Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T12:21:49.228Z Has data issue: false hasContentIssue false

Supplementary bibliography on life

Published online by Cambridge University Press:  10 November 2010

Mark A. Bedau
Affiliation:
Reed College, Oregon
Carol E. Cleland
Affiliation:
University of Colorado, Boulder
Get access
Type
Chapter
Information
The Nature of Life
Classical and Contemporary Perspectives from Philosophy and Science
, pp. 405 - 412
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ablondi, F. (1998). Automata, living and non-living: Descartes' mechanical biology and his criteria for life. Biology and Philosophy, 13, 179–188.CrossRefGoogle Scholar
Allen, C., Bekoff, M., & Lauder, G. (Eds.) (1997). Nature's purposes: Analyses of function and design in biology. Cambridge: MIT Press.Google Scholar
Bedau, M. A. & Humphreys, P. (Eds.) (2008). Emergence: Contemporary readings in philosophy and science. Cambridge: MIT Press.CrossRefGoogle Scholar
Boden, M. A. (2006). Mind as machine: A history of cognitive science. Oxford: Oxford University Press.Google Scholar
Code, A. & Moravcsik, J. (1992). Explaining various forms of living. In Nussbaum, M. C. & Rorty, A. O. (Eds.), Essays on Aristotle's De anima (pp. 129–145). Oxford: Clarendon Press.Google Scholar
Craver, C. F. & Darden, L. (2005). Introduction: Mechanisms then and now. Studies in the History and Philosophy of Biological and Biomedical Sciences, 36, 233–244.CrossRefGoogle Scholar
Des Chene, D. (2000). Spirits and clocks. Ithaca, NY: Cornell University Press.Google Scholar
Dick, S. J. (1982). Plurality of worlds: The origins of the extraterrestrial life debate from Democritus to Kant. Cambridge, UK: Cambridge University Press.Google Scholar
Gánti, T. (1975). Organization of chemical reactions into dividing and metabolizing units: The chemotons. Biosystems, 7, 15–21.CrossRefGoogle ScholarPubMed
Gánti, T. (1997). Biogenesis itself. Journal of Theoretical Biology, 187, 583–593.CrossRefGoogle Scholar
Gánti, T. (2003). The principles of life, with commentary by Griesemer, J. and Szathmáry, E.. New York: Oxford University Press.CrossRefGoogle Scholar
Ginsborg, H. (2001). Kant on understanding organisms as natural purposes. In Watkins, E. (Ed.), Kant and the sciences (pp. 231–258). Oxford: Oxford University Press.CrossRefGoogle Scholar
Gotthelf, A. & Lennox, J. G. (1987). Philosophical issues in Aristotle's biology. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Haldane, J. B. S. (1937). What is life? In Haldane, J. B. S., Adventures of a biologist (pp. 49–64). New York: Macmillian.Google Scholar
Haldane, J. B. S. (1947). What is life?New York: Boni and Gaer.Google Scholar
Haldane, J. B. S. (1929/1967). The origin of life. In Bernal, J. D. (Ed.), The origin of life (pp. 242–249). London: Weidenfeld & Nicolson.Google Scholar
Hazen, R. (2005). Genesis: The scientific quest for life's origin. Washington DC: Joseph Henry Press.Google Scholar
Matthews, G. B. (1996). Aristotle on life. In Nussbaum, M. C. & Rorty, A. O. (Eds.), Essays on Aristotle's De anima (pp. 185–193). Oxford: Clarendon PressGoogle Scholar
Mayr, E. (1982). The growth of biological thought. Cambridge, MA: Belknap Press.Google Scholar
Nussbaum, M. C. & Rortym, A. O. (1992). Essays on Aristotle's De anima. Oxford: Clarendon Press.Google Scholar
Oparin, A. I. (1936/1953). Origin of life, trans. Morgulis, S.. New York: Dover Publications.Google Scholar
Oparin, A. I. (1961). Life: Its nature, origin, and development, trans. Synge, A.. New York: Academic Press.Google Scholar
Richards, R. J. (2002). The romantic conception of life: Science and philosophy in the age of Goethe. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Sapp, J. (2003). Genesis: The evolution of biology. Oxford: Oxford University Press.CrossRefGoogle Scholar
Schrödinger, E. (1944). What is life? The physical aspect of the living cell. Cambridge, UK: Cambridge University Press.Google Scholar
Shields, C. (1999). The meaning of life. In Shields, C., Order in multiplicity (pp. 176–193). Oxford: Oxford University Press.Google Scholar
Waddington, C. (1961). The nature of life. London: George Allen & Unwin Ltd.Google Scholar
