Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-29T05:59:26.625Z Has data issue: false hasContentIssue false

15 - Waldenstrom’s macroglobulinemia/lymphoplasmacytic lymphoma

from Section 3 - Myeloma: clinical entities

Published online by Cambridge University Press:  18 December 2013

Stephen A. Schey
Affiliation:
Department of Haematology, King’s College Hospital, London
Kwee L. Yong
Affiliation:
Department of Haematology, University College Hospital, London
Robert Marcus
Affiliation:
Department of Haematology, King’s College Hospital, London
Kenneth C. Anderson
Affiliation:
Dana-Farber Cancer Institute, Boston
Get access

Summary

Introduction

Waldenstrom’s macroglobulinemia (WM) is a distinct clinicopathological entity resulting from the accumulation, predominantly in the bone marrow, of clonally related lymphocytes, lymphoplasmacytic cells and plasma cells which secrete a monoclonal IgM protein (Figure 15.1)[1]. This condition is considered to correspond to the lymphoplasmacytic lymphoma (LPL) as defined by the World Health Organization classification system[2]. Most cases of LPL are WM, with less than 5% of cases made up of IgA, IgG and non-secreting LPL.

Epidemiology and etiology

WM is an uncommon disease, with a reported age-adjusted incidence rate of 3.4 per million among males and 1.7 per million among females in the USA, and a geometrical increase with age[3]. The incidence rate for WM is higher among Caucasians, with African descendants representing only 5% of all patients. Genetic factors appear to be important to the pathogenesis of WM. A common predisposition for WM with other malignancies has been raised[4,5], and there have been numerous reports of familiar predisposition, including clustering of family members with WM and other B cell lymphoproliferative diseases[6–10]. In a recent study, 28% of 924 serial WM patients presenting to a tertiary referral had a first or second degree relative with either WM or another B - cell disorder[5]. Frequent familiar association with other immunological disorders in healthy relatives, including hypogammaglobulinemia and hypergammaglobulinemia (particularly polyclonal IgM), autoantibody (particularly to thyroid) production, and manifestation of hyper-responsive B cells have also been reported[10,11].

Type
Chapter
Information
Myeloma
Pathology, Diagnosis, and Treatment
, pp. 190 - 215
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Owen, R. G., Treon, S. P., Al-Katib, A. et al. Clinicopathological definition of Waldenström’s macroglobulinemia: Consensus Panel Recommendations from the Second International Workshop on Waldenström’s macroglobulinemia. Semin. Oncol. 2003;30:110–15.CrossRefGoogle ScholarPubMed
World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues. Swerdlow, S. H., Campo, E., Harris, N. L. et al., editions, IARC Press, Lyon 2008.
Groves, F. D., Travis, L. B., Devesa, S. S., Ries, L. A., Fraumeni, J. F.Waldenström’s macroglobulinemia: incidence patterns in the United States, 1988–1994. Cancer 1998;82:1078–81.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Varettoni, M., Tedesci, A., Arcaini, L. et al. Risk of second cancers in Waldenstrom Macroglobulinemia. Ann. Oncol. 2011; Apr 27. Epb ahead of print.
Hanzis, C., Ojha, R. P., Hunter, Z. et al. Associated malignancies in patients with Waldenström’s Macroglobulinemia and their kin. Clin. Lymphoma Myeloma Leuk. 2011;11:88–92.CrossRefGoogle ScholarPubMed
Renier, G., Ifrah, N., Chevailler, A. et al. Four brothers with Waldenstrom’s Macroglobulinemia. Cancer 1989;64:1554–9.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Treon, S. P., Hunter, Z. R., Aggarwal, A. et al. Characterization of familial Waldenstrom’s macroglobulinemia. Ann. Oncol. 2006;17:488–94.CrossRefGoogle ScholarPubMed
Kristinsson, S. Y., Bjorkholm, M., Goldin, L. R. et al. Risk of lymphoproliferative disorders among first-degree relatives of lymphoplasmacytic lymphoma/Waldenstrom’s macroglobulinemia patients: a population-based study in Sweden. Blood 2008;112:3052–6.CrossRefGoogle ScholarPubMed
McMaster, M. L., Csako, G., Giambarresi, T. R. et al. Long-term evaluation of three multiple-case Waldenstrom’s macroglobulinemia families. Clin. Cancer Res. 2007;13:5063–9.CrossRefGoogle ScholarPubMed
Ogmundsdottir, H. M., Sveinsdottir, S., Sigfusson, A. et al. Enhanced B cell survival in familial macroglobulinaemia is associated with increased expression of Bcl-2. Clin. Exp. Immunol. 1999;117:252–60.CrossRefGoogle ScholarPubMed
Ogmundsdottir, H. M., Steingrimsdottir, H., Haraldsdottir, V.Familial paraproteinemia: hyper-responsive B-cells as endophenotype. Clin. Lymphoma Myeloma Leuke. 2011;11:82–4.CrossRefGoogle ScholarPubMed
Silvestri, F., Barillari, G., Fanin, R. et al. Risk of hepatitis C virus infection, Waldenström’s macroglobulinemia, and monoclonal gammopathies. Blood 1996;88:1125–6.Google ScholarPubMed
Leleu, X., O’Connor, K., Ho, A. et al. Hepatitis C Viral Infection Is Not Associated with Waldenstrom’s Macroglobulinemia. Am. J. Hematol. 2007;82:83–4.CrossRefGoogle Scholar
Schop, R. F., Kuehl, W. M., Van Wier, S. A. et al. Waldenström macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood 2002;100:2996–3001.CrossRefGoogle ScholarPubMed
