Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T11:54:49.579Z Has data issue: false hasContentIssue false

5 - Convergence of leptin and insulin signaling networks in obesity

Published online by Cambridge University Press:  15 September 2009

Calum Sutherland
Affiliation:
Division of Pathology and Neurosciences, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
Mike Ashford
Affiliation:
Division of Pathology and Neurosciences, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY UK
Jenni Harvey
Affiliation:
University of Dundee
Dominic J. Withers
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

Introduction

Leptin (a 146 residue peptide) and insulin (a 30 amino acid dipeptide) are synthesized in distinct locations in the periphery but share a common function of long-term regulation of body weight and energy balance through direct alterations in hypothalamic arcuate nucleus (ARC) signaling (Sahu, 2004; Cone, 2005). Insulin is synthesized as a prohormone almost exclusively by pancreatic β-cells, and secreted into plasma in response to rising glucose levels. The mRNA for insulin has been found in some brain areas, suggesting that specific neurons may be capable of producing an ‘insulin-like’ peptide. Meanwhile leptin is synthesized and secreted mainly by adipocytes, and circulating levels are normally related to adiposity (Zhang et al., 1994; Frederich et al., 1995; Considine et al., 1996). There is some evidence that leptin is also produced by cells of the immune system such as T-cells and macrophages, bone, skeletal muscle, placenta, stomach, hypothalamus and by stellate cells of the liver. Direct administration of either hormone to the ARC has significant effects on feeding and body weight, while both hormones can cross the blood–brain barrier, probably via specific and saturable transport systems (Niswender & Schwartz, 2003; Niswender et al., 2004). Leptin and insulin stimulate proopiomelanocortin (POMC) expressing neurons in the ARC, resulting in processing of POMC to α-melanocyte-stimulating hormone (α-MSH) and subsequent activation of the melanocortin-3 and -4 receptors, leading to anorexigenic outputs.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, F., Considine, R. V., Bauer, T. L., Ohannesian, J. P., Marco, C. C. & Goldstein, B. J. (1997). Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein-tyrosine phosphatases in adipose tissue. Metabolism 46, 1140–5.CrossRefGoogle ScholarPubMed
Ahmed, Z. & Pillay, T. S. (2003). Adapter protein with a pleckstrin homology (PH) and an Src homology 2 (SH2) domain (APS) and SH2-B enhance insulin-receptor autophosphorylation, extracellular-signal-regulated kinase and phosphoinositide 3 kinase-dependent signaling. Biochem. J. 371, 405–12.CrossRefGoogle Scholar
Alessi, D. R. & Downes, C. P. (1998). The role of PI 3-kinase in insulin action. Biochim. Biophys. Acta 1436, 151–64.CrossRefGoogle ScholarPubMed
Andersson, U., Filipsson, K., Abbott, C. R.et al. (2004). AMPK plays a role in the control of food intake. J. Biol. Chem. 279, 12 005– 8.CrossRefGoogle Scholar
Andreelli, F., Foretz, M., Knauf, C.et al. (2006). Liver adenosine monophosphate-activated kinase alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology 147, 2432–41.CrossRefGoogle Scholar
Bandyopadhay, G., Standaert, M. L., Zhao, L.et al. (1997). Activation of protein kinase C (α, β and ζ) by insulin in 3T3/L1 cells. J. Biol. Chem. 272, 2551–8.CrossRefGoogle Scholar
Banks, A. S., Davis, S. M., Bates, S. H. & Myers, M. G. Jr. (2000). Activation of downstream signals by the long form of the leptin receptor. J. Biol. Chem. 275, 14 563–72.CrossRefGoogle Scholar
Bates, S. H., Stearns, W. H., Dundon, T. A.et al. (2003). STAT3 signaling is required for leptin regulation of energy balance but not reproduction. Nature 421, 856–9.CrossRefGoogle Scholar
Baumann, H., Morella, K. K., White, D. W.et al. (1996). The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc. Natl. Acad. Sci. USA 93, 8374–8.CrossRefGoogle ScholarPubMed
Beebe, S. J., Redmon, J. B., Blackmore, P. F. & Corbin, J. D. (1985). Discriminative insulin antagonism of stimulatory effects of various cAMP analogs on adipocyte lipolysis and hepatocyte glycogenolysis. J. Biol. Chem. 260, 15 781–8.Google ScholarPubMed