Weber, A. & Varela, F. (2002). Life after Kant: Natural purposes & the autopoietic foundations of biological individuality. Phenomenology and the Cognitive Sciences, 1, 97–125.CrossRefGoogle Scholar
Alberti, A. (1997). The origin of the genetic code and protein synthesis. Journal of Molecular Evolution, 45, 352–358.CrossRefGoogle ScholarPubMed
Bachmann, P., Luisi, P., & Lang, J. (1992). Autocatalytic self-replicating micelles as models for prebiotic structures. Nature, 357, 57–59.CrossRefGoogle Scholar
Banfield, J., Moreau, J., Chan, C., Welch, S., & Little, B. (2001). Mineralogical biosignatures and the search for life on Mars. Astrobiology, 1 (4), 447–465.CrossRefGoogle ScholarPubMed
Benner, S. & Hutter, D. (2002). Phosphates, DNA, and the search for nonterran life: A second generation model for genetic molecules. Bioorganic Chemistry, 30, 62–80.CrossRefGoogle Scholar
Bradley, J., Harvey, R., & McSween, H. (1997). No ‘nanofossils’ in Martian meteorite. Nature, 390, 454–455.CrossRefGoogle ScholarPubMed
Cairns-Smith, A. G. (1982). Genetic takeover and the mineral origins of life. Cambridge, UK: Cambridge University Press.Google Scholar
Cairns-Smith, A. G., Hall, A., & Russell, M. (1992). Mineral theories of the origin of life and an iron sulfide example. Origins of Life and the Evolution of the Biosphere, 22, 161–180.CrossRefGoogle Scholar
Chyba, C. F. & McDonald, G. (1995). The origin of life in the solar system: Current issues. Annual Review Earth Planetary Sciences, 23, 215–249.CrossRefGoogle ScholarPubMed
Chyba, C. F. & Phillips, C. (2001). Possible ecosystems and the search for life on Europa. Proceedings of the National Academy of Sciences, 98, 801–804.CrossRefGoogle ScholarPubMed
Cleland, C. E. (2007). Epistemological issues in the study of microbial life: Alternative terran biospheres?Studies in History and Philosophy of Biological & Biomedical Sciences, 38, 847–861.CrossRefGoogle Scholar
Cleland, C. E. & Chyba, C. F. (2002). Defining ‘life.’. Origins of Life and the Evolution of the Biosphere, 32, 387–393.CrossRefGoogle Scholar
Crick, F. (1968). The origin of the genetic code. Journal of Molecular Biology, 38, 367–379.CrossRefGoogle ScholarPubMed
Cronin, J. & Chang, S. (1993). Organic matter in meteorites: Molecular and isotopic analysis of the Murchison meteorite. In Greenberg, J. M., Mendoza-Gómez, C. X., & Pirronello, V. (Eds.), The chemistry of life's origin (pp. 205–258). Dordrecht: Kluwer Academic Publishers.Google Scholar
Darling, D. (2001). Life everywhere: The maverick science of astrobiology. New York: Basic Books.Google Scholar
Davies, P. (1995). Are we alone?New York: Basic Books.Google Scholar
Davies, P. C. W. & Lineweaver, C. H. (2005). Finding a second sample of life on Earth. Astrobiology, 5 (2), 154–163.CrossRefGoogle ScholarPubMed
Davies, P. C. W., Benner, S. A., Cleland, C. E., Lineweaver, C. H., McKay, C. P., & Wolfe-Simon, F. (2009). Signatures of a shadow biosphere. Astrobiology, in press.CrossRef
Deamer, D. W. (1997). The first living systems: A bioenergetic perspective. Microbiology and Molecular Biology Review, 61, 239–261.Google ScholarPubMed
Duve, C. (1995). Vital dust: Life as a cosmic imperative. New York: Basic Books.Google Scholar
Duve, C. (2002). Life evolving: Molecules, mind, and meaning. New York: Oxford University Press.Google Scholar
Des Marais, D. & Walter, M. (1999). Astrobiology: Exploring the origins, evolution, and distribution of life. Annual Review of Ecology and Systematics, 30, 397–420.CrossRefGoogle ScholarPubMed
Dick, S. J. (1996). The biological universe: The twentieth century extraterrestrial life debate and the limits of science. Cambridge, UK: Cambridge University Press.Google Scholar
DiGiulio, M. (1997). On the origin of the genetic code. Journal of Theoretical Biology, 187, 573–581.CrossRefGoogle Scholar
DiGregorio, B. E., Levin, G. V., & Straat, P. A. (1997). Mars, the living planet. Berkeley: Frog Books.Google Scholar
Donaldson, D. J., Tervahattu, H., Tuck, A. F., & Vaida, V. (2004). Organic aerosols and the origin of life: An hypothesis. Origins of Life and the Evolution of the Biosphere, 34, 57–67.CrossRefGoogle ScholarPubMed
Dyson, F. (1982). A model for the origin of life. Journal of Molecular Evolution, 18, 344–350.CrossRefGoogle ScholarPubMed
Dyson, F. (1985). Origins of life. Cambridge, UK: Cambridge University Press.Google Scholar