Ocio, E. M., Schop, R. F., Gonzalez, B. et al. 6q deletion in Waldenstrom’s macroglobulinemia is associated with features of adverse prognosis. Br. J. Haematol. 2007;136:80–6.CrossRefGoogle ScholarPubMed
Chang, H., Qi, C., Trieu, Y. et al. Prognostic relevance of 6q deletion in Waldenstrom’s macroglobulinemia. Clin. Lymph. Myeloma 2009;9:36–8.CrossRefGoogle ScholarPubMed
Nguyen-Khac, F., Lejeune, J., Chapiro, E. et al. Cytogenetic abnormalities In a cohort of 171 patients with Waldenström Macroglobulinemia before treatment: clinical and biological correlations. Blood 2010;116:Abstract 801.Google Scholar
Rivera, A. I., Li, M. M., Beltran, G., Krause, J. R.Trisomy 4 as the sole cytogenetic abnormality in a Waldenstrom macroglobulinemia. Cancer Genet. Cytogenet. 2002;133:172–3.CrossRefGoogle Scholar
Avet-Loiseau, H., Garand, R., Lode, L., Robillard, N., Bataille, R.14q32 translocations discriminate IgM multiple myeloma from Waldenstrom’s macroglobulinemia. Semin. Oncol. 2003;30:153–5.CrossRefGoogle ScholarPubMed
Preud’homme, J. L., Seligmann, M.Immunoglobulins on the surface of lymphoid cells in Waldenström’s macroglobulinemia. J. Clin. Invest. 1972;51:701–5.CrossRefGoogle ScholarPubMed
Smith, B. R., Robert, N. J., Ault, K. A.In Waldenstrom’s macroglobulinemia the quantity of detectable circulating monoclonal B lymphocytes correlates with clinical course. Blood 1983;61:911–14.Google ScholarPubMed
Levy, Y., Fermand, J. P., Navarro, S. et al. Interleukin 6 dependence of spontaneous in vitro differentiation of B cells from patients with IgM gammopathy. Proc. Natl Acad. Sci. USA 1990;87:3309–13.CrossRefGoogle Scholar
Owen, R. G., Barrans, S. L., Richards, S. J. et al. Waldenström macroglobulinemia. Development of diagnostic criteria and identification of prognostic factors. Am. J. Clin. Pathol. 2001;116:420–8.CrossRefGoogle ScholarPubMed
Feiner, H. D., Rizk, C. C., Finfer, M. D. et al. IgM monoclonal gammopathy/Waldenström’s macroglobulinemia: a morphological and immunophenotypic study of the bone marrow. Mod. Pathol. 1990;3:348–56.Google ScholarPubMed
San Miguel, J. F., Vidriales, M. B., Ocio, E. et al. Immunophenotypic analysis of Waldenstrom’s macroglobulinemia. Semin. Oncol. 2003;30:187–95.CrossRefGoogle ScholarPubMed
Hunter, Z. R., Branagan, A. R., Manning, R. et al. CD5, CD10, CD23 expression in Waldenstrom’s Macroglobulinemia. Clin. Lymph. 2005;5:246–9.CrossRefGoogle ScholarPubMed
Wagner, S. D., Martinelli, V., Luzzatto, L.Similar patterns of V kappa gene usage but different degrees of somatic mutation in hairy cell leukemia, prolymphocytic leukemia, Waldenström’s macroglobulinemia, and myeloma. Blood 1994;83:3647–53.Google ScholarPubMed
Aoki, H., Takishita, M., Kosaka, M., Saito, S.Frequent somatic mutations in D and/or JH segments of Ig gene in Waldenström’s macroglobulinemia and chronic lymphocytic leukemia (CLL) with Richter’s syndrome but not in common CLL. Blood 1995;85:1913–19.Google ScholarPubMed
Shiokawa, S., Suehiro, Y., Uike, N., Muta, K., Nishimura, J.Sequence and expression analyses of mu and delta transcripts in patients with Waldenström’s macroglobulinemia. Am. J. Hematol. 2001;68:139–43.CrossRefGoogle ScholarPubMed
Sahota, S. S., Forconi, F., Ottensmeier, C. H. et al. Typical Waldenström macroglobulinemia is derived from a B-cell arrested after cessation of somatic mutation but prior to isotype switch events. Blood 2002;100:1505–7.Google ScholarPubMed
Paramithiotis, E., Cooper, M. D.Memory B lymphocytes migrate to bone marrow in humans. Proc. Natl Acad. Sci. USA 1997;94:208–12.CrossRefGoogle Scholar
Tournilhac, O., Santos, D. D., Xu, L. et al. Mast cells in Waldenstrom’s Macroglobulinemia support lymphoplasmacytic cell growth through CD154/CD40 signaling. Ann. Oncol. 2006;17:1275–82.CrossRefGoogle ScholarPubMed
Ho, A., Leleu, X., Hatjiharissi, E. et al. CD27-CD70 interactions in the pathogenesis of Waldenstrom’s Macroglobulinemia. Blood 2008;112:4683–9.CrossRefGoogle Scholar
Ngo, H. T., Leleu, X., Lee, J., Jia, X. et al. SDF-1/CXCR4 and VLA-4 interaction regulates homing in Waldenstrom macroglobulinemia. Blood 2008;112:150–8.CrossRefGoogle ScholarPubMed
Merlini, G., Farhangi, M., Osserman, E. F.Monoclonal immunoglobulins with antibody activity in myeloma, macroglobulinemia and related plasma cell dyscrasias. Semin. Oncol. 1986;13:350–65.Google ScholarPubMed
Farhangi, M., Merlini, G.The clinical implications of monoclonal immunoglobulins. Semin. Oncol. 1986;13:366–79.Google ScholarPubMed
Marmont, A. M., Merlini, G.Monoclonal autoimmunity in hematology. Haematologica 1991;76:449–59.Google ScholarPubMed
Mackenzie, M. R., Babcock, J.Studies of the hyperviscosity syndrome. II. Macroglobulinemia. J. Lab. Clin. Med. 1975;85:227–34.Google ScholarPubMed
Gertz, M. A., Kyle, R. A.Hyperviscosity syndrome. J. Intens. Care. Med. 1995;10:128–41.CrossRefGoogle ScholarPubMed
Kwaan, H. C., Bongu, A.The hyperviscosity syndromes. Semin. Thromb. Hemost. 1999;25:199–208.CrossRefGoogle ScholarPubMed
Singh, A., Eckardt, K. U., Zimmermann, A. et al. Increased plasma viscosity as a reason for inappropriate erythropoietin formation. J. Clin. Invest. 1993;91:251–6.CrossRefGoogle ScholarPubMed
Menke, M. N., Feke, G. T., McMeel, J. W. et al. Hyperviscosity-related retinopathy in Waldenstrom’s Macroglobulinemia. Arch. Opthalmol. 2006;124:1601–6.CrossRefGoogle Scholar
