33–45.Google Scholar
McConnell, D. (1988) The Ben Nevis Observatory log books. Weather, 43, 356–62 and 396–401.CrossRefGoogle Scholar
McVean, D. M. (1974) Mountain climates of the Southwest Pacific. In Flenley, J. R. (ed.), Altitudinal Zonation in Malesia. Hull: University of Hull, Department of Geography, Miscellaneous Series 16, pp. 47–57.Google Scholar
Merzlyakova, I. (2002) The mountains of central Asia and Kazakhstan. In Shahgedanova, M. (ed.), The Physical Geography of Northern Eurasia. Oxford: Oxford University Press, pp. 377–402.Google Scholar
Miller, A. (1976) The climate of Chile. In Scherdtfeger, W. (ed.), Climate of Central and South America, World Survey of Climatology. Amsterdam: Elsevier, pp. 113–46.Google Scholar
Mitchell, V. L. (1976) The regionalization of climate in the western United States. J. appl. Met., 15, 920–7.2.0.CO;2>CrossRefGoogle Scholar
Mitsudera, M. and Numata, M. (1967) Meteorology of eastern Nepal. J. Coll. Arts Sci, Chiba Univ., 5, 75–83.Google Scholar
Mölg, T. and Hardy, D. R. (2004) Ablation and associated energy balance of a horizontal glacier surface on Kilimanjaro. J. Geophys. Res., 109, D16104.CrossRefGoogle Scholar
Mölg, T., Georges, C. and Hardy, D. R. (2003) The contribution of increased incoming shortwave radiation to the retreat of the Rwenzori glaciers, East Africa, during the 20th century. Int. J. Climatol., 23, 291–303.CrossRefGoogle Scholar
Monasterio, M. (ed.) (1980) Estudios Ecologicos en los Paramos Andinos. Mérida, Venezueka: Edic. Universidad de los Andes.Google Scholar
Moore, G. W. K. and Semple, J. L. (2004) High Himalayan meteorology: weather at the South Col. Geophys. Res. Lett., 31, L 18109.CrossRefGoogle Scholar
Mossman, R. C. (1902) Abstract of paper on silver thaw at the Ben Nevis Observatory. Trans. R. Soc. Edinb., 42, 525–7.CrossRefGoogle Scholar
Myers, V. A. and Norris, D. F. (1991) New techniques and data sources for PMP. In Darling, D. D. (ed.), Waterpower ‘91, Vol. 2. New York: American Society of Civil Engineers. pp. 1319–27.Google Scholar
Nedungadi, T. M. K. and Srinivasan, T. R. (1964) Monsoon onset and Everest Expeditions. Ind. J. Met. Geophys., 15, 137–48.Google Scholar
Niedzwiecky, T. (1992) Climate of the Tatra Mountains. Mountain Res. Dev., 12(2), 131–46.CrossRefGoogle Scholar
Ohata, T., Higuchi, K. and Ikegami, K. (1981) Mountain-valley wind system in the Khumbu Himal, east Nepal. J. Met. Soc. Japan, 53, 753–62.CrossRefGoogle Scholar
Ohata, T., Kang, X.-Ch. and Takahasi, S. (1990) Full year of surface meteorological data at northwestern Tibetan Plateau using an automatic meteorological station. Bull. Glacier Res. (Tokyo), 8, 73–86.Google Scholar
Ohmura, A., Calanca, P., Wild, M. and Anklin, M. A. (1999) Precipitation, accumulation and mass balance of the Greenland ice sheet. Zeitschr. Gletscherkunde Glazialgeol., 35, 1–20.Google Scholar
Omond, R. T. (1910) Large differences of temperature between the Ben Nevis and Fort William Observatories. Trans. R. Soc. Edinb., 44, 702–5.CrossRefGoogle Scholar