Eigen, M. (1971). Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften, 58, 465–523.CrossRefGoogle Scholar
Eigen, M. (1992). Steps towards life. Oxford: Oxford University Press.Google Scholar
Ferris, J. (1987). Prebiotic synthesis: Problems and challenges. Cold Spring Harbor Symposium on Quantitative Biology, 55, 29–35.CrossRefGoogle Scholar
Fox, S. (1960). How did life begin?Science, 132, 200–208.CrossRefGoogle ScholarPubMed
Fry, I. (2000). The emergence of life on earth: A historical and scientific overview. London: Rutgers University Press.Google Scholar
Gesteland, R. F., Cech, T. R., & Atkins, J. F. (Eds.) (1999). The RNA world. New York: Cold Spring Harbor.Google Scholar
Gilbert, W. (1986). The RNA world. Nature, 319, 618.CrossRefGoogle Scholar
Golden, D. C., Ming, D. W., Morris, R. V., et al. (2004). Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001. American Mineralogist, 89, 681–695.CrossRefGoogle Scholar
Grinspoon, D. (2004). Lonely planets: The natural philosophy of alien life. New York: HarperCollins.Google Scholar
Horgan, J. (1991). In the beginning … Scientific American, February, 114, 125.Google Scholar
Irvine, W. (1998). Extraterrestrial organic matter. Origins of Life and the Evolution of the Biosphere, 28, 365–383.CrossRefGoogle ScholarPubMed
Kamminga, H. (1982). Life from space—A history of panspermia. Vistas in Astronomy, 26, 67–86.CrossRefGoogle Scholar
Kauffman, S. (1986). Autocatalytic sets of proteins. Journal of Theoretical Biology, 119, 1–24.CrossRefGoogle ScholarPubMed
Kerr, R. (1998). Requiem for life on Mars? Support for microbes fades. Science, 282, 1398–1400.CrossRefGoogle ScholarPubMed
Klein, H. (1978). The Viking biological experiments on Mars. Icarus, 34, 666–674.CrossRefGoogle Scholar
Léger, A.J., Pirre, M., & Marceau, F. (1993). Search for primitive life on a distant planet: Relevance of O2 and O3 detections. Astronomy and Astrophysics, 277, 309–313.Google Scholar
Lifson, S. (1997). On the crucial stages in the origin of animated matter. Journal of Molecular Evolution, 44, 1–8.CrossRefGoogle Scholar
Luisi, P. (1993). Defining the transition to life: Self-replicating bounded structures and chemical autopoiesis. In Stein, W. and Varela, F. (Eds.), Thinking about biology (pp. 3–23). Redwood City, CA: Addison-Wesley.Google Scholar
Maurette, M. (1998). Carbonaceous micrometeorites and the origin of life. Origins of Life and the Evolution of the Biosphere, 28, 385–412.CrossRefGoogle ScholarPubMed
Maynard Smith, J. & Szathmáry, E. (1999). The origins of life: From the birth of life to the origins of language. New York: Oxford University Press.Google Scholar
McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., et al. (1996). Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science, 273, 924–930.CrossRefGoogle ScholarPubMed
McKay, C. (1997). The search for life on Mars. Origins of Life and the Evolution of the Biosphere, 27, 263–289.CrossRefGoogle ScholarPubMed
McNichol, J. (2008). Historical review: Primordial soup, fool's gold, and spontaneous generation. Biochemistry and Molecular Biology Education, 36, 255–261.CrossRefGoogle Scholar
Miller, S. L. (1953). A production of amino acids under possible primitive Earth conditions. Science, 117, 528–529.CrossRefGoogle ScholarPubMed
Miller, S. (1992). The prebiotic synthesis of organic components as a step toward the origin of life. In Schopf, J. (Ed.), Major events in the history of life (pp. 1–28). Boston: Jones and Bartlett Publishers.Google Scholar
Miller, S. & Bada, J. (1988). Submarine hot springs and the origin of life. Nature, 334, 155–176.CrossRefGoogle ScholarPubMed
Mojzsis, S., Arrhenius, G., McKeegan, K., Harrison, T., Nutman, A., & Friend, C. (1996). Evidence for life on Earth before 3800 million years ago. Nature, 384, 55–59.CrossRefGoogle ScholarPubMed
Morowitz, H. J. (1992). Beginnings of cellular life: Metabolism recapitulates biogenesis. New Haven: Yale University Press.Google Scholar
Morowiz, H. J. (1999). A theory of biochemical organization, metabolic pathways, and evolution. Complexity, 4, 39–53.3.0.CO;2-2>CrossRefGoogle Scholar
,National Research Council (2007). The limits of organic life in planetary systems. Washington DC: National Academies Press.