Merlini, G., Baldini, L., Broglia, C. et al. Prognostic factors in symptomatic Waldenström’s macroglobulinemia. Semin. Oncol. 2003;30:211–15.CrossRefGoogle ScholarPubMed
Dellagi, K., Dupouey, P., Brouet, J. C. et al. Waldenström’s macroglobulinemia and peripheral neuropathy:a clinical and immunologic study of 25 patients. Blood 1983;62:280–5.Google ScholarPubMed
Nobile-Orazio, E., Marmiroli, P., Baldini, L. et al. Peripheral neuropathy in macroglobulinemia:incidence and antigen-specificity of M proteins. Neurology 1987;37:1506–14.CrossRefGoogle ScholarPubMed
Nemni, R., Gerosa, E., Piccolo, G., Merlini, G.Neuropathies associated with monoclonal gammapathies. Haematologica 1994;79:557–66.Google ScholarPubMed
Ropper, A. H., Gorson, K. C.Neuropathies associated with paraproteinemia. N. Engl. J. Med. 1998;338:1601–7.CrossRefGoogle ScholarPubMed
Treon, S. P., Hanzis, C. A., Ioakimidis, L. I. et al. Clinical characteristics and treatment outcome of disease-related peripheral neuropathy in Waldenstrom’s macroglobulinemia. Proc. Am. Soc. Clin. Oncol. 2010;28:abstract 8114.Google Scholar
Vital, A.Paraproteinemic neuropathies. Brain. Pathol. 2001;11:399–407.CrossRefGoogle ScholarPubMed
Latov, N., Braun, P. E., Gross, R. B. et al. Plasma cell dyscrasia and peripheral neuropathy:identification of the myelin antigens that react with human paraproteins. Proc. Natl Acad. Sci. USA 1981;78:7139–42.CrossRefGoogle ScholarPubMed
Chassande, B., Leger, J. M., Younes-Chennoufi, A. B. et al. Peripheral neuropathy associated with IgM monoclonal gammopathy: correlations between M-protein antibody activity and clinical/electrophysiological features in 40 cases. Muscle Nerve 1998;21:55–62.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Weiss, M. D., Dalakas, M. C., Lauter, C. J., Willison, H. J., Quarles, R. H.Variability in the binding of anti-MAG and anti-SGPG antibodies to target antigens in demyelinating neuropathy and IgM paraproteinemia. J. Neuroimmunol. 1999;95:174–84.CrossRefGoogle ScholarPubMed
Latov, N., Hays, A. P., Sherman, W. H.Peripheral neuropathy and anti-MAG antibodies. Crit. Rev. Neurobiol. 1988;3:301–32.Google ScholarPubMed
Dalakas, M. C., Quarles, R. H.Autoimmune ataxic neuropathies (sensory ganglionopathies): are glycolipids the responsible autoantigens?Ann. Neurol. 1996;39:419–22.CrossRefGoogle ScholarPubMed
Eurelings, M., Ang, C. W., Notermans, N. C. et al. Antiganglioside antibodies in polyneuropathy associated with monoclonal gammopathy. Neurology 2001;57:1909–12.CrossRefGoogle ScholarPubMed
Ilyas, A. A., Quarles, R. H., Dalakas, M. C., Fishman, P. H., Brady, R. O.Monoclonal IgM in a patient with paraproteinemic polyneuropathy binds to gangliosides containing disialosyl groups. Ann. Neurol. 1985;18:655–9.CrossRefGoogle Scholar
Willison, H. J., O’Leary, C. P., Veitch, J. et al. The clinical and laboratory features of chronic sensory ataxic neuropathy with anti-disialosyl IgM antibodies. Brain 2001;124:1968–77.CrossRefGoogle ScholarPubMed
Lopate, G., Choksi, R., Pestronk, A.Severe sensory ataxia and demyelinating polyneuropathy with IgM anti-GM2 and GalNAc-GD1A antibodies. Muscle Nerve 2002;25:828–36.CrossRefGoogle ScholarPubMed
Jacobs, B. C., O’Hanlon, G. M., Breedland, E. G. et al. Human IgM paraproteins demonstrate shared reactivity between Campylobacter jejuni lipopolysaccharides and human peripheral nerve disialylated gangliosides. J. Neuroimmunol. 1997;80:23–30.CrossRefGoogle ScholarPubMed
Nobile-Orazio, E., Manfredini, E., Carpo, M. et al. Frequency and clinical correlates of antineural IgM antibodies in neuropathy associated with IgM monoclonal gammopathy. Ann. Neurol. 1994;36:416–24.CrossRefGoogle Scholar
Gordon, P. H., Rowland, L. P., Younger, D. S. et al. Lymphoproliferative disorders and motor neuron disease:an update. Neurology 1997;48:1671–8.CrossRefGoogle ScholarPubMed
Pavord, S. R., Murphy, P. T., Mitchell, V. E.POEMS syndrome and Waldenström’s macroglobulinaemia. J. Clin. Pathol. 1996;49:181–2.CrossRefGoogle ScholarPubMed
Crisp, D., Pruzanski, W.B-cell neoplasms with homogeneous cold-reacting antibodies (cold agglutinins). Am. J. Med. 1982;72:915–22.CrossRefGoogle Scholar
Pruzanski, W., Shumak, K. H.Biologic activity of cold-reacting autoantibodies (first of two parts). N. Engl. J. Med. 1977;297:538–42.CrossRefGoogle Scholar
Pruzanski, W., Shumak, K. H.Biologic activity of cold-reacting autoantibodies (second of two parts). N. Engl. J. Med. 1977;297:583–9.CrossRefGoogle Scholar
Whittaker, S. J., Bhogal, B. S., Black, M. M.Acquired immunobullous disease:a cutaneous manifestation of IgM macroglobulinaemia. Br. J. Dermatol. 1996;135:283–6.CrossRefGoogle ScholarPubMed
Daoud, M. S., Lust, J. A., Kyle, R. A., Pittelkow, M. R.Monoclonal gammopathies and associated skin disorders. J. Am. Acad. Dermatol. 1999;40:507–35.CrossRefGoogle ScholarPubMed
Gad, A., Willen, R., Carlen, B., Gyland, F., Wickander, M.Duodenal involvement in Waldenström’s macroglobulinemia. J. Clin. Gastroenterol. 1995;20:174–6.Google ScholarPubMed
Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 3–1990. A 66-year-old woman with Waldenström’s macroglobulinemia, diarrhea, anemia, and persistent gastrointestinal bleeding. N. Engl. J. Med. 1990;322:183–92.