Owen, L. A., et al. (2006) Climatic and topographic controls on the style and timing of Late Quaternary glaciation throughout Tibet and the Himalaya defined by 10Be cosmogenic radionuclide surface exposure dating. Quatern. Sci Rev., 24 (12–13), 1391–411.CrossRefGoogle Scholar
Parish, T. R. (1988) Surface winds over the Antarctic continent: A review. Rev Geophys., 26, 169–80.CrossRefGoogle Scholar
Parish, T. R. and Bromwich, D. H. (1991) Continental-scale simulation of the Antarctic katabatic wind regime. J. Climate, 4, 135–46.2.0.CO;2>CrossRefGoogle Scholar
Parish, T. R. and Cassano, J. J. (2003) The role of katabatic winds on the Antarctic surface wind regime. Mon. Wea. Rev., 131, 317–33.2.0.CO;2>CrossRefGoogle Scholar
Pedgley, D. E. (1966) Rainfall of Mount Kenya. Weather, 21, 187–8.CrossRefGoogle Scholar
Peterson, J. A., et al. (2002) Mountain environments in New Guinea, and the late Glacial maximum “warm seas/cold mountains” enigma in the West Pacific Warm Pool region. In Kershaw, A. P., et al. (eds), Bridging Wallace's Line. Advances Geoecol., 34, 173–87.Google Scholar
Poulos, G. S., et al. (2002) A Rocky Mountain snowstorm. Part I. The blizzard-kinematic evolution and the potential for high-resolution numerical modeling. Wea. Forecasting, 17(5), 955–70.2.0.CO;2>CrossRefGoogle Scholar
Poveda, G., et al. (2005) The diurnal cycle of precipitation in the tropical Andes. Mon. Wea. Rev., 131(1), 228–40.CrossRefGoogle Scholar
Prentice, M. L. and Hope, G. S. (2006) The climate of Papua and its recent changes. In Marshall, A. J. and Beehler, B. M. (eds), The Ecology of Papua. Singapore: Periplus Editions.Google Scholar
Prentice, M. L., et al. (2005) An evaluation of snowline data across New Guinea during the last major glaciation, and area-based glacier snowlines in the Mt. Jaya region of Papua. Indonesia, during the Last Glacial Maximum. Quatern Int., 138/9, 93–117.CrossRefGoogle Scholar
Prohaska, F. (1976) The climate of Argentina, Paraguay and Uruguay. In Schwerdtfeger, W. (ed.), Climate of Central and South America, World Survey of Climatology, Vol. 12. Amsterdam: Elsevier, pp. 112–13.Google Scholar
Pulwarty, R. S., et al. (1998) Precipitation in the Venezuelan Andes in the context of regional climate. Met. Atmos. Phys., 67, 217–38.CrossRefGoogle Scholar
Putkonen, J. K. (2004) Continuous snow and rain data at 500–4400 m altitude near Annapurna, Nepal, 1999–2001. Arct. Antarct. Alp. Res., 36(2), 244–8.CrossRefGoogle Scholar
Putnins, P. (1969) The climate of Greenland. In Orvig, S. (ed.), Climates of the Polar Regions World Survey of Climatology, Vol. 14. Amsterdam: Elsevier, pp. 3–128.Google Scholar
Raghavan, K. (1979) Summer weather and climate of the Himalaya. Weather, 34, 448–54.CrossRefGoogle Scholar
Ramage, C. S. (1971) Monsoon Meteorology. New York: Academic Press, 296 pp.Google Scholar
Rao, Y. P. (1976) Southwest Monsoon. (Meteorol. Monogr., Synoptic Meteorology). Delhi: Indian Meteorological Department, 367 pp.