Benomar, Y., Roy, A. F., Aubourg, A., Djiane, J. & Taouis, M. (2005). Cross down regulation of leptin and insulin receptor expression and signaling in a human neuronal cell line. Biochem. J. 388, 929–39.CrossRefGoogle Scholar
Benomar, Y., Wetzler, S., Larue-Achagiotis, C., Djiane, J., Tome, D. & Taouis, M. (2005). In vivo leptin infusion impairs insulin and leptin signaling in liver and hypothalamus. Mol. Cell. Endocrinol. 242, 59–66.CrossRefGoogle ScholarPubMed
Beugnet, A., Tee, A. R., Taylor, P. M. & Proud, C. G. (2003). Regulation of targets of mTOR (mammalian target of rapamycin) signaling by intracellular amino acid availability. Biochem. J. 372, 555–66.CrossRefGoogle ScholarPubMed
Bjorbaek, C., El-Haschimi, K., Frantz, J. D. & Flier, J. S. (1999). The role of SOCS-3 in leptin signaling and leptin resistance. J. Biol. Chem. 274, 30059–65.CrossRefGoogle ScholarPubMed
Bjorbaek, C., Buchholz, R. M., Davis, S. M.et al. (2001). Divergent roles of SHP-2 in ERK activation by leptin receptors. J. Biol. Chem. 276, 4747–55.CrossRefGoogle ScholarPubMed
Bogacka, I., Roane, D. S., Xi, X.et al. (2004).Expression levels of genes likely involved in glucose-sensing in the obese Zucker rat brain. Nutr. Neurosci. 7, 67–74.CrossRefGoogle ScholarPubMed
Bost, F., Aouadi, M., Caron, L. & Binetruy, B. (2005). The role of MAPKs in adipocyte differentiation and obesity. Biochimie 87, 51–6.CrossRefGoogle ScholarPubMed
Bost, F., Aouadi, M., Caron, L.et al. (2005). The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. Diabetes 54, 402–411.CrossRefGoogle ScholarPubMed
Bouloumie, A., Marumo, T., Lafontan, M. & Busse, R. (1999). Leptin induces oxidative stress in human endothelial cells. FASEB J. 13, 1231–8.CrossRefGoogle ScholarPubMed
Bray, G. A., Lovejoy, J. C., Smith, S. R.et al. (2002). The influence of different fats and fatty acids on obesity, insulin resistance and inflammation. J. Nutr. 132, 2488–91.CrossRefGoogle ScholarPubMed
Brown, R. A. & Shepherd, P. R. (2001). Growth factor regulation of the novel class II phosphoinositide 3-kinases. Biochem. Soc. Trans. 29, 535–7.CrossRefGoogle ScholarPubMed
Bruning, J. C., Gautam, D., Burks, D. J.et al. (2000). Role of brain insulin receptor in control of body weight and reproduction. Science 289, 2122–5.CrossRefGoogle ScholarPubMed
Burks, D. J., Mora, Font J., Schubert, M.et al. (2000). IRS2 pathways integrate female reproduction and energy homeostasis. Nature 407, 377–82.Google ScholarPubMed
Butler, M., McKay, R. A., Popoff, I. J.et al. (2002). Specific inhibition of PTEN expression reverses hyperglycemia in diabetic mice. Diabetes 51, 1028–34.CrossRefGoogle ScholarPubMed
Cantley, L. C. (2002). The PI 3-kinase pathway. Science 296, 1655–7.CrossRefGoogle Scholar
Cao, Q., Mak, K. M. & Lieber, C. S. (2006). Leptin enhances alpha1(I) collagen gene expression in LX-2 human hepatic stellate cells through JAK-mediated H2O2-dependent MAPK pathways. J. Cell. Biochem. 97, 188–97.CrossRefGoogle ScholarPubMed
Carvalheira, J. B., Ribeiro, E. B., Folli, F., Velloso, L. A. & Saad, M. J. (2003). Interaction between leptin and insulin signaling pathways differentially affects JAK-STAT and PI 3 kinase-mediated signaling in rat liver. Biol. Chem. 384, 151–9.CrossRefGoogle ScholarPubMed
Carvalheira, J. B., Torsoni, M. A., Ueno, M.et al. (2005). Cross-talk between the insulin and leptin signaling systems in rat hypothalamus. Obes. Res. 13, 48–57.CrossRefGoogle ScholarPubMed
Chang, G. Q., Karatayev, O., Davydova, Z., Wortley, K. & Leibowitz, S. F. (2005). Glucose injection reduces neuropeptide Y and agouti-related protein expression in the arcuate nucleus: a possible physiological role in eating behavior. Mol. Brain Res. 135, 69–80.CrossRefGoogle ScholarPubMed
Chang, L. & Karin, M. (2001). Mammalian MAP kinase signaling cascades. Nature 410, 37–40.CrossRefGoogle Scholar
Chen, H., Charlat, O., Tartaglia, L. A.et al. (1996). Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84, 491–5.CrossRefGoogle ScholarPubMed
Choudhury, A. I., Heffron, H., Smith, M. A.et al. (2005). The role of insulin receptor substrate 2 in hypothalamic and beta cell function. J. Clin. Invest. 115, 940–50.CrossRefGoogle ScholarPubMed
Chua, S. C. J., Chung, W. K., Wu-Peng, X. S.et al. (1996). Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271, 994–6.CrossRefGoogle ScholarPubMed