Isaac, J., Herrera, G. A.Cast nephropathy in a case of Waldenström’s macroglobulinemia. Nephron 2002;91:512–15.CrossRefGoogle Scholar
Morel-Maroger, L., Basch, A., Danon, F., Verroust, P., Richet, G.Pathology of the kidney in Waldenström’s macroglobulinemia. Study of sixteen cases. N. Engl. J. Med. 1970;283:123–9.CrossRefGoogle ScholarPubMed
Gertz, M. A., Kyle, R. A., Noel, P.Primary systemic amyloidosis: a rare complication of immunoglobulin M monoclonal gammopathies and Waldenström’s macroglobulinemia. J. Clin. Oncol. 1993;11:914–20.CrossRefGoogle ScholarPubMed
Moyner, K., Sletten, K., Husby, G., Natvig, J. B.An unusually large (83 amino acid residues) amyloid fibril protein AA from a patient with Waldenström’s macroglobulinaemia and amyloidosis. Scand. J. Immunol. 1980;11:549–54.CrossRefGoogle ScholarPubMed
Gardyn, J., Schwartz, A., Gal, R. et al. Waldenström’s macroglobulinemia associated with AA amyloidosis. Int. J. Hematol. 2001;74:76–8.CrossRefGoogle ScholarPubMed
Dussol, B., Kaplanski, G., Daniel, L. et al. Simultaneous occurrence of fibrillary glomerulopathy and AL amyloid. Nephrol. Dial. Transplant 1998;13:2630–2.CrossRefGoogle ScholarPubMed
Rausch, P. G., Herion, J. C.Pulmonary manifestations of Waldenström macroglobulinemia. Am. J. Hematol. 1980;9:201–9.CrossRefGoogle ScholarPubMed
Fadil, A., Taylor, D. E.The lung and Waldenström’s macroglobulinemia. South Med. J. 1998;91:681–5.CrossRefGoogle ScholarPubMed
Kyrtsonis, M. C., Angelopoulou, M. K., Kontopidou, F. N. et al. Primary lung involvement in Waldenström’s macroglobulinaemia:report of two cases and review of the literature. Acta Haematol. 2001;105:92–6.CrossRefGoogle ScholarPubMed
Kaila, V. L., el Newihi, H. M., Dreiling, B. J., Lynch, C. A., Mihas, A. A.Waldenström’s macroglobulinemia of the stomach presenting with upper gastrointestinal hemorrhage. Gastrointest. Endosc. 1996;44:73–5.CrossRefGoogle ScholarPubMed
Yasui, O., Tukamoto, F., Sasaki, N. et al. Malignant lymphoma of the transverse colon associated with macroglobulinemia. Am. J. Gastroenterol. 1997;92:2299–301.Google ScholarPubMed
Rosenthal, J. A., Curran, W. J., Schuster, S. J.Waldenström’s macroglobulinemia resulting from localized gastric lymphoplasmacytoid lymphoma. Am. J. Hematol. 1998;58:244–5.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Recine, M. A., Perez, M. T., Cabello-Inchausti, B., Lilenbaum, R. C., Robinson, M. J.Extranodal lymphoplasmacytoid lymphoma (immunocytoma) presenting as small intestinal obstruction. Arch. Pathol. Lab. Med. 2001;125:677–9.Google ScholarPubMed
Veltman, G. A., van Veen, S., Kluin-Nelemans, J. C., Bruijn, J. A., van Es, L. A.Renal disease in Waldenström’s macroglobulinaemia. Nephrol. Dial. Transplant 1997;12:1256–9.CrossRefGoogle ScholarPubMed
Moore, D. F., Moulopoulos, L. A., Dimopoulos, M. A.Waldenström macroglobulinemia presenting as a renal or perirenal mass:clinical and radiographic features. Leuk. Lymphoma 1995;17:331–4.CrossRefGoogle ScholarPubMed
Mascaro, J. M., Montserrat, E., Estrach, T. et al. Specific cutaneous manifestations of Waldenström’s macroglobulinaemia. A report of two cases. Br. J. Dermatol. 1982;106:17–22.CrossRefGoogle ScholarPubMed
Schnitzler, L., Schubert, B., Boasson, M., Gardais, J., Tourmen, A.Urticaire chronique, lésions osseuses, macroglobulinémie IgM:Maladie de Waldenström?Bull. Soc. Fr. Dermatol. Syphiligr. 1974;81:363–8.Google Scholar
Roux, S., Fermand, J. P., Brechignac, S. et al. Tumoral joint involvement in multiple myeloma and Waldenström’s macroglobulinemia – report of 4 cases. J. Rheumatol. 1996;23:2175–8.Google ScholarPubMed
Orellana, J., Friedman, A. H.Ocular manifestations of multiple myeloma, Waldenström’s macroglobulinemia and benign monoclonal gammopathy. Surv. Ophthalmol. 1981;26:157–69.CrossRefGoogle ScholarPubMed
Ettl, A. R., Birbamer, G. G., Philipp, W.Orbital involvement in Waldenström’s macroglobulinemia:ultrasound, computed tomography and magnetic resonance findings. Ophthalmologica 1992;205:40–5.CrossRefGoogle ScholarPubMed
Civit, T., Coulbois, S., Baylac, F., Taillandier, L., Auque, J.[Waldenström’s macroglobulinemia and cerebral lymphoplasmocytic proliferation:Bing and Neel syndrome. Apropos of a new case.]Neurochirurgie 1997;43:245–9.Google Scholar
McMullin, M. F., Wilkin, H. J., Elder, E.Inaccurate haemoglobin estimation in Waldenström’s macroglobulinaemia. J. Clin. Pathol. 1995;48:787.CrossRefGoogle ScholarPubMed
Treon, S. P., Branagan, A. R., Hunter, Z. et al. IgA and IgG hypogammaglobulinemia persists in most patients with Waldenstrom’s macroglobulinemia despite therapeutic responses, including complete remissions. Blood 2004;104:306b.Google Scholar
Treon, S. P., Hunter, Z., Ciccarelli, B. T. et al. IgA and IgG Hypogammaglobulinemia is a constitutive feature in most Waldenstrom’s Macroglobulinemia patients and may be related to mutations associated with common variable immunodeficiency disorder (CVID). Blood 2008;112:3749.Google Scholar
Dutcher, T. F., Fahey, J. L.The histopathology of macroglobulinemia of Waldenström. J. Natl Cancer Inst. 1959;22:887–917.CrossRefGoogle ScholarPubMed
Moulopoulos, L. A., Dimopoulos, M. A., Varma, D. G. et al. Waldenström macroglobulinemia: MR imaging of the spine and CT of the abdomen and pelvis. Radiology 1993;188:669–73.CrossRefGoogle ScholarPubMed
Gobbi, P. G., Bettini, R., Montecucco, C. et al. Study of prognosis in Waldenström’s macroglobulinemia:a proposal for a simple binary classification with clinical and investigational utility. Blood 1994;83:2939–45.Google ScholarPubMed
Morel, P., Monconduit, M., Jacomy, D. et al. Prognostic factors in Waldenström macroglobulinemia:a report on 232 patients with the description of a new scoring system and its validation on 253 other patients. Blood 2000;96:852–8.Google Scholar
Dhodapkar, M. V., Jacobson, J. L., Gertz, M. A. et al. Prognostic factors and response to fludarabine therapy in patients with Waldenström macroglobulinemia:results of United States intergroup trial (Southwest Oncology Group S9003). Blood 2001;98:41–8.CrossRefGoogle Scholar