Nealson, K. & Conrad, P. (1999). Life: Past, present, and future. Philosophical Transactions of the Royal Society of London B, 354, 1923–1939.CrossRefGoogle Scholar
Nealson, K., Tsapin, A., & Storrie-Lombardi, M. (2002). Searching for life in the universe: Unconventional methods for an unconventional problem. International Microbiology, 5 (4), 223–230.Google ScholarPubMed
O'Malley, M. A. & Dupré, J. (2007). Metagenomics and biological ontology. Studies in History and Philosophy of Biological and Biomedical Sciences, 38, 834–846.Google Scholar
O'Malley, M. A. & Dupré, J. (2007). Size doesn't matter: Towards a more inclusive philosophy of biology. Biology and Philosophy, 22, 155–191.CrossRefGoogle Scholar
Orgel, L. E. (1986). RNA catalysis and the origin of life. Journal of Theoretical Biology, 123, 127–144.CrossRefGoogle Scholar
Orgel, L. E. (1994). The origin of life on the Earth. Scientific American, 271, 76–83.CrossRefGoogle ScholarPubMed
Orgel, L. (2004). Prebiotic chemistry and the origin of the RNA world. Critical Reviews in Biochemistry and Molecular Biology, 39, 99–123.Google ScholarPubMed
Rode, B. (1999). Peptides and the origin of life. Peptides, 20, 773–786.CrossRefGoogle ScholarPubMed
Russell, M., Hall, A., Cairns-Smith, A. G., & Braterman, P. (1988). Submarine hot springs and the origin of life. Nature, 336, 117.CrossRefGoogle Scholar
Sagan, C. (1974). The origin of life in a cosmic context. Origins of Life and the Evolution of the Biosphere, 5, 497–505.CrossRefGoogle Scholar
Sagan, C. (1994). The search for extraterrestrial life. Scientific American, 271 (4), 92–99.CrossRefGoogle ScholarPubMed
Schneider, E. & Kay, J. (1994). Life as a manifestation of the second law of thermodynamics. Mathematical and Computer Modeling, 19 (6–8), 25–48.CrossRefGoogle Scholar
Schulze-Makuch, D. & Irwin, L. N. (2004). Life in the universe: Expectations and constraints. Berlin: Springer-Verlag.Google Scholar
Seckbach, J. (Ed.) (2006). Life as we know it. Dordrecht: Springer.CrossRefGoogle Scholar
Segré, D. & Lancet, D. (2000). Composing life. EMBO Reports, 1, 217–222.CrossRef
Segré, D., Ben-Eli, D., Deamer, D. W., & Lancet, D. (2001). The lipid world. Origins of Life and the Evolution of the Biosphere, 31, 119–145.CrossRefGoogle ScholarPubMed
Shapiro, R. (1986). Origins: A skeptic's guide to the creation of life on Earth. New York: Bantam Books.Google Scholar
Shapiro, R. (1999). Planetary dreams. New York: Wiley & Sons.Google Scholar
Sullivan, W. T. & Baross, J. A. (2007). Planets and life: The emerging science of astrobiology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Wächtershäuser, G. (1990). The case for the chemoautotrophic origin of life in an iron-sulfide world. Origins of Life and the Evolution of the Biosphere, 20 (2), 173–176.CrossRefGoogle Scholar
Wächtershäuser, G. (1992). Groundworks for an evolutionary biochemistry: The iron-sulfur world. Progress in Biophysics and Molecular Biology, 58, 85–201.CrossRefGoogle Scholar
Ward, P. (2005). Life as we do not know it: The NASA search for (and synthesis of) alien life. New York: Viking Penguin.Google Scholar
Ward, P. D. & Brownlee, D. (2000). Rare Earth: Why complex life is uncommon in the universe. New York: Springer-Verlag.Google Scholar
Wharton, D. (2002). Life at the limits: Organisms in extreme environments. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Whittet, D. (1997). Is extraterrestrial organic matter relevant to the origin of life on Earth?Origins of Life and the Evolution of the Biosphere, 27, 249–262.CrossRefGoogle ScholarPubMed
Willis, C. & Bada, J. (2000). The spark of life: Darwin and the primeval soup. Cambridge, MA: Perseus Publishing.Google Scholar
Woese, C. (1998). The universal ancestor. Proceedings of the National Academy of Sciences, 95, 6854–6859.CrossRefGoogle ScholarPubMed
Woese, C. (2004). A new biology for a new century. Microbiology and Molecular Biology Reviews, 86, 173–186.CrossRefGoogle Scholar
Woese, G. E. & Fox, E. (1977). Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences, 74, 5088–5090.CrossRefGoogle ScholarPubMed
Yockey, H. (2000). Origin of life on Earth and Shannon's theory of communication. Computational Chemistry, 24, 105–123.CrossRefGoogle Scholar
Adami, C. (1998). Introduction to artificial life. New York: Springer-Verlag.CrossRefGoogle Scholar
Bagley, R. & Farmer, J. D. (1992). Spontaneous emergence of a metabolism. In Langton, C. G., Taylor, C., Farmer, J. D., & Rasmussen, S. (Eds.), Artificial life II (Santa Fe Institute studies in the sciences of complexity, proceedings vol. X) (pp. 93–140). Redwood City, CA: Addison Wesley.Google Scholar