Rao, Y. P. (1981) The climate of the Indian subcontinent. In Takahashi, K. and Arakawa, T. (eds), Climates of Southern and Western Asia. World Survey of Climatology, Vol. 9. Amsterdam: Elsevier Sci. Publ., pp. 67–182.Google Scholar
Reiter, E. R. and Heuberger, H. (1960) A synoptic example of the retreat of the Indian summer monsoon. Geog. Ann., 42, 17–35.Google Scholar
Reiter, E. R., et al. (1987) Tibet revisited – TIPMEX-86. Bull. Amer. Met. Soc., 68, 607–15.2.0.CO;2>CrossRefGoogle Scholar
Renfrew, I. A. and Anderson, P. S. (2006) Profiles of katabatic flow in summer and winter over Coats Land, Antarctica. Q. J. R. Met Soc., 132, 772–809.CrossRefGoogle Scholar
Richter, M., Pfeiffer, H. and Fickert, T. (1999) Differences in exposure and altitudinal limits as climatic indicators in a profile western Himalaya to Tian Shan. Erdkunde, 53, 89–107.CrossRefGoogle Scholar
Ronchail, J. and Gallaire, R. (2006) ENSO and rainfall along the Zongo Valley (Bolivia) from the Altiplano to the Amazon Basin. Int. J. Climatol., 26, 1223–36.CrossRefGoogle Scholar
Rotunno, R. and Ferretti, R. (2001) Mechanisms of intense Alpine rainfall. J. Atmos. Sci., 58(13), 1732–49.2.0.CO;2>CrossRefGoogle Scholar
Rupper, S., Steig, E. J. and Roe, G. (2005) The relationship between snow accumulation at Mt. Logan, Yukon, Canada, and climate variability in the North Pacific. J. Climate, 17(24), 4724–39.CrossRefGoogle Scholar
Sarmiento, G. (1986) Los principales gradientes ecoclimaticos en los Andes tropicales. In Ecologia de Tierras Altas, Annales del IV Congreso Latinoamericano de Botanico Vol. 1 (Columbia), pp. 47–64.
Sato, T. (2001) Spatial and temporal variations of frozen ground and snow cover in the eastern part of the Tibetan Plateau. J. Met. Soc. Japan, 79(1B), 519–34.CrossRefGoogle Scholar
Satyamurty, P., Nobre, C. A. and Silva Dias, P. L. (1998) South America. In Karoly, D. J. and Vincent, D. G., (eds), The Meteorology of the Southern Hemisphere, Meteorological Monographs, 27(49), 119–39.CrossRefGoogle Scholar
Schaaf, C. L. B., Wurman, J. and Banta, R. M. (1988) Thunderstorm-producing terrain features. Bull. Amer. Met. Soc., 769, 272–7.2.0.CO;2>CrossRefGoogle Scholar
Schär, C., Davies, H. C. and Wanner, H. (1998) Alpine climate. In Cebon, P., et al. (eds), Views from the Alps: Regional Perspectives on Climate Change. Boston, MA: MIT Press, pp. 171–223.Google Scholar
Scherrer, S. C. and Appenzeller, C. (2006) Swiss Alpine snow pack variability: major patterns and links to local climate and large-scale flow. Clim. Res., 32, 187–99.CrossRefGoogle Scholar
Schickoff, U. (1994) Die Verbreitung der Vegetation im Kaghan-Tal (West Himalaya, Pakistan) und ihre kartographische Darstellung in Massstab 1:150,000. Erdkunde, 48, 92–110.Google Scholar
Schneider, C., et al. (2003) Weather observations across the southern Andes at 53° S. Phys. Geog., 24, 97–119.CrossRefGoogle Scholar
Schüepp, M. (1959) Die Klassifikation der Wetterlagen im Alpengebiet, Geofis. Pura Appl., 44, 242–8.CrossRefGoogle Scholar
Schüepp, M. (1990) Der Einfluss des Appenines auf die Föhnströmung in den Alpen, CIMA ‘88. 20° Congresso Internaz. di Meteorologia Alpina. Servizio Meteorologico Italiano.Google Scholar
Schüepp, M. and Schirmer, H. (1977) Climates of central Europe. In Wallen, C. C. (ed.), Climates of Central and Southern Europe. Amsterdam: Elsevier, pp. 3–73.Google Scholar
Schwarb, M., Daly, C., Frei, C. and Schär, C. (2001) Mittlere jährliche Niederschlagshöhen im europäischen Alpenraum. In Gruppe für Hydrologie, Universität Bern: Hydrologischer Atlas der Schweiz. Berne: Landeshydrologie, Bundesamt für Wasser und Geologie, plate 2.6.Google Scholar