Kyle, R. A., Treon, S. P., Alexanian, R. et al. Prognostic markers and criteria to initiate therapy in Waldenström’s macroglobulinemia: Consensus Panel Recommendations from the Second International Workshop on Waldenström’s macroglobulinemia. Semin. Oncol. 2003;30:116–20.CrossRefGoogle ScholarPubMed
Dimopoulos, M., Gika, D., Zervas, K. et al. The international staging system for multiple myeloma is applicable in symptomatic Waldenstrom’s macroglobulinemia. Leuk. Lymph. 2004;45:1809–13.CrossRefGoogle ScholarPubMed
Anagnostopoulos, A., Zervas, K., Kyrtsonis, M. et al. Prognostic value of serum beta 2-microglobulin in patients with Waldenstrom’s macroglobulinemia requiring therapy. Clin. Lymph. Myeloma 2006;7:205–9.CrossRefGoogle Scholar
Morel, P., Duhamel, A., Gobbi, P. et al. International prognostic scoring system for Waldenstrom Macroglobulinemia. Blood 2009;113:4163–70.CrossRefGoogle ScholarPubMed
Treon, S. P.How I treat Waldenstrom’s macroglobulinemia. Blood 2009;114:419–31.CrossRefGoogle Scholar
Dimopoulos, M. A., Gertz, M. A., Kastritis, E. et al. Update on treatment recommendations from the Fourth International Workshop on Waldenstrom’s Macroglobulinemia. J. Clin. Oncol. 2009;27:120–6.CrossRefGoogle ScholarPubMed
Leleu, X. P., Manning, R., Soumerai, J. D. et al. Increased incidence of transformation and myelodysplasia/acute leukemia in patients with Waldenström macroglobulinemia treated with nucleoside analogs. J. Clin. Oncol. 2009;27:250–5.CrossRefGoogle ScholarPubMed
Kyle, R. A., Greipp, P. R., Gertz, M. A. et al. Waldenström’s macroglobulinaemia:a prospective study comparing daily with intermittent oral chlorambucil. Br. J. Haematol. 2000;108:737–42.CrossRefGoogle ScholarPubMed
Dimopoulos, M. A., Alexanian, R.Waldenstrom’s macroglobulinemia. Blood 1994;83:1452–9.Google ScholarPubMed
Petrucci, M. T., Avvisati, G., Tribalto, M., Giovangrossi, P., Mandelli, F.Waldenström’s macroglobulinaemia:results of a combined oral treatment in 34 newly diagnosed patients. J. Intern. Med. 1989;226:443–7.CrossRefGoogle ScholarPubMed
Case, D. C., Ervin, T. J., Boyd, M. A., Redfield, D. L.Waldenström’s macroglobulinemia: long-term results with the M-2 protocol. Cancer Invest. 1991;9:1–7.CrossRefGoogle ScholarPubMed
Facon, T., Brouillard, M., Duhamel, A. et al. Prognostic factors in Waldenström’s macroglobulinemia: a report of 167 cases. J. Clin. Oncol. 1993;11:1553–8.CrossRefGoogle ScholarPubMed
Dimopoulos, M. A., Kantarjian, H., Weber, D. et al. Primary therapy of Waldenström’s macroglobulinemia with 2-chlorodeoxyadenosine. J. Clin. Oncol. 1994;12:2694–8.CrossRefGoogle ScholarPubMed
Delannoy, A., Ferrant, A., Martiat, P. et al. 2-Chlorodeoxyadenosine therapy in Waldenström’s macroglobulinaemia. Nouv. Rev. Fr. Hematol. 1994;36:317–20.Google ScholarPubMed
Fridrik, M. A., Jager, G., Baldinger, C. et al. First-line treatment of Waldenström’s disease with cladribine. Arbeitsgemeinschaft Medikamentose Tumortherapie. Ann. Hematol. 1997;74:7–10.CrossRefGoogle ScholarPubMed
Liu, E. S., Burian, C., Miller, W. E., Saven, A.Bolus administration of cladribine in the treatment of Waldenström macroglobulinaemia. Br. J. Haematol. 1998;103:690–5.CrossRefGoogle ScholarPubMed
Hellmann, A., Lewandowski, K., Zaucha, J. M. et al. Effect of a 2-hour infusion of 2-chlorodeoxyadenosine in the treatment of refractory or previously untreated Waldenström’s macroglobulinemia. Eur. J. Haematol. 1999;63:35–41.CrossRefGoogle ScholarPubMed
Betticher, D. C., Hsu Schmitz, S. F., Ratschiller, D. et al. Cladribine (2-CDA) given as subcutaneous bolus injections is active in pretreated Waldenström’s macroglobulinaemia. Swiss Group for Clinical Cancer Research (SAKK). Br. J. Haematol. 1997;99:358–63.CrossRefGoogle Scholar
Dimopoulos, M. A., Weber, D., Delasalle, K. B., Keating, M., Alexanian, R.Treatment of Waldenström’s macroglobulinemia resistant to standard therapy with 2-chlorodeoxyadenosine:identification of prognostic factors. Ann. Oncol. 1995;6:49–52.CrossRefGoogle ScholarPubMed
Dimopoulos, M. A., O’Brien, S., Kantarjian, H. et al. Fludarabine therapy in Waldenström’s macroglobulinemia. Am. J. Med. 1993;95:49–52.CrossRefGoogle ScholarPubMed
Foran, J. M., Rohatiner, A. Z., Coiffier, B. et al. Multicenter phase II study of fludarabine phosphate for patients with newly diagnosed lymphoplasmacytoid lymphoma, Waldenström’s macroglobulinemia, and mantle-cell lymphoma. J. Clin. Oncol. 1999;17:546–53.CrossRefGoogle ScholarPubMed
Thalhammer-Scherrer, R., Geissler, K., Schwarzinger, I. et al. Fludarabine therapy in Waldenström’s macroglobulinemia. Ann. Hematol. 2000;79:556–9.CrossRefGoogle ScholarPubMed
Dhodapkar, M. V., Jacobson, J. L., Gertz, M. A. et al. Prognostic factors and response to fludarabine therapy in patients with Waldenström macroglobulinemia:results of United States intergroup trial (Southwest Oncology Group S9003). Blood 2001;98:41–8.CrossRefGoogle Scholar
Zinzani, P. L., Gherlinzoni, F., Bendandi, M. et al. Fludarabine treatment in resistant Waldenström’s macroglobulinemia. Eur. J. Haematol. 1995;54:120–3.CrossRefGoogle ScholarPubMed
Leblond, V., Ben Othman, T., Deconinck, E. et al. Activity of fludarabine in previously treated Waldenström’s macroglobulinemia: a report of 71 cases. Groupe Cooperatif Macroglobulinemie. J. Clin. Oncol. 1998;16:2060–4.CrossRefGoogle ScholarPubMed
Dimopoulos, M. A., Weber, D. M., Kantarjian, H., Keating, M., Alexanian, R.2-Chlorodeoxyadenosine therapy of patients with Waldenström macroglobulinemia previously treated with fludarabine. Ann. Oncol. 1994;5:288–9.CrossRefGoogle ScholarPubMed
Lewandowski, K., Halaburda, K., Hellmann, A.Fludarabine therapy in Waldenström’s macroglobulinemia patients treated previously with 2-chlorodeoxyadenosine. Leuk. Lymphoma 2002;43:361–3.CrossRefGoogle ScholarPubMed
Leleu, X., Tamburini, J., Roccaro, A. et al. Balancing risk versus benefit in the treatment of Waldenstrom’s macroglobulinemia patients with nucleoside analogue based therapy. Clin. Lymph. Myeloma 2009; 9(1): 71–3.CrossRefGoogle ScholarPubMed
Thomas, S., Hosing, C., Delasalle, K. B. et al. Success rates of autologous stem cell collection in patients with Waldenstrom’s macroglobulinemia. Proc. 5th International Workshop on Waldenstrom’s Macroglobulinemia 2008 (Supplemental Abstract).