Chung, J., Kuo, C. J., Crabtree, G. R. & Blenis, J. (1992). Rapamycin-FKBP specifically blocks growth dependent activation of and signaling by the 70kDa S6 protein kinases. Cell 69, 1227–36.CrossRefGoogle Scholar
Clément, S., Krause, U., Desmedt, F.et al. (2001). The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 409, 92–7.CrossRefGoogle ScholarPubMed
Cohen, B., Novick, D. & Rubinstein, M. (1996). Modulation of insulin activities by leptin. Science 274, 1185–8.CrossRefGoogle ScholarPubMed
Cone, R. D. (2005). Anatomy and regulation of the central melanocortin system. Nat. Neurosci. 8, 571–8.CrossRefGoogle ScholarPubMed
Considine, R. V., Sinha, M. K., Heiman, M. L.et al. (1996). Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–5.CrossRefGoogle ScholarPubMed
Cota, D., Proulx, K., Smith, K. A.et al. (2006). Hypothalamic mTOR signaling regulates food intake. Science 312, 927–30.CrossRefGoogle ScholarPubMed
Dadke, S., Kusari, A. & Kusari, J. (2001). Phosphorylation and activation of proteintyrosine phosphatase (PTP) 1B by insulin receptor. Mol. Cell. Biochem. 221, 147–54.CrossRefGoogle Scholar
Dent, P., Haser, W., Haystead, T. A., Vincent, L. A., Roberts, T. M. & Sturgill, T. W. (1992). Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science 257, 1404–7.CrossRefGoogle ScholarPubMed
Dickens, M., Svitek, C. A., Culbert, A. A., O'Brien, R. M. & Tavare, J. M. (1998). Central role for PI 3-kinase in the repression of glucose-6-phosphatase gene transcription by insulin. J. Biol. Chem. 273, 20 144–9.CrossRefGoogle ScholarPubMed
Domin, J., Pages, F., Volinia, S.et al. (1997). Cloning of a human phosphoinositide 3-kinase with a C2 domain that displays reduced sensitivity to the inhibitor wortmannin. Biochem. J. 326, 139–47.CrossRefGoogle ScholarPubMed
Duan, C., Li, M. & Rui, L. (2004). SH2-B promotes IRS1- and IRS2-mediated activation of the PI 3-kinase pathway in response to leptin. J. Biol. Chem. 279, 43 684–91.CrossRefGoogle Scholar
Duan, C., Yang, H., White, M. F. & Rui, L. (2004). Disruption of the SH2-B gene causes age-dependent insulin resistance and glucose intolerance. Mol. Cell. Biol. 24, 7435–43.CrossRefGoogle ScholarPubMed
Dunn, S. L., Bjornholm, M., Bates, S. H., Chen, Z., Seifert, M. & Myers, M. G. Jr. (2005). Feedback inhibition of leptin receptor/Jak2 signaling via Tyr1138 of the leptin receptor and suppressor of cytokine signaling 3. Mol. Endocrinol. 19, 925–38.CrossRefGoogle ScholarPubMed
Durakoglugil, M., Irving, A. J. & Harvey, J. (2005). Leptin induces a novel form of NMDA receptor-dependent long-term depression. J. Neurochem. 95, 396–405.CrossRefGoogle ScholarPubMed
Elchebly, M., Payette, P., Michaliszyn, E.et al. (1999). Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1423–5.CrossRefGoogle ScholarPubMed
Emanuelli, B., Peraldi, P., Filloux, C., Sawka-Verhelle, D., Hilton, D. & Obberghen, E. (2000). SOCS-3 is an insulin-induced negative regulator of insulin signaling. J. Biol. Chem. 275, 15 985–91.CrossRefGoogle ScholarPubMed
Eyckerman, S., Broekaert, D., Verhee, A., Vandekerckhove, J. & Tavernier, J. (2000). Identification of the Y985 and Y1077 motifs as SOCS3 recruitment sites in the murine leptin receptor. FEBS Lett. 486, 33–7.CrossRefGoogle ScholarPubMed
Fasshauer, M., Kralisch, S., Klier, M.et al. (2004). Insulin resistance-inducing cytokines differentially regulate SOCS mRNA expression via growth factor- and Jak/Stat-signaling pathways in 3T3-L1 adipocytes. J. Endocrinol. 181, 129–38.CrossRefGoogle ScholarPubMed
Fisher, T. L. & White, M. F. (2004). Signaling pathways: the benefits of good communication. Curr. Biol. 14, R1005–7.CrossRefGoogle ScholarPubMed
Flier, J. S. (2006). Neuroscience. Regulating energy balance: the substrate strikes back. Science 312, 861–4.CrossRefGoogle ScholarPubMed
Fong, T. M., Mao, C., MacNeil, T.et al. (1997). ART (protein product of agouti-related transcript) as an antagonist of MC-3 and MC-4 receptors. Biochem. Biophys. Res. Commun. 237, 629–31.CrossRefGoogle ScholarPubMed
Foukas, L. C., Claret, M., Pearce, W.et al. (2006). Critical role for the p110alpha phosphoinositide-3 OH kinase in growth and metabolic regulation. Nature 441, 366–70.CrossRefGoogle ScholarPubMed