Schweinfürth, U. (1956) Uber klimatische Trockentäler in Himalaya. Erdkunde, 10, 297–302.Google Scholar
Schwerdtfeger, W. (1976) Introduction. In Schwerdtfeger, W. (ed.), Climate of Central and South America, World Survey of Climatology, Vol. 12. Amsterdam: Elsevier, pp. 1–12.Google Scholar
Seko, K. (1987) Seasonal variation of altitude dependence of precipitation in Langtang Valley, Nepal Himalayas. Bull. Glacier Res. (Tokyo), 5, 41–8.Google Scholar
Serreze, M. C. and Barry, R. G. (2005) The Arctic Climate System. Cambridge: Cambridge University Press, 385 pp.CrossRefGoogle Scholar
Serreze, M. C., et al. (1999) Characteristics of the western United States snowpack from arrowpack telemetry (SNOTEL data). Water Resour. Res., 35(7), 2145–60.CrossRefGoogle Scholar
Serreze, M. C., Clark, M. P. and Frei, A. (2001) Characteristics of large snowfall events in the montane Western United States as examined using snowpack telemetry (SNOTEL) data. Water Resour. Res., 37(3), 675–88.CrossRefGoogle Scholar
Sevruk, B. (ed.) (1985) Der Niederschlag in der Schweiz, Beiträge, Geologie der Schweiz-Hydrologie, 31. Bern: Kümmerly and Frey.Google Scholar
Sevruk, B. (1997) Regional dependency of precipitation-altitude relationship in the Swiss Alps. Clim. Change, 36, 355–69.CrossRefGoogle Scholar
Shahgedanova, M. (2002) Climate at present and in the historical past. In Shahgedanova, M. (ed.), The Physical Geography of Northern Eurasia. Oxford: Oxford University Press, pp. 70–102.Google Scholar
Shahgedanova, M., Mikhailov, N., Larin, S. and Bredikhin, A. (2002) The mountains of Southern Siberia. In Shahgedanova, M. (ed.), The Physical Geography of Northern Eurasia. Oxford: Oxford University Press, pp. 314–49.Google Scholar
Shimizu, S., et al. (2001) Mesoscale characteristics and structures of stratiform precipitation on the Tibetan Plateau. J. Met. Soc. Japan, 79(1B), 435–61.CrossRefGoogle Scholar
Shresta, M. L., Fujii, Y. and Nakawo, M. (1976) Climate of Hidden Valley, Mukut Himal, during the monsoon in 1974. Seppyo, 38, Special Issue, 105–8.Google Scholar
Shuman, C. A., Steffen, K. and Stearns, C. R. (2001) A dozen years of temperature observations at Summit. Central Greenland automatic weather stations 1987–99. J. appl. Met., 40(4), 741–52.2.0.CO;2>CrossRefGoogle Scholar
Simmonds, I. (1998) The climate of the Antarctic region. In Hobbs, J. E., Lindesay, J. A. and Bridgman, H. A. (eds), Climates of the Southern Continents: Past, Present and Future. Chichester, UK: J. Wiley and Sons, pp. 137–60.Google Scholar
Singh, P. and Kumar, N. (1997) Effect of orography on precipitation in the western Himalayan region. J. Hydrol., 199, 183–206.CrossRefGoogle Scholar
Singh, P., Haritashya, U. K. and Kumar, N. (2007) Meteorological study for Gangroti glacier and its comparison with other high altitude meteorological stations in central Himalaya region. Nordic Hydrol., 38, 59–77.CrossRefGoogle Scholar
Smith, E. A. and Shi, L. (1996) Reducing discrepancies in atmospheric heat budget of Tibetan Plateau by satellite-based estimates of radiative cooling and cloud – radiation feedback. Met. Atmos. Phys., 56, 229–60.CrossRefGoogle Scholar
Somervell, T. H. and Whipple, F. J. W. (1926) The meteorological results of the Mount Everest expedition. Q. J. R. Met. Soc., 52, 131–42.CrossRefGoogle Scholar
Spreafico, M. and Weingartner, R. (2005) The Hydrology of Switzerland. Selected aspects and results. Reports, Bundesamt f. Wasser u. Geologie (BWG) Water Series No. 7, Bern, Switzerland: BWG, 139 pp.Google Scholar