Treon, S. P., Kelliher, A., Keele, B. et al. Expression of serotherapy target antigens in Waldenstrom’s macroglobulinemia:Therapeutic applications and considerations. Semin. Oncol. 2003;30:248–52.CrossRefGoogle ScholarPubMed
Treon, S. P., Shima, Y., Preffer, F. I. et al. Treatment of plasma cell dyscrasias with antibody-mediated immunotherapy. Semin. Oncol. 1999;26 (Suppl 14):97–106.Google ScholarPubMed
Byrd, J. C., White, C. A., Link, B. et al. Rituximab therapy in Waldenstrom’s macroglobulinemia:preliminary evidence of clinical activity. Ann. Oncol. 1999;10:1525–7.CrossRefGoogle ScholarPubMed
Weber, D. M., Gavino, M., Huh, Y. et al. Phenotypic and clinical evidence supports rituximab for Waldenstrom’s macroglobulinemia. Blood 1999;94:125a.Google Scholar
Foran, J. M., Rohatiner, A. Z., Cunningham, D. et al. European phase II study of rituximab (chimeric anti-CD20 monoclonal antibody) for patients with newly diagnosed mantle-cell lymphoma and previously treated mantle-cell lymphoma, immunocytoma, and small B-cell lymphocytic lymphoma. J. Clin. Oncol. 2000;18:317–24.CrossRefGoogle ScholarPubMed
Treon, S. P., Agus, D. B., Link, B. et al. CD20-Directed antibody-mediated immunotherapy induces responses and facilitates hematologic recovery in patients with Waldenstrom’s macroglobulinemia. J. Immunother. 2001;24:272–9.CrossRefGoogle ScholarPubMed
Gertz, M. A., Rue, M., Blood, E. et al. Multicenter phase 2 trial of rituximab for Waldenstrom macroglobulinemia (WM): an Eastern Cooperative Oncology Group Study (E3A98). Leuk. Lymphoma 2004;45:2047–55.CrossRefGoogle Scholar
Dimopoulos, M. A., Zervas, C., Zomas, A. et al. Treatment of Waldenstrom’s macroglobulinemia with rituximab. J. Clin. Oncol. 2002;20:2327–33.CrossRefGoogle ScholarPubMed
Treon, S. P., Emmanouilides, C., Kimby, E. et al. Extended rituximab therapy in Waldenström’s Macroglobulinemia. Ann. Oncol. 2005;16:132–8.CrossRefGoogle ScholarPubMed
Donnelly, G. B., Bober-Sorcinelli, K., Jacobson, R., Portlock, C. S.Abrupt IgM rise following treatment with rituximab in patients with Waldenstrom’s macroglobulinemia. Blood 2001;98:240b.Google Scholar
Treon, S. P., Branagan, A. R., Anderson, K. C.Paradoxical increases in serum IgM levels and serum viscosity following rituximab therapy in patients with Waldenstrom’s macroglobulinemia. Blood 2003;102:690a.Google Scholar
Ghobrial, I. M., Fonseca, R., Greipp, P. R. et al. The initial “flare” of IgM level after rituximab therapy in patients diagnosed with Waldenstrom Macroglobulinemia:An Eastern Cooperative Oncology Group Study. Blood 2003;102:448α.Google Scholar
Yang, G., Xu, L., Hunter, Z. R. et al. The Rituximab and IVIG Related IgM Flare In Waldenstrom’s Macroglobulinemia Is Associated with Monocytic Activation of FCGR2A Signaling, and Triggering of IL-6 Release by the PI3K/AKT and MAPK Pathways. Proc. Am. Blood 2010;116:2870.Google Scholar
Dimopoulos, M. A., Anagnostopoulos, A., Zervas, C. et al. Predictive factors for response to rituximab in Waldenstrom’s macroglobulinemia. Clin. Lymphoma 2005;5:270–2.CrossRefGoogle ScholarPubMed
Treon, S. P., Hansen, M., Branagan, A. R. et al. Polymorphisms in FcγRIIIA (CD16) receptor expression are associated with clinical responses to Rituximab in Waldenstrom’s Macroglobulinemia. J. Clin. Oncol. 2005;23:474–81.CrossRefGoogle ScholarPubMed
Treon, S. P., Yang, G., Hanzis, C. et al. Attainment of complete/very good partial response following rituximab-based therapy is an important determinant to progression-free survival, and is impacted by polymorphisms in FCGR3A in Waldenstrom macroglobulinaemia. Br. J. Haematol. 2011; May 12 [Epub ahead of print].
Furman, R. R., Eradat, H., Switzky, J. C. et al. A phase II trial of ofatumumab in subjects with Waldenstrom’s Macroglobulinemia. Blood 2010; 116:Abstract 1795.Google Scholar
Treon, S. P., Hanzis, C., Tripsas, C. et al. Bendamustine therapy in patients with relapsed or refractory Waldenström’s Macroglobulinemia. Clin. Lymphoma Myeloma Leuk. 2011;11:133–5.CrossRefGoogle ScholarPubMed
Treon, S. P., Soumerai, J. D., Hunter, Z. R. et al. Long-term follow-up of symptomatic patients with lymphoplasmacytic lymphoma/Waldenstrom’s macroglobulinemia treated with the anti-CD52 monoclonal antibody alemtuzumab. Blood 2011; May 12 [Epub ahead of print].