Francis, S. H., Turko, I. V. & Corbin, J. D. (2001). Cyclic nucleotide phosphodiesterases: relating structure and function. Prog. Nucleic Acid Res. Mol. Biol. 65, 1–52.Google ScholarPubMed
Frederich, R. C., Hamann, A., Anderson, S., Lollmann, B., Lowell, B. B. & Flier, J. S. (1995). Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat. Med. 1, 1211–14.CrossRefGoogle ScholarPubMed
Friedman, J. M. & Halaas, J. L. (1998). Leptin and the regulation of body weight in mammals. Nat. Med. 395, 763–70.Google ScholarPubMed
Frodin, M. & Gammeltoft, S. (1999). Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol. Cell. Endocrinol. 151, 65–77.CrossRefGoogle Scholar
Fruhbeck, G. (2005). Intracellular signaling pathways activated by leptin. Biochem. J. 393, 7–20.CrossRefGoogle Scholar
Fryer, L. G., Parbu-Patel, A. & Carling, D. (2002). The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct pathways. J. Biol. Chem. 277, 25 226–32.CrossRefGoogle Scholar
Gabbay, R. A., Sutherland, C., Gnudi, L.et al. (1996). Insulin regulation of PEPCK gene expression does not require activation of the Ras/MAP kinase signaling pathway. J. Biol. Chem. 271, 1890–7.CrossRefGoogle ScholarPubMed
Gamble, J. & Lopaschuk, G. D. (1998). Insulin inhibition of 5' adenosine monophosphate activated protein kinase in the heart results in activation of acetyl coenzyme A carboxylase and inhibition of fatty acid oxidation. Metabolism 46, 1270–4.CrossRefGoogle Scholar
Gingras, A. -C., Raught, B. & Sonenberg, N. (2001). Regulation of translational initiation by FRAP/mTOR. Genes Dev. 15, 807–26.CrossRefGoogle ScholarPubMed
Greene, M. W., Sakaue, H., Wang, L., Alessi, D. R. & Roth, R. A. (2003). Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by Serine 312 phosphorylation. J. Biol. Chem. 278, 8199–211.CrossRefGoogle ScholarPubMed
Gual, P., Marchand-Brustel, Y. & Tanti, J. F. (2005). Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87, 99–109.CrossRefGoogle ScholarPubMed
Gum, R. J., Gaede, L. L., Koterski, S. L.et al. (2003). Reduction of protein tyrosine phosphatase 1B increases insulin-dependent signaling in ob/ob mice. Diabetes 52, 21–8.CrossRefGoogle ScholarPubMed
Han, S. M., Namkoong, C., Jang, P. G.et al. (2005). Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia 48, 2170–8.CrossRefGoogle ScholarPubMed
Hardie, D. G., Salt, I. P., Hawley, S. A. & Davies, S. P. (1999). AMP-activated protein kinase: an ultrasensitive system for monitoring cellular energy charge. Biochem. J. 338, 717–22.CrossRefGoogle ScholarPubMed
Harrington, L. S., Findlay, G. M., Gray, A.et al. (2004). The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J. Cell Biol. 166, 213–23.CrossRefGoogle ScholarPubMed
Harvey, J., McKay, N. G., Walker, K. S., Downes, C. P. & Ashford, M. L. J. (2000). Essential role of phosphoinositide 3-kinase in leptin-induced KATP channel activation in the rat CRI-G1 insulinoma cell line. J. Biol. Chem. 275, 4660–9.CrossRefGoogle Scholar
Havrankova, J., Roth, J. & Brownstein, M. (1978). Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272, 827–9.CrossRefGoogle ScholarPubMed
Hawkins, P. T., Jackson, T. R. & Stephens, L. R. (1992). Platelet-derived growth factor stimulates synthesis of PtdIns(3,4,5)P3 by activating a PtdIns(4,5)P2 3-OH kinase. Nature 358, 157–9.CrossRefGoogle ScholarPubMed
Hawley, S. A., Gadalla, A. E., Olsen, G. S. & Hardie, D. G. (2003). The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide independent mechanism. Diabetes 51, 2420–5.CrossRefGoogle Scholar
Hegyi, K., Fulop, K., Kovacs, K., Toth, S. & Falus, A. (2004). Leptin-induced signal transduction pathways. Cell Biol. Int. 28, 159–69.CrossRefGoogle ScholarPubMed
Heitman, J., Movva, N. R. & Hall, M. N. (1991). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905–9.CrossRefGoogle Scholar
Hekerman, P., Zeidler, J., Bamberg-Lemper, S.et al. (2005). Pleiotropy of leptin receptor signaling is defined by distinct roles of the intracellular tyrosines. FEBS J. 272, 109–19.CrossRefGoogle ScholarPubMed
Hennige, A. M., Stefan, N., Kapp, K.et al. (2006). Leptin down-regulates insulin action through phosphorylation of serine-318 in insulin receptor substrate 1. FASEB J Epub.CrossRefGoogle ScholarPubMed
Hers, I. & Tavare, J. M. (2005). Mechanism of feedback regulation of IRS1 phosphorylation in primary adipocytes. Biochem. J. 388, 713–20.CrossRefGoogle ScholarPubMed