Steffen, K. and Box, J. E. (2001) Surface climatology of the ice sheet: Greenland: Climate Network 1995–1999. J. Geophys. Res., 106, (D24), 33 951–64.CrossRefGoogle Scholar
Steffen, K., Nghiem, S. V., Huff, R. and Neumann, G. (2004) The melt anomaly of 2002 on the Greenland Ice Sheet from active and passive microwave satellite observations. Geophys. Res. Lett., 31(20), L2040210.CrossRefGoogle Scholar
Steinegger, U., et al. (1993) Assessment of annual snow accumulation over the past 10 years at high elevations in the Langtang region. In Young, G. (ed.), Snow and Glacier Hydrology, IAHS publication no. 218, Wallingford, UK: IAHS, pp. 155–65.Google Scholar
Steinhauser, F. (1938) Die Meteorologie des Sonnblicks, I. Teil. Vienna; J. Springer.CrossRefGoogle Scholar
Stravisi, F., Verza, G. P. and Tartari, G. (1998) Meteorology and climatology at high altitude in Himalaya. In Baudo, R., Tartari, G. and Munawar, M. (eds), Top of the World Environmental Research: Mount Everest Himalayan Ecosystem. Leiden: Backhuys Publishers, pp. 101–22.Google Scholar
Sturman, A. and Wanner, H. (2001) A comparative review of the weather and climate of the Southern Alps of New Zealand and the European Alps. Mountain Res. Dev., 21(4), 359–69.CrossRefGoogle Scholar
Tartari, G., Verza, G. and Bertolami, L. (1998) Meteorological data at the Pyramid Observatory Laboratory (Khumbu Valley, Sagarmatha National Park, Nepal). In Limnology of High Altitude Lakes in the Mt. Everest Region (Nepal). Mem. Ist. Ital. Idrobiol. 57, 23–40.Google Scholar
Taylor, J. A. (1976) Upland climates. In Chandler, T. J. and Gregory, S. (eds), The Climate of the British Isles. London: Longman, pp. 264–87.Google Scholar
Taylor-Barge, B. (1969) The Summer Climate of the St. Elias Mountain Region. Montreal: Arctic Institute of North America, Research Paper No. 53.Google Scholar
Thom, A. S. (1974) Meteorological report. In Parnell, B. K. (ed.), Anonach Moor: a Planning Report on the Prospect of Winter Sport Development at Fort William. Glasgow: Glasgow School of Art, Department of Planning, pp. 85–109.Google Scholar
Thompson, B. W. (1966) Mean annual rainfall of Mount Kenya. Weather, 21, 48–9.CrossRefGoogle Scholar
Thompson, L. G. and Hastenrath, S. L. (1981) Climatic ice core studies at Lewis Glacier, Mount Kenya. Zeitschr. Gletscherkunde Glazialgeol., 17, 115–23.Google Scholar
Tian, L., et al. (2001) Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J. Geophys. Res., 106 (D22), 28 081–8.CrossRefGoogle Scholar
Tollner, H. (1949) Der Einfluss grosser Massenerhebungen auf die Lufttemperatur und die Ursachen der Hebung der Vegetationsgrenzen in den inneren Ostalpen. Arch Met. Geophys. Biokl., B 1, 347–72.CrossRefGoogle Scholar
Troll, C. (1951) Die Lokalwinde der Tropengebirge und ihr Einfluss auf Niederschlag und Vegetation. Bonner Geog. Abh., 9, 124–82.Google Scholar
Troll, C. (1968) The Cordilleras of the tropical Americas. Aspects of climatic phytogeographical and agrarian ecology. Colloq. Geogr. (Bonn), 9, 15–56.Google Scholar
Troll, C. (1972) The three-dimensional zonation of the Himalayan system. In Troll, C. (ed.), Geoecology of the High-Mountain Regions of Eurasia. Wiesbaden: F. Steiner, pp. 264–75.Google Scholar
Tucker, D. F. and Crook, N. A. (2005) Flow over heated terrain, Part II: Generation of convective precipitation. Mon. Wea. Rev., 133(9), 2565–82.CrossRefGoogle Scholar
Ueno, K. and Yamada, T. (1990) Diurnal variations of precipitation in Langtang Valley, Nepal Himalayas. Bull. Glacier Res. (Tokyo), 8, 93–101.Google Scholar
Ueno, K., Shiraiwa, T. and Yamada, T. (1993) Precipitation in the Langtang valley, Nepal Himalyas. In Young, G. (ed.), Snow and Glacier Hydrology, IAHS publication No. 218. Wallingford, UK: IAHS, pp. 207–19.Google Scholar