Baker, D., Church, G., Collins, J., Endy, D., Jacobson, J., Keasling, J., & Modrich, P. (2006). Engineering life: Building a fab for biology. Scientific American, 294, 44–51.CrossRefGoogle Scholar
Bedau, M. A. (2003). Artificial life: Organization, adaptation, and complexity from the bottom up. Trends in Cognitive Science, 7 (11), 505–512.CrossRefGoogle ScholarPubMed
Bedau, M. A. (2007). Artificial life. In Matthen, M. & Stephens, C. (Eds.), Handbook of the philosophy of biology (pp. 585–603). Amsterdam: Elsevier.CrossRefGoogle Scholar
Bedau, M., McCaskill, J., Packard, N., et al. (2000). Open problems in artificial life. Artificial Life, 6, 363–376.CrossRefGoogle ScholarPubMed
Bedau, M. A. & Parke, E. (Eds.) (2009). The prospect of protocells: Social and ethical implications of recreating life. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Beer, R. D. (1990). Intelligence as adaptive behavior: An experiment in computational neuroethology. Boston: Academic Press.Google Scholar
Boden, M. A. (Ed.) (1996). The philosophy of artificial life. Oxford: Oxford University Press.Google Scholar
Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. Oxford: Oxford University Press.Google Scholar
Bongard, J., Zykov, V., & Lipson, H. (2006). Resilient machines through continuous self-modeling. Science, 314, 1118–1121.CrossRefGoogle ScholarPubMed
Brooks, R. A. (1990). Elephants don't play chess. Robotics and Autonomous Systems, 6, 3–15.CrossRefGoogle Scholar
Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence Journal, 47, 139–160.CrossRefGoogle Scholar
Brooks, R. (2001). The relationship between matter and life. Nature, 409 (6818), 409–411.CrossRefGoogle ScholarPubMed
Brooks, R. (2002). Flesh and machines: How robots will change us. New York: Pantheon.Google Scholar
Chakrabarti, A., Breaker, R. R., Joyce, G. F., & Deamer, D. (1994). Production of RNA by a polymerase protein encapsulated within phospholipid vesicles. Journal of Molecular Evolution, 39, 555–559.CrossRefGoogle ScholarPubMed
Cho, M. K., Magnus, D., Caplan, A. L., McGee, D., & ,The Ethics of Genomics Group (1999). Ethical considerations in synthesizing a minimal genome. Science, 286 (5447), 2087–2090.CrossRefGoogle ScholarPubMed
Clark, A. (1997). Being there: Putting brain, body, and world together again. Cambridge, MA: MIT Press.Google Scholar
Deamer, D. (1997). The first living systems: A bioenergetic perspective. Microbiology and Molecular Biology Review, 61 (2), 21–38.Google ScholarPubMed
Eigen, M. (1971). The molecular quasispecies. Naturwissenschaften, 58, 465–523.CrossRefGoogle Scholar
Elman, J. (1998). Connectionism, artificial life, and dynamical systems: New approaches to old questions. In Bechtel, W. & Graham, G. (Eds.), A companion to cognitive science (pp. 488–505). Oxford: Basil Blackwell.Google Scholar
Emmeche, C. (1992). Life as an abstract phenomenon: Is artificial life possible? In Varela, F. & Bourgine, P. (Eds.), Towards a practice of autonomous systems (pp. 466–474). Cambridge, MA: Bradford Books/MIT Press.Google Scholar
Emmeche, C. (1994). The garden in the machine. Princeton: Princeton University Press.Google Scholar
Emmeche, C. (1994). Is life a multiverse phenomenon? In Langton, C. G. (Ed.), Artificial life III (Santa Fe Institute studies in the sciences of complexity, proceedings vol. XVII) (pp. 553–568). Redwood City, CA: Addison-Wesley.Google Scholar
Farmer, J. D. & Belin, A. (1992). Artificial life: The coming evolution. In Langton, C. G., Taylor, C., Farmer, J. D., & Rasmussen, S. (Eds.) Artificial Life II (Santa Fe Institute studies in the sciences of complexity, proceedings vol. X) (pp. 815–840). Redwood City, CA: Addison Wesley.Google Scholar
Farmer, J. D., Lipids, A., Packard, N., & Wendroff, B. (Eds.) (1986). Evolution, games, and learning: Models for adaptation for machines and nature. Amsterdam: North Holland.Google Scholar
Fontana, W. & Buss, L. (1994). What would be conserved if the tape were played again?Proceedings of the National Academy of Sciences, 91, 757–761.CrossRefGoogle Scholar
Fraser, C. M., Gocayne, J. D., White, O., et al. (1995). The minimal gene component of Mycoplasma genitalium. Science, 270, 397–403.CrossRefGoogle ScholarPubMed
Gibson, D. G., Benders, G. A., Andrews-Pfannkoch, C., et al. (2008). Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science, 319, 1215–1220.CrossRefGoogle ScholarPubMed
Gibson, D. G., Glass, J. I., Lartigue, C., et al. (2010). Creation of a bacterial cell controlled by a chemically synthetized genome. Science, 329, 52–56.CrossRefGoogle Scholar
Hanczyc, M. M., Fujikawa, S. M., & Szostak, J. W. (2003). Experimental models of primitive cellular components: Encapsulation, growth, and division. Science, 320, 618–622.CrossRefGoogle Scholar