Hileman, S. M., Pierroz, D. D., Masuzaki, H.et al. (2002). Characterizaton of short isoforms of the leptin receptor in rat cerebral microvessels and of brain uptake of leptin in mouse models of obesity. Endocrinology 143, 775–83.CrossRefGoogle ScholarPubMed
Hirosumi, J., Tuncman, G., Chang, L.et al. (2002). A central role for JNK in obesity and insulin resistance. Nature 420, 333–6.CrossRefGoogle ScholarPubMed
Horie, Y., Suzuki, A., Kataoka, E.et al. (2004). Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J. Clin. Invest. 113, 1774–83.CrossRefGoogle ScholarPubMed
Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. (1993). Adipose expression of TNF-a: direct role in obesity-linked insulin resistance. Science 259, 87–91.CrossRefGoogle Scholar
Howard, J. K., Cave, B. J., Oksanen, L. J., Tzameli, I., Bjorbaek, C. & Flier, J. S. (2004). Enhanced leptin sensitivity and attenuation of diet induced obesity in mice with haploinsufficiency of Socs3. Nat. Med. 10, 734–8.CrossRefGoogle ScholarPubMed
Hu, T. P., Xu, F. P., Li, Y. J. & Luo, J. D. (2006). Simvastatin inhibits leptin-induced hypertrophy in cultured neonatal rat cardiomyocytes. Acta Pharmacol. Sin. 27, 419–22.CrossRefGoogle ScholarPubMed
Huang, W., Dedousis, N., Bhatt, B. A. & O'Doherty, R. M. (2004). Impaired activation of PI 3-kinase by leptin is a novel mechanism of hepatic leptin resistance in diet-induced obesity. J. Biol. Chem. 279, 21 695–700.CrossRefGoogle ScholarPubMed
Ihle, J. N. & Kerr, I. M. (1995). Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet. 11, 69–74.CrossRefGoogle ScholarPubMed
Irving, A. J., Wallace, L., Durakoglugil, D. & Harvey, J. (2006). Leptin enhances NR2B mediated N-methyl-D-aspartate responses via a mitogen-activated protein kinase dependent process in cerebellar granule cells. Neuroscience 138, 1137–48.CrossRefGoogle Scholar
Ishihara, H., Sasaoka, T., Kagawa, S.et al. (2003). Association of the polymorphisms in the 5' untranslated region of PTEN gene with type 2 diabetes in a Japanese population. FEBS Lett. 554, 450–4.CrossRefGoogle Scholar
Jefferies, H. B. J., Reinhard, C., Kozma, S. C. & Thomas, G. (1994). Rapamycin selectively represses translation of the ‘polypyrimidine tract ’ mRNA family. Proc. Natl. Acad. Sci. 91, 4441–5.CrossRefGoogle Scholar
Jefferies, H. B. J., Fumagalli, S., Dennis, P. B., Reinhard, C., Pearson, R. B. & Thomas, G. (1997). Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70S6K. EMBO J. 16, 3693–704.CrossRefGoogle ScholarPubMed
Jiang, N., He, T. C., Miyajima, A. & Wojchowski, D. M. (1996). The box1 domain of the erythropoietin receptor specifies Janus kinase 2 activation and functions mitogenically within an interleukin 2 beta receptor chimera. J. Biol. Chem. 271, 16 472–6.CrossRefGoogle ScholarPubMed
Jo, Y. H., Chen, Y. J., Chua, S. C. Jr., Talmage, D. A. & Role, L. W. (2005). Integration of endocannabinoid and leptin signaling in an appetite-related neural circuit. Neuron 48, 1055–66.CrossRefGoogle Scholar
Kaburagi, Y., Yamauchi, T., Yamamoto-Honda, R.et al. (1999). The mechanism of insulin-induced signal transduction mediated by the insulin receptor substrate family. Endocr. J. 46, S25–34.CrossRefGoogle ScholarPubMed
Kagawa, S., Sasaoka, T., Yaguchi, S.et al. (2005). Impact of SRC homology 2-containing inositol 5' phosphatase 2 gene polymorphisms detected in a Japanese population on insulin signaling. J. Clin. Endocrinol. Metab. 90, 2911–19.CrossRefGoogle Scholar
Kahn, B. B., Alquier, T., Carling, D. & Hardie, D. G. (2005). AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1, 15–25.CrossRefGoogle Scholar
Kahn, C. R. & White, M. F. (1988). The insulin receptor and the molecular mechanism of insulin action. J. Clin. Invest. 82, 1151–6.CrossRefGoogle ScholarPubMed
Kaisaki, P. J., Delepine, M., Woon, P. Y.et al. (2004). Polymorphisms in type II SH2 domain containing inositol 5-phosphatase (INPPL1, SHIP2) are associated with physiological abnormalities of the metabolic syndrome. Diabetes 53, 1900–4.CrossRefGoogle ScholarPubMed
Kapeller, R. & Cantley, L. C. (1994). PI 3-kinase. Bioessays 16, 565–76.CrossRefGoogle Scholar