Ueno, K., et al. (2001a) Weak and frequent monsoon precipitation over the Tibetan Plateau. J. Met. Soc. Japan, 79 (1B), 419–34.CrossRefGoogle Scholar
Ueno, K., et al. (2001b) Meteorological observations during 1994–2000 at the Automatic weather Station (GEN-AWS) in Khumbu region, Nepal Himalayas. Bull. Glacier Res. (Tokyo), 18, 23–30.Google Scholar
Veen, C. J., Bromwich, D. H. and Castho, C. K. (2001) Trend surface analysis of Greenland accumulation. J. Geophys. Res., 9106 (D24), 33 909–18.CrossRefGoogle Scholar
Volodicheva, N. (2002) The Caucasus. In Shahgedanova, M. (ed.), The Physical Geography of Northern Eurasia. Oxford: Oxford University Press, pp. 350–76.Google Scholar
Voloshina, A. P. (2002) Meteorologiya goinykh lednikov (Meteorology of mountain glaciers). English summaries. Materialy Glatsiol. Issled., (Institute of Geography, RAS, Moscow) 92, 3–148.Google Scholar
Vuille, M. (1996) Zur raumzeitlichen Dynamik von Schneefall und Ausaperung in Bereich des südlichen Altiplano. Geographica Bernensi, University of Bern, G45, 118 pp.Google Scholar
Vuille, M. and Amman, C. (1997) Regional snowfall patterns in the high, arid Andes. Clim. Change 36, 413–23.CrossRefGoogle Scholar
Vuille, M. and Baumgartner, M. F. (1998) Monitoring the regional and temporal variability of winter snowfall in the arid Andes using digital NOAA/AVHRR data. Geocarto. Internat., 13, 59–68.CrossRefGoogle Scholar
Vuille, M., et al. (1998) Atmospheric circulation anomalies associated with 1996/1997 summer precipitation events on Sajama Ice Cap, Bolivia. J. Geophys. Res. 103 (D10), 11 191–204.CrossRefGoogle Scholar
Walker, E. R. (1961) A Synoptic climatology for parts of the Western Cordillera. Montreal: McGill University, Arctic Meteorological Research Group, Publication in Met. No. 35.Google Scholar
Wang, B. (1987) The development mechanism for Tibetan Plateau warm vortices. J. Atmos. Sci., 44(20), 2978–94.2.0.CO;2>CrossRefGoogle Scholar
Wanner, H. (1979) Zur Bildung, Verteilung und Vorhersage winterlicher Nebel im Querschnitt Jura-Alpen. Geogr. Bernensia, G, 7.Google Scholar
Wanner, H. (1992) Ein Nussgipfel im Westwind – zur Dynamik von Wetter Und Klima im Alpenraum. In Mueller, J. P. and Gilgen, B. (eds), Dia Alpen – ein sicherer Lebensraum?Bern: Schweizerische Akademie Naturwissenschaften, Publication No. 5: 50–60.Google Scholar
Wanner, H. and Furger, M. (1990) The Bise – climatology of a regional wind north of the Alps. Met. Atmos. Phys., 43, 105–15.CrossRefGoogle Scholar
Weidick, A. (1995) Greenland. In Williams, R. S. and Ferrigno, J. G. (eds), Satellite Image Atlas of Glaciers of the World. US Geological Survey Professional Paper 1386-C, Washington, DC: US Geological Survey, 141 pp.Google Scholar
Weingartner, R. and Pearson, C. (2001) A comparison of the hydrology of the Swiss Alps and the Southern Alps of New Zealand. Mountain Res. Devel., 21 (4). 370–81.CrossRefGoogle Scholar
Wien, K. (1936) Die Wetterverhältnisse am Nanga-Parbat während der Katastrophe auf der deutschen Himalaja – Expedition 1934. Met. Zeit., 53, 26–32. (Bermerkungen, M. Rodewald, Met. Zeit., 53, 182–6).Google Scholar
Winiger, M. (1972) Die Bewölkungsverhältnisse der zentralsharischen Gebirge aus Wettersatellitenbildern. Hochgebirgsforschung, 2, 87–120.Google Scholar
Winiger, M. (1981) Zur thermisch-hygrischen Gliederungs des Mount Kenya. Erdkunde 35, 248–63.CrossRefGoogle Scholar
Witmer, U., et al. (1986) Erfassung, Bearbeitung und Kartieren von Schneedaten in der Schweiz. Geogr. Bernensia, G25.Google Scholar