Owen, R. G., Rawstron, A. C., Osterborg, A. et al. Activity of alemtuzumab in relapsed/ refractory Waldenstrom’s macroglobulinemia. Blood 2003;102:644a.Google Scholar
Treon, S. P., Hunter, Z. R., Matous, J., et al. Multicenter clinical trial of bortezomib in relapsed/refractory Waldenstrom’s macroglobulinemia: results of WMCTG trial 03–248. Clin. Cancer Res. 2007;13:3320–5.CrossRefGoogle ScholarPubMed
Chen, C. I., Kouroukis, C. T., White, D. et al. Bortezomib is active in patients with untreated or relapsed Waldenstrom’s macroglobulinemia: a phase II study of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 2007;25:1570–5.CrossRefGoogle ScholarPubMed
Dimopoulos, M. A., Anagnostopoulos, A., Kyrtsonis, M. C. et al. Treatment of relapsed or refractory Waldenstrom’s macroglobulinemia with bortezomib. Haematologica 2005;90:1655–7.Google ScholarPubMed
Goy, A., Younes, A., McLaughlin, P. et al. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J. Clin. 2005;23:657–8.CrossRefGoogle ScholarPubMed
Dimopoulos, M. A., Zomas, A., Viniou, N. A. et al. Treatment of Waldenström’s macroglobulinemia with thalidomide. J. Clin. Oncol. 2001;19:3596–601.CrossRefGoogle ScholarPubMed
Coleman, C., Leonard, J., Lyons, L., Szelenyi, H., Niesvizky, R.Treatment of Waldenström’s macroglobulinemia with clarithromycin, low-dose thalidomide and dexamethasone. Semin. Oncol. 2003;30:270–4.CrossRefGoogle ScholarPubMed
Dimopoulos, M. A., Zomas, K., Tsatalas, K. et al. Treatment of Waldenström’s macroglobulinemia with single agent thalidomide or with combination of clarithromycin, thalidomide and dexamethasone. Semin. Oncol. 2003;30:265–9.CrossRefGoogle ScholarPubMed
Cheson, B. D., Rummel, M. J.Bendamustine: rebirth of an old drug. J. Clin. Oncol. 2009;27:1492–501.CrossRefGoogle ScholarPubMed
Hatjiharissi, E., Mitsiades, C. S., Ciccarelli, B. et al. Comprehensive molecular characterization of malignant and microenvironmental cells in Waldenstrom’s Macroglobulinemia by gene expression profiling. Blood 2007;110:abstract 3174.Google Scholar
Leleu, X., Jia, X., Runnels, J. et al. The Akt pathway regulates survival and homing in Waldenstrom macroglobulinemia. Blood 2007;110:4417–26.CrossRefGoogle ScholarPubMed
Ghobrial, I., Gertz, M., LaPlant, B. et al. Phase II trial of the oral mammalian target of rapamycin inhibitor everolimus in relapsed or refractory Waldenström macroglobulinemia. J. Clin. Oncol. 2010;28:1408–14.CrossRefGoogle ScholarPubMed
Buske, C., Hoster, E., Dreyling, M. H. et al. The addition of rituximab to front-line therapy with CHOP (R-CHOP) results in a higher response rate and longer time to treatment failure in patients with lymphoplasmacytic lymphoma:results of a randomized trial of the German Low-Grade Lymphoma Study Group (GLSG). Leukemia 2009;23:153–61.CrossRefGoogle Scholar
Dimopoulos, M. A., Anagnostopoulos, A., Kyrtsonis, M. C. et al. Primary treatment of Waldenstrom’s macroglobulinemia with dexamethasone, rituximab and cyclophosphamide. J. Clin. Oncol. 2007;25:3344–9.CrossRefGoogle ScholarPubMed
Treon, S. P., Hunter, Z., Branagan, A.CHOP plus rituximab therapy in Waldenström’s macroglobulinemia. Clin. Lymphoma Myeloma 2005;5:273–7.CrossRefGoogle ScholarPubMed
Ioakimidis, L., Patterson, C. J., Hunter, Z. R. et al. Comparative outcomes following CP-R, CVP-R and CHOP-R in Waldenstrom’s Macroglobulinemia. Clin. Lymphoma Myeloma 2009;9:62–6.CrossRefGoogle ScholarPubMed
Weber, D. M., Dimopoulos, M. A., Delasalle, K. et al. 2-chlorodeoxyadenosine alone and in combination for previously untreated Waldenstrom’s macroglobulinemia. Semin. Oncol. 2003;30:243–7.CrossRefGoogle ScholarPubMed
Laszlo, D., Andreola, G., Rigacci, L. et al. Rituximab and subcutaneous 2-chloro-2′-deoxyadenosine combination treatment for patients with Waldenstrom macroglobulinemia:clinical and biologic results of a phase II multicenter study. J. Clin. Oncol. 2010;28:2233–8.CrossRefGoogle ScholarPubMed
Treon, S. P., Branagan, A. R., Ioakimidis, L. et al. Long term outcomes to fludarabine and rituximab in Waldenstrom’s macroglobulinemia. Blood 2009 [Epub ahead of print].