Kaszubska, W., Falls, H. D., Schaefer, V. G.et al. (2002). Protein tyrosine phosphatase 1B negatively regulates leptin signaling in a hypothalamic cell line. Mol. Cell. Endocrinol. 195, 109–18.CrossRefGoogle Scholar
Katso, R., Okkenhaug, K., Ahmadi, K., White, S., Timms, J. & Waterfield, M. D. (2001). Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 17, 615–75.CrossRefGoogle ScholarPubMed
Kern, P. A., Gregorio, Di G. B., Lu, T., Rassouli, N. & Ranganathan, G. (2003). Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes 52, 1779–85.CrossRefGoogle ScholarPubMed
Khamzina, L., Veilleux, A., Bergeron, S. & Marette, A. (2005). Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146, 1473–81.CrossRefGoogle ScholarPubMed
Kim, J. K., Fillmore, J. J., Sunshine, M. J.et al. (2004). PKC-theta knockout mice are protected from fat induced insulin resistance. J. Clin. Invest. 114, 823–7.CrossRefGoogle ScholarPubMed
Kitamura, T., Kitamura, Y., Kuroda, S.et al. (1999). Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine threonine kinase Akt Mol. Cell. Biol. 19, 6286–96.Google Scholar
Kitamura, T., Feng, Y., Ido, X.et al. (2006). Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat. Med. 12, 534–40.CrossRefGoogle ScholarPubMed
Klaman, L. D., Boss, O., Peroni, O. D.et al. (2000). Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol.Cell. Biol. 20, 5479–89.CrossRefGoogle ScholarPubMed
Kong, M., Wang, C. S. & Donohue, D. G. (2002). Interaction of fibroblast growth factor receptor 3 and the adapter protein SH2-B. A role in STAT5 activation. J. Biol. Chem. 277, 15 962–70.CrossRefGoogle ScholarPubMed
Krieger-Brauer, H. I. & Kather, H. (1992). Human fat cells possess a plasma membrane bound H2O2-generating system that is activated by insulin via a mechanism bypassing the receptor kinase. J. Clin. Invest. 89, 1006–13.CrossRefGoogle Scholar
Ktori, C., Shepherd, P. R. & O'Rourke, L. (2003). TNF-alpha and leptin activate the alpha-isoform of class II phosphoinositide 3-kinase. Biochem. Biophys. Res. Commun. 306, 139–43.CrossRefGoogle ScholarPubMed
Kubota, N., Terauchi, Y., Tobe, K.et al. (2004). Insulin receptor substrate 2 plays a crucial role in beta cells and the hypothalamus. J. Clin. Invest. 114, 917–27.CrossRefGoogle Scholar
Kurlawalla-Martinez, C., Stiles, B., Wang, Y., Devaskar, S. U., Kahn, B. B. & Wu, H. (2005). Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking PTEN in adipose tissue. Mol. Cell. Biol. 25, 2498–510.CrossRefGoogle ScholarPubMed
Kyriakis, J. M., App, H., Zhang, X. F.et al. (1992). Raf-1 activates MAP kinase-kinase. Nature 358, 417–21.CrossRefGoogle ScholarPubMed
Lammert, A., Kiess, W., Bottner, A., Glasow, A. & Kratzsch, J. (2001). Soluble leptin receptor represents the main leptin binding activity in human blood. Biochem. Biophys. Res. Commun. 283, 982–8.CrossRefGoogle ScholarPubMed
Lazar, D. F. & Saltiel, A. R. (2006). Lipid phosphatases as drug discovery targets for type 2 diabetes. Nat. Rev. Drug Discov. 5, 333–42.CrossRefGoogle ScholarPubMed
Good, J. A., Ziegler, W. H., Parekh, D. B., Alessi, D. R., Cohen, P. & Parker, P. J. (1998). PKC isotypes controlled by PI 3-kinase through the protein kinase PDK1. Science 281, 2042–5.CrossRefGoogle ScholarPubMed
Le, M. N., Kohanski, R. A., Wang, L. H. & Sadowski, H. B. (2002). Dual mechanism of signal transducer and activator of transcription 5 activation by the insulin receptor. Mol. Endocrinol. 16, 2764–79.CrossRefGoogle ScholarPubMed
Lee, G. H., Proenca, R., Montez, J. M.et al. (1996). Abnormal splicing of the leptin receptor in diabetic mice. Nature 379, 632–5.CrossRefGoogle ScholarPubMed
Lee, Y. H., Giraud, J., Davis, R. J. & White, M. F. (2003). c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J. Biol. Chem. 278, 2896–902.CrossRefGoogle ScholarPubMed
Leslie, N. R. & Downes, C. P. (2004). PTEN function: how normal cells control it and tumour cells lose it. Biochem. J. 382, 1–11.CrossRefGoogle Scholar
Lin, X., Taguchi, A., Park, S.et al. (2004). Dysregulation of insulin receptor substrate 2 in beta cells and brain causes obesity and diabetes. J. Clin. Invest. 114, 908–16.CrossRefGoogle ScholarPubMed
Liu, G. (2004). Technology evaluation: ISIS-113715, Isis. Curr. Opin. Mol. Ther. 6, 331–6.Google ScholarPubMed
Liu, L., Karkanias, G. B., Morales, J. C.et al. (1998). Intracerebroventricular leptin regulates hepatic but not peripheral glucose fluxes. J. Biol. Chem. 273, 31 160–7.CrossRefGoogle Scholar