Wratt, D. S., et al. (2000) Relationships between air mass properties and mesoscale rainfall in New Zealand's Southern Alps. Atmos. Res., 52, 261–82.CrossRefGoogle Scholar
Xu, J.-Q. and Haginoya, S. (2001) An estimation of heat and water balances on the Tibetan Plateau. J. Met. Soc. Japan, 79 (1B), 485–504.CrossRefGoogle Scholar
Xu, J.-Q., et al. (2005) Heat and water balances over the Tibetan Plateau in 1997–1998. J. Met. Soc. Japan, 83(4), 577–93.CrossRefGoogle Scholar
Xu, Y.-G. (ed.) (1986) Proceedings of the International Symposium of the Qinghai-Xizang Plateau and Mountain Meteorology.Beijing: Science Press, and Boston, MA: American Meteorological Society.CrossRefGoogle Scholar
Yacono, D. (1968) L'Ahaggar, Essai sur le climat de montagne au Sahara. Travaux de l'Institut de Recherches Sahariennes, 27, Université d'Alger.Google Scholar
Yanai, M. and Li, C.-F. (1994) Mechanism of heating and the boundary layer of the Tibetan Plateau. Mon. Wea. Rev., 102(2), 3305–23.Google Scholar
Yang, K., et al. (2004) The daytime evolution of the atmospheric boundary layer and convection over the Tibetan Plateau: Observations and simulations. J. Met. Soc. Japan, 82(6), 1777–92.CrossRefGoogle Scholar
Yasunari, T. (1976a) Seasonal weather variations in Khumbu Himal. Seppyo, 38, Special Issue, 74–83.Google Scholar
Yasunari, T. (1976b) Spectral analysis of monsoonal precipitation in the Nepal Himalayas. Seppyo, 38, Special Issue, 59–65.Google Scholar
Yasunari, T. and Inoue, J. (1978) Characteristics of monsoonal precipitation around peaks and ridges in Shorong and Khumbu Himal. Seppyo, 40, Special Issue, 26–32.Google Scholar
Yasunari, T., Kanehira, A. and Koike, T. (2002) Seasonal and interannual variability of snow mass on the Tibetan Plateau and its impact on Asian summer monsoon. In Sh-Y. Tao, , et al. (eds), The Second Tibetan Plateau Experiment of Atmospheric Sciences. Beijing: China Meteorological Press, pp. 70–6.Google Scholar
Yeh, D.-Z. and Gao, Y.-X. (1979) Meteorology of Qinghai-Xizang (Tibet) Plateau (in Chinese) Beijing: Science Press.Google Scholar
Young, J. A. T. and Hastenrath, S. (1991) The glaciers of East Africa. In Williams, R. S. Jr., and Ferrigno, J. G. (eds), Satellite Image Atlas of the World, Glaciers of the Middle East and Africa. US Geological Survey Professional Paper 1386, G-3. Washington, DC: USGS, pp, G 48–70.Google Scholar
Zängl, G. and Chico, S. (2006) The thermal circulation of a grand plateau: sensitivity to the height, width and shape of the plateau. Mon. Wea. Rev., 134, 2581–600.CrossRefGoogle Scholar
Zhang, B.-P., et al. (2006) Integration of data on Chinese mountains into a digital altitudinal belt system. Mt. Res. Dev., 26, 163–71.Google Scholar
Zhang, T.-J. (2005) Historical overview of permafrost studies in China. Polar Geog., 266, 279–98.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Regional case studies
  • Roger G. Barry, University of Colorado, Boulder
  • Book: Mountain Weather and Climate
  • Online publication: 20 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511754753.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Regional case studies
  • Roger G. Barry, University of Colorado, Boulder
  • Book: Mountain Weather and Climate
  • Online publication: 20 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511754753.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Regional case studies
  • Roger G. Barry, University of Colorado, Boulder
  • Book: Mountain Weather and Climate
  • Online publication: 20 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511754753.006
Available formats
×