Tam, C. S., Wolf, M. M., Westerman, D. et al. Fludarabine combination therapy is highly effective in first-line and salvage treatment of patients with Waldenstrom’s macroglobulinemia. Clin. Lymphoma Myeloma 2005;6:136–9.CrossRefGoogle ScholarPubMed
Hensel, M., Villalobos, M., Kornacker, M. et al. Pentostatin/cyclophosphamide with or without rituximab:an effective regimen for patients with Waldenstrom’s macroglobulinemia/lymphoplasmacytic lymphoma. Clin. Lymphoma Myeloma 2005;6:131–5.CrossRefGoogle ScholarPubMed
Dimopoulos, M. A., Hamilos, G., Efstathiou, E. et al. Treatment of Waldenstrom’s macroglobulinemia with the combination of fludarabine and cyclophosphamide. Leuk. Lymphoma 2003;44:993–6.CrossRefGoogle ScholarPubMed
Tamburini, J., Levy, V., Chateilex, C. et al. Fludarabine plus cyclophosphamide in Waldenstrom’s macroglobulinemia: results in 49 patients. Leukemia 2005;19:1831–4.CrossRefGoogle ScholarPubMed
Tedeschi, A., Benevolo, G., Varettoni, M. et al. Results of a phase II multicenter study of immunochemotherapy with fludarabine, cyclophosphamide and rituximab (FCR) for symptomatic Waldenstrom’s Macroglobulinemia. Blood 2008;112: abstract 3692.Google Scholar
Treon, S. P., Ioakimidis, L., Soumerai, J. D. et al. Primary therapy of Waldenstrom’s Macroglobulinemia with bortezomib, dexamethasone and rituximab: results of WMCTG clinical trial 05–180. J. Clin. Oncol. 2009;27:3830–5.CrossRefGoogle ScholarPubMed
Ghobrial, I. M., Xie, W., Padmanabhan, S. et al. Phase II trial of weekly bortezomib in combination with rituximab in untreated patients with Waldenström Macroglobulinemia. Am. J. Hematol. 2010;85:670–4.CrossRefGoogle ScholarPubMed
Agathocleous, A., Rule, S., Johson, P.Preliminary results of a phase I/II study of weekly or twice weekly bortezomib in combination with rituximab in patients with follicular lymphoma, mantle cell lymphoma, and Waldenstrom’s macroglobulinemia. Blood 2007;110:abstract 2559.Google Scholar
Dimopoulos, M. A., García-Sanz, R., Gavriatopoulou, M. et al. Primary therapy of Waldenstrom’s Macroglobulinemia (WM) with weekly bortezomib, low-dose dexamethasone and rituximab (BDR): a phase II study of the European Myeloma Network. Blood 2010;116:abstract 1941.Google Scholar
Treon, S. P., Soumerai, J. D., Branagan, A. R. et al. Thalidomide and rituximab in Waldenstrom’s Macroglobulinemia. Blood 2008;112:4452–7.CrossRefGoogle Scholar
Treon, S. P., Soumerai, J. D., Branagan, A. R. et al. Lenalidomide and rituximab in Waldenström’s Macroglobulinemia. Clin. Cancer Res. 2008;15:355–60.CrossRefGoogle Scholar
Rummel, M. J., von Gruenhagen, U., Niederle, N. et al. Bendamustine plus rituximab versus CHOP plus rituximab in the firstline treatment of patients with follicular, indolent and mantle cell lymphomas: results of a randomized phase III study of the Study Group Indolent Lymphomas (StiL). Blood 2008;112:abstract 2596.Google Scholar
Treon, S. P., Hanzis, C., Manning, R. J. et al. Maintenance rituximab is associated with improved clinical outcome in rituximab naïve patients with Waldenstrom’s Macroglobulinemia who respond to a rituximab containing regimen. Br. J. Haematol. 2011, May [Epub ahead of print].CrossRefGoogle ScholarPubMed
Desikan, R., Dhodapkar, M., Siegel, D. et al. High-dose therapy with autologous haemopoietic stem cell support for Waldenström’s macroglobulinaemia. Br. J. Haematol. 1999;105:993–6.CrossRefGoogle ScholarPubMed
Munshi, N. C., Barlogie, B.Role for high dose therapy with autologous hematopoietic stem cell support in Waldenström’s macroglobulinemia. Semin. Oncol. 2003;30:282–5.CrossRefGoogle ScholarPubMed
Dreger, P., Glass, B., Kuse, R. et al. Myeloablative radiochemotherapy followed by reinfusion of purged autologous stem cells for Waldenström’s macroglobulinaemia. Br. J. Haematol. 1999;106:115–18.CrossRefGoogle ScholarPubMed
Anagnostopoulos, A., Dimopoulos, M. A., Aleman, A. et al. High-dose chemotherapy followed by stem cell transplantation in patients with resistant Waldenström’s macroglobulinemia. Bone Marrow Transplant 2001;27:1027–9.CrossRefGoogle ScholarPubMed
Tournilhac, O., Leblond, V., Tabrizi, R. et al. Transplantation in Waldenström’s macroglobulinemia – the french experience. Semin. Oncol. 2003;30:291–6.CrossRefGoogle ScholarPubMed
Anagnostopoulos, A., Hari, P. N., Perez, W. S. et al. Autologous or allogeneic stem cell transplantation in patients with Waldenstrom’s macroglobulinemia. Biol. Blood Marrow Transplant 2006;12:845–54.CrossRefGoogle ScholarPubMed
Kyriakou, C., Canals, C., Sibon, D. et al. High-dose therapy and autologous stem-cell transplantation in Waldenstrom macroglobulinemia: the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J. Clin. Oncol. 2010;28:2227–32.CrossRefGoogle ScholarPubMed
Kyriakou, C., Canals, C., Cornelissen, J. J. et al. Allogeneic stem-cell transplantation in patients with Waldenström macroglobulinemia: report from the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J. Clin. Oncol. 2010;28:4926–34.CrossRefGoogle ScholarPubMed
Weber, D., Treon, S. P., Emmanouilides, C. et al. Uniform response criteria in Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin. Oncol. 2003;30:127–31.CrossRefGoogle ScholarPubMed
Kimby, E., Treon, S. P., Anagnostopoulos, A. et al. Update on recommendations for assessing response from the Third International Workshop on Waldenstrom’s Macroglobulinemia. Clin. Lymph. Myeloma 2006;6:380–3.CrossRefGoogle ScholarPubMed
Treon, S. P., Merlini, G., Morra, E. et al. Report from the Sixth International Workshop on Waldenstrom’s Macroglobulinemia. Clin. Lymph. Myeloma Leukemia 2011;11:69–73.CrossRefGoogle ScholarPubMed
Nichols, G. L., Savage, D. G.Timing of rituximab/fludarabine in Waldenstrom’s macroglobulinemia may avert hyperviscosity. Blood 2004;104:237b.Google Scholar
Strauss, S. J., Maharaj, L., Hoare, S. et al. Bortezomib therapy in patients with relapsed or refractory lymphoma:Potential correlation of in vitro sensitivity and tumor necrosis factor alpha response with clinical activity. J. Clin. Oncol. 2006;24:2105–12.CrossRefGoogle ScholarPubMed
Varghese, A. M., Rawstron, A. C., Ashcroft, A. J. et al. Assessment of bone marrow response in Waldenström’s macroglobulinemia. Clin. Lymph. Myeloma 2009;9:53–5.CrossRefGoogle ScholarPubMed
Ciccarelli, B. T., Yang, G., Hatjiharissi, E. et al. Soluble CD27 is a faithful marker of disease burden and is unaffected by the rituximab induced IgM flare, as well as plasmapheresis in patients with Waldenstrom’s macroglobulinemia. Clin. Lymph. Myeloma 2009;9:56–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×