Lizcano, J. M. & Alessi, D. R. (2002). The insulin signaling pathway. Curr. Biol. 12, R236–8.CrossRefGoogle Scholar
Lo, Y. T., Tsao, C. J., Liu, I. M., Liou, S. S. & Cheng, J. T. (2004). Increase of PTEN gene expression in insulin resistance. Horm. Metab. Res. 36, 662–6.CrossRefGoogle ScholarPubMed
Lochhead, P. A., Salt, I. P., Walker, K. S., Hardie, D. G. & Sutherland, C. (2000). AICAR mimics the effects of insulin on the expression of 2 key gluconeogenic genes PEPCK and G6Pase. Diabetes 49, 896–903.CrossRefGoogle Scholar
Lund, I. K., Hansen, J. A., Andersen, H. S., Moller, N. P. & Billestrup, N. (2005). Mechanism of protein tyrosine phosphatase 1B mediated inhibition of leptin signaling. J. Mol. Endocrinol. 34, 339–51.CrossRefGoogle Scholar
Machinal-Quelin, F., Dieudonne, M. N., Leneveu, M. C., Pecquery, R. & Giudicelli, Y. (2002). Proadipogenic effect of leptin on rat preadipocytes in vitro: activation of MAPK and STAT3 signaling pathways. Am. J. Physiol. Cell Physiol. 282, C853–63.CrossRefGoogle ScholarPubMed
Mahadev, K., Wu, X., Zilbering, A., Zhu, L., Lawrence, J. T. & Goldstein, B. J. (2001a). Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes. J. Biol. Chem. 276, 48 662–9.CrossRefGoogle Scholar
Mahadev, K., Zilbering, A., Zhu, L. & Goldstein, B. J. (2001b). Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J. Biol. Chem. 276, 21 938–42.CrossRefGoogle Scholar
Manganiello, V. & Vaughan, M. (1973). An effect of insulin on cyclic adenosine 3':5'monophosphate phosphodiesterase activity in fat cells. J. Biol. Chem. 248, 7164–70.Google Scholar
Marks, J. L., Porte, D., Stahl, W. L. & Baskin, D. G. (1990). Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology 127, 3234–6.CrossRefGoogle ScholarPubMed
Maroni, P., Bendinelli, P. & Piccoletti, R. (2003). Early intracellular events induced by in vivo leptin treatment in mouse skeletal muscle. Mol. Cell. Endocrinol. 201, 109–21.CrossRefGoogle ScholarPubMed
Maroni, P., Bendinelli, P. & Piccoletti, R. (2005). Intracellular signal transduction pathways induced by leptin in C2C12 cells. Cell Biol. Int. 29, 542–50.CrossRefGoogle ScholarPubMed
Martin, D. E. & Hall, M. N. (2005). The expanding TOR signaling network. Curr. Opin. Cell Biol. 17, 158–66.CrossRefGoogle ScholarPubMed
McClung, J. P., Roneker, C. A., Mu, W.et al. (2004). Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc. Natl. Acad. Sci. USA 101, 8852–7.CrossRefGoogle ScholarPubMed
McCrimmon, R. J., Fan, X., Ding, Y., Zhu, W., Jacob, R. J. & Sherwin, R. S. (2004). Potential role for AMP-activated protein kinase in hypoglycemia sensing in the ventromedial hypothalamus. Diabetes 53, 1953–8.CrossRefGoogle ScholarPubMed
Merrill, G. M., Kurth, E. J., Hardie, D. G. & Winder, W. W. (1997). AICA riboside increases AMP-activated kinase, fatty acid oxidation and glucose uptake in rat muscle. Am. J. Physiol. 273, E1107–12.Google ScholarPubMed
Messina, J. L. & Weinstock, R. S. (1994). Evidence for diverse roles of PKC in the inhibition of gene expression by insulin. Endocrinology 135, 2327–34.CrossRefGoogle ScholarPubMed
Minokoshi, Y., Kim, Y. B., Peroni, O. D., Fryer, L. G., Muller, C., Carling, D. & Kahn, B. B. (2002). Lepin stimulates fatty-acid oxidation by activating AMPK. Nature 415, 339–43.CrossRefGoogle Scholar
Minokoshi, Y., Alquier, T., Furukawa, N.et al. (2004). AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428, 569–74.CrossRefGoogle ScholarPubMed
Mirshamsi, S., Laidlaw, H. A., Ning, K.et al. (2004). Leptin and insulin stimulation of signaling pathways in arcuate nucleus neurones: PI3K dependent actin reorganization and KATP channel activation. BMC Neurosci. 5, 54.CrossRefGoogle ScholarPubMed
Moodie, S. A., Willumsen, B. M., Weber, M. J. & Wolfman, A. (1993). Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260, 1658–61.CrossRefGoogle ScholarPubMed
Morel, Y. & Barouki, R. (1999). Repression of gene expression by oxidative stress. Biochem. J. 342, 481–96.CrossRefGoogle ScholarPubMed
Mori, H., Hanada, R., Hanada, T.et al. (2004). Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat. Med. 10, 739–43.CrossRefGoogle ScholarPubMed