Holland, J. H. (1992). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence (expanded 2nd ed.). Cambridge, MA: MIT Press.Google Scholar
Holland, J. H. (1995). Hidden order: How adaptation builds complexity. New York: Helix Books.Google Scholar
Hutchison, C. A., Peterson, S. N., Gill, S. R., et al. (1999). Global transposon mutagenesis and a minimal Mycoplasma genome. Science, 286, 2165–2169.CrossRefGoogle Scholar
Kaneko, K. (2006). Life: An introduction to complex systems biology. Berlin: Springer.CrossRefGoogle Scholar
Kauffman, S. A. (1993). The origins of order: Self-organization and selection in evolution. New York: Oxford University Press.Google Scholar
Keeley, B. (1996). Evaluating artificial life and artificial organisms. Artificial Life, 5, 264–271.Google Scholar
Keeley, B. (1998). Artificial life for philosophers. Philosophical Psychology, 11 (2), 251–260.CrossRefGoogle Scholar
Korzeniewski, B. (2004). Confrontation of the cybernetic definition of a living individual with the real world. Acta Biotheoretica, 53 (1), 1–28.CrossRefGoogle Scholar
Landecker, H. (2007). Culturing life: How cells became technologies. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Langton, C. G. (1986). Studying artificial life with cellular automata. Physica, 22D, 120–149.Google Scholar
Langton, C. G. (1989). Artificial life. In Langton, C. G. (Ed.), Artificial life (Santa Fe Institute studies in the sciences of complexity, proceedings vol. IV) (pp. 1–47). Redwood City, CA: Addison-Wesley.Google Scholar
Lartigue, C., Glass, J. I., Alperovich, N., et al. (2007). Genome transplantation in bacteria: Changing one species to another. Science, 317, 632–638.CrossRefGoogle Scholar
Lee, D. H., Granja, J. R., Severin, K., & Ghadiri, M. R. (1996). A self-replicating peptide. Nature, 382, 525–526.CrossRefGoogle ScholarPubMed
Lenski, R. E., Ofria, C., Pennock, R. T., & Adami, C. (2003). The evolutionary origin of complex features. Nature, 423, 139–144.CrossRefGoogle ScholarPubMed
Luisi, P. L. (1996). Self-reproduction of micelles and vesicles: Models for the mechanisms of life from the perspective of compartmented chemistry. Advances in Chemistry and Physics, 92, 425–438.Google Scholar
Maynard Smith, J. (1992). Byte-sized evolution. Nature, 355, 772–773.CrossRefGoogle Scholar
Monnard, P. A. & Deamer, D. (2002). Membrane self-assembly processes: Steps toward the first cellular life. The Anatomical Record, 268, 196–207.CrossRefGoogle ScholarPubMed
Mouritsen, O. G. (2005). Life—As a matter of fat: The emerging science of lipidomics. Berlin: Springer-Verlag.Google Scholar
Noireaux, V. & Libchaber, A. (2004). A vesicle bioreactor as a step toward an artificial cell assembly. Proceedings of the National Academy of Sciences, 101, 17,669–17,674.CrossRefGoogle ScholarPubMed
Nolfi, S. & Floreano, D. (2000). Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines. Cambridge, MA: MIT Press.Google Scholar
Nolfi, S. & Floreano, D. (2002). Synthesis of autonomous robots through evolution. Trends in Cognitive Science, 6, 31–37.CrossRefGoogle ScholarPubMed
Oberholzer, T., Albrizio, M., & Luisi, P. L. (1995). Polymerase chain reaction in liposomes. Chemistry and Biology, 2, 677–682.CrossRefGoogle Scholar
Olsen, E. (1997). Ontological basis of strong artificial life. Artificial Life, 3, 29–39.CrossRefGoogle Scholar
Patte, H. H. (1996). Simulations, realizations, and theories of life. In Boden, M. A. (Ed.), The philosophy of artificial life (pp. 379–393). Oxford: Oxford University Press.Google Scholar
Pfeiffer, R., Bongard, J. C., Brooks, R., & Iwasawa, S. (2006). How the body shapes the way we think: A new view of intelligence. Cambridge, MA: MIT Press.Google Scholar
Pohorille, A. & Deamer, D. (2002). Artificial cells: Prospects for biotechnology. Trends in Biotechnology, 20 (3), 123–128.CrossRefGoogle ScholarPubMed
Pollack, J. B., Lipson, H., Hornby, G., & Funes, P. (2001). Three generations of automatically designed robots. Artificial Life, 7, 215–223.CrossRefGoogle ScholarPubMed
Putman, H. (1964). Robots: Machines or artificially created life?Journal of Philosophy, 61 (21), 668–691.CrossRefGoogle Scholar
Rasmussen, S., Baas, N. A., Mayer, B., Nilsson, M., & Olesen, M. W. (2001). Ansatz for dynamical hierarchies. Artificial Life, 7, 329–353.CrossRefGoogle ScholarPubMed
Rasmussen, S., Chen, L., Nilsson, M., & Abe, S. (2003). Bridging nonliving and living matter. Artificial Life, 9, 269–316.CrossRefGoogle ScholarPubMed
Rasmussen, S., Chen, L., Deamer, D., et al. (2004). Transitions from nonliving to living matter. Science, 303, 963–965.CrossRefGoogle ScholarPubMed