Morino, K., Petersen, K. F., Dufour, S.et al. (2005). Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin resistant offspring of type 2 diabetic parents. J. Clin. Invest. 115, 3587–93.CrossRefGoogle ScholarPubMed
Morton, G. J. & Schwartz, M. W. (2001). The NPY/AgRP neuron and energy homeostasis. Int. J. Obes. Relat. Metab. Disord. 25, S56–62.CrossRefGoogle ScholarPubMed
Munzberg, H. & Myers, M. G. Jr. (2005). Molecular and anatomical determinants of central leptin resistance. Nat. Neurosci. 5, 566–70.CrossRefGoogle Scholar
Munzberg, H., Huo, L., Nillni, E. A., Hollenberg, A. N. & Bjorbaek, C. (2003). Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology 144, 2121–31.CrossRefGoogle ScholarPubMed
Munzberg, H., Bjornholm, M., Bates, S. H. & Myers, M. G. Jr. (2005). Leptin receptor action and mechanisms of leptin resistance. Cell. Mol. Life Sci. 62, 642–52.CrossRefGoogle ScholarPubMed
Murakami, S., Sasaoka, T., Wada, T.et al. (2004). Impact of Src homology 2-containing inositol 5' phosphatase 2 on the regulation of insulin signaling leading to protein synthesis in 3T3 L1 adipocytes cultured with excess amino acids. Endocrinology 145, 3215–23.CrossRefGoogle ScholarPubMed
Myers, M. P., Andersen, J. N., Cheng, A.et al. (2001). TYK2 and JAK2 are substrates of protein tyrosine phosphatase 1B. J. Biol. Chem. 276, 47 771–4.CrossRefGoogle ScholarPubMed
Ning, K., Miller, L. C., Laidlaw, H. A.et al. (2006). A novel leptin signaling pathway via PTEN inhibition in hypothalamic cell lines and pancreatic beta-cells. EMBO J. doi:10.1038/sj.embboj.7601118.CrossRefGoogle ScholarPubMed
Niswender, K. D. & Schwartz, M. W. (2003). Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Front. Neuroendocrinol. 24, 1–10.CrossRefGoogle ScholarPubMed
Niswender, K. D., Morton, G. J., Stearns, W. H., Rhodes, C. J., Myers, M. G. Jr. & Schwartz, M. W. (2001). Intracellular signaling. Key enzyme in leptin-induced anorexia. Nature 413, 794–5.CrossRefGoogle ScholarPubMed
Niswender, K. D., Morrison, C. D., Clegg, D. J.et al. (2003). Insulin activation of phosphatidylinositol 3 kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 52, 227–31.CrossRefGoogle ScholarPubMed
Niswender, K. D., Baskin, D. G. & Schwartz, M. W. (2004). Insulin and its evolving partnership with leptin in the hypothalamic control of energy homeostasis. Trends Endocrinol. Metab. 15, 362–9.CrossRefGoogle ScholarPubMed
O'Brien, K. B., O'Shea, J. J. & Carter-Su, C. (2002). SH2-B family members differentially regulate JAK family tyrosine kinases. J. Biol. Chem. 277, 8673–81.CrossRefGoogle ScholarPubMed
Ohtsuka, S., Takaki, S., Iseki, M.et al. (2002). SH2-B is required for both male and female reproduction. Mol. Cell. Biol. 22, 3066–77.CrossRefGoogle ScholarPubMed
Ollmann, M. M., Wilson, B. D., Yang, Y. K.et al. (1997). Antagonism of central melanocortin receptors in vitro and in vivo by agouti related protein. Science 278, 135–8.CrossRefGoogle ScholarPubMed
O'Malley, D. & Harvey, J. (2004). Insulin activates native and recombinant large conductance Ca2+-activated potassium channels via a mitogen-activated protein kinase-dependent process. Mol. Pharmacol. 65, 1352–63.CrossRefGoogle Scholar
Onuma, M., Bub, J. D., Rummel, T. L. & Iwamoto, Y. (2003). Prostate cancer cell adipocyte interaction: leptin mediates androgen-independent prostate cancer cell proliferation through c-Jun NH2 terminal kinase. J. Biol. Chem. 278, 42 660–7.CrossRefGoogle ScholarPubMed
Orci, L., Cook, W. S., Ravazzola, M.et al. (2004). Rapid transformation of white adipocytes into fat oxidising machines. Proc. Natl. Acad. Sci. USA 101, 2058–63.CrossRefGoogle Scholar
Parekh, D., Ziegler, W., Yonezawa, K., Hara, K. & Parker, P. J. (1999). Mammalian TOR controls one of two kinase pathways acting upon nPKCd and nPKCe. J. Biol. Chem. 274, 34 758–64.CrossRefGoogle Scholar
Parekh, D. B., Ziegler, W., Yonezawa, K., Hara, K. & Parker, P. J. (2000). Multiple pathways control PKC phosphorylation. EMBO J. 19, 496–503.CrossRefGoogle Scholar
Patel, S., Lipina, C. & Sutherland, C. (2003). Different mechanisms are used by insulin to repress three genes that contain a homologous thymine-rich insulin response element. FEBS Lett 549, 72–6.CrossRefGoogle ScholarPubMed
Pawson, T. (1995). Protein modules and insulin signaling networks. Nature 373, 573–80.CrossRefGoogle Scholar
Pawson, T. (