Rasmussen, S., Bedau, M. A., Chen, L., et al. (2008). Protocells: Bridging nonliving and living matter. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Ray, T. S. (1992). An approach to the synthesis of life. In Langton, C. G., Taylor, C., Farmer, J. D., & Rasmussen, S. (Eds.), Artificial life II (Santa Fe Institute studies in the sciences of complexity, proceedings vol. X) (pp. 371–408). Redwood City, CA: Addison-Wesley.Google Scholar
Ray, T. (1994). An evolutionary approach to synthetic biology: Zen and the art of creating life. Artificial Life, 1, 179–210.CrossRefGoogle Scholar
Regis, E. (2008). What is life? Investigating the nature of life in the age of synthetic biology. New York: Farrar, Straus, and Giroux.Google Scholar
Sagre, D., Ben-Eli, D., & Lancet, D. (2000). Compositional genomes: Prebiotic information transfer in mutually catalytic noncovalent assemblies. Proceedings of the National Academy of Sciences, 97, 4112–4117.CrossRefGoogle Scholar
Sipper, M. (1998). Fifty years of research on self-replication: An overview. Artificial Life, 4, 237–257.CrossRefGoogle ScholarPubMed
Solé, R. V, Rasmussen, S., & Bedau, M. A. (Eds.) (2007). Towards the artificial cell. Philosophical Transactions of the Royal Society B, 362 (1486), 1723–1925.Google Scholar
Szostak, J. W., Bartel, D. P., & Luisi, P. L. (2001). Synthesizing life. Nature, 409 (6818), 387–390.CrossRefGoogle ScholarPubMed
Takakura, K., Toyota, T., & Sugawara, T. (2003). A novel system of self-reproducing giant vesicles. Journal of the American Chemical Society, 125, 8134–8140.CrossRefGoogle ScholarPubMed
Taylor, T. & Massey, C. (2001). Recent developments in the evolution of morphologies and controllers for physically simulated creatures. Artificial Life, 7, 77–87.CrossRefGoogle ScholarPubMed
Kiedrowski, G. (1986). A self-replicating hexadeoxynucleotide. Angewandte Chemie, 25, 932–935.CrossRefGoogle Scholar
Neumann, J. (1966). Theory of self-reproducing automata. Urbana-Champagne: University of Illinois Press.Google Scholar
Walde, P., Wick, R., Fresta, M., Mangone, A., & Luisi, P. L. (1994). Autopoietic self-reproduction of fatty acid vesicles. Journal of the American Chemical Society, 116, 11,649–116,454.CrossRefGoogle Scholar
Wiener, N. (1948). Cybernetics, or control and communication in the animal and the machine. Cambridge, MA: MIT Press.Google ScholarPubMed
Wolfram, S. (1994). Cellular automata and complexity. Redwood City, CA: Addison-Wesley.Google Scholar
Zimmer, C. (2008). Microcosmos: E. coli and the new science of life. New York: Pantheon Books.Google Scholar
Auffray, C., Imbeaud, S., Roux-Rouquie, M., & Hood, L. (2003). Self-organized living systems: Conjunction of a stable organization with chaotic fluctuations in biological space-time. Philosophical Transactions of the Royal Society of London A, 361, 1125–1139.CrossRefGoogle ScholarPubMed
Bedau, M. A. (1996). The nature of life. In Boden, M. A. (Ed.), The philosophy of artificial life (pp. 332–357). New York: Oxford University Press.Google Scholar
Bedau, M. A. (2007). What is life? In Sarkar, S. & Plutynski, A. (Eds.), A companion to the philosophy of biology (pp. 455–471). New York: Blackwell.CrossRefGoogle Scholar
Benner, S. & Switzer, C. (1999). Chance and necessity in biomolecular chemistry: Is life as we know it universal? In Frauenfelder, H., Deisenhofer, J., & Wolynes, P. (Eds.), Simplicity and complexity in protein and nucleic acids (pp. 339–363). Berlin: Dahlem University Press.Google Scholar
Bruggeman, F., Westerhoff, H., & Boogerd, F. (2002). Biocomplexity: A pluralist research strategy is necessary for a mechanistic explanation of the ‘live’ state. Philosophical Psychology, 15, 411–440.CrossRefGoogle Scholar
Clark, B. (2001). Astrobiology's central dilemma: How can we detect life if we cannot even define it?American Astronomical Society, 33, 1152.Google Scholar
Cleland, C. E. (2010). The quest for a universal theory of life: Searching for life as we don't know it. Cambridge: Cambridge University Press, forthcoming.Google Scholar
Crick, F. (1981). Life itself: Its origin and nature. New York: Simon and Schuster.Google Scholar
Davies, P. (1999). The fifth miracle. New York: Simon & Schuster.Google Scholar
Dennett, D. C. (1995). Darwin's dangerous idea: Evolution and the meanings of life. New York: Simon and Schuster.Google Scholar
Eigen, M. (1992). Steps toward life. Oxford: Oxford University Press.Google Scholar
Farmer, J. D. (2005). Cool is not enough. Nature, 436 (7051), 627–628.CrossRefGoogle Scholar
Feldman, F. (1992). Confrontations with the Reaper: A philosophical study of the nature and value of death. New York: Oxford University Press.Google Scholar
Fleischacker, G. (1989). Autopoiesis: The status of its system logic. BioSystems, 22, 37–49.CrossRefGoogle Scholar
Fleischaker, G. (1990). Origins of life: An operational definition. Origins of Life and the Evolution of the Biosphere, 20, 127–137.CrossRefGoogle Scholar
Fong, P. (1973). Thermodynamic statistical theory of life: An outline. In Locker, A. (Ed.), Biogenesis, evolution, homeostasis: A symposium by correspondence (pp. 93–101). Berlin: Springer-Verlag.CrossRefGoogle Scholar
Godfrey-Smith, P. (1994). Spencer and Dewey on life and mind. In Brooks, R. & Maes, P. (Eds.), Artificial life IV (proceedings of the 4th international workshop on the synthesis and simulation of living systems) (pp. 80–89). Cambridge, MA: MIT Press/Bradford Books.Google Scholar
Jonas, H. (1966). The phenomenon of life: Toward a philosophical biology. New York: Dell.Google Scholar
Kauffman, S. (2000). Investigations. New York: Oxford University Press.Google Scholar
Kauffman, S. A. (1995). At home in the universe: The search for laws of self-organization and complexity. New York: Oxford University Press.Google Scholar
Keller, E. F. (2002). Making sense of life: Explaining biological development with models, metaphors, and machines. Cambridge, MA: Harvard University Press.Google Scholar
Korzeniewski, B. (2001). Cybernetic formulation of the definition of life. Journal of Theoretical Biology, 209, 275–286.CrossRefGoogle ScholarPubMed
Lovelock, J. (1979). Gaia: A new look at life on Earth. New York: Oxford University Press.Google Scholar
Luisi, P. L. (1998). About various definitions of life. Origins of Life and the Evolution of the Biosphere, 28, 613–622.CrossRefGoogle ScholarPubMed
Luisi, P. L. (2006). The emergence of life: From chemical origins to synthetic biology. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Margulis, L. & Sagan, D. (1995). What is life?Berkeley: University of California Press.Google Scholar
Maturana, H. & Varela, F. (1980). Autopoiesis and cognition: The realization of the living. Boston: D. Reidel.CrossRefGoogle Scholar
Maturana, H. R. & Varela, F. J. (1987/1992). The tree of knowledge: The biological roots of human understanding (revised ed.). Boston: Shambhala.Google Scholar
Maynard Smith, J. (1995). Life at the edge of chaos?New York Review of Books, 2, 28–30.Google Scholar
Miller, J. G. (1978). Living systems. New York: McGraw-Hill.Google Scholar
Morán, F., Moreno, A., Minch, E., & Montero, F. (1997). Further steps towards a realistic description of the essence of life. Artificial Life, 5, 255–263.Google Scholar
Murphy, M. & O'Neill, L. (1995). What is life? The next fifty years: Speculations on the future of biology. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Pályi, G., Zucchi, C., & Caglioti, L. (Eds.) (2002). Fundamentals of life. New York: Elsevier.Google Scholar
Popa, R. (2004). Between necessity and probability: Searching for the definition and origin of life. Berlin: Springer.Google Scholar
Rizzotti, M. (Ed.) (1996). Defining life. Padova: Padova University Press.Google Scholar
Rosen, R. (1991). Life itself: A comprehensive inquiry into the nature, origin, and fabrication of life. New York: Columbia University Press.Google Scholar
Rosen, R. (2000). Essays on life itself. New York: Columbia University Press.Google Scholar
Schneider, E. D. (2004). Gaia: Toward a thermodynamics of life. In Schneider, S. H., Miller, J. R., Christ, E., and Boston, P. J. (Eds.), Scientists debate Gaia (pp. 45–56). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Schulze-Makuch, D., Guan, H., Irwin, L., & Vega, E. (2002). Redefining life: An ecological, thermodynamic, and bioinformatics approach. In Pályi, G., Zucchi, C., and Caglioti, L. (Eds.), Fundamentals of life (pp. 169–180). New York: Elsevier.Google Scholar
Solé, R., & Goodwin, B. (2000). Signs of life: How complexity pervades biology. New York: Basic Books.Google Scholar
Sterelny, K. (1995). Understanding life: Recent work in philosophy of biology. British Journal of the Philosophy of Science, 46, 115–183.CrossRefGoogle Scholar
Sterelny, K. (1997). Universal biology. British Journal of the Philosophy of Science, 48, 587–601.CrossRefGoogle Scholar
Thompson, E. (2007). Mind in life: Phenomenology, and the sciences of the mind. Cambridge, MA: Harvard University Press.Google Scholar
Thompson, M. (1995). The representation of life. In Hursthouse, R., Lawrence, G., & Quinn, W. (Eds.), Virtues and reasons (pp. 247–296). Oxford: Clarendon Press.Google Scholar
Varela, F., Maturana, H., & Uribe, R. (1974). Autopoiesis: The organization of living systems, its characterization and a model. BioSystems, 5, 187–196.CrossRefGoogle ScholarPubMed
Weber, B. (2003). Life. In Zalta, E. (Ed.), The Stanford encyclopedia of philosophy (Spring 2006 ed.). Available online at http://plato.stanford.edu/archives/spr2006/entries/life/(accessed November 2008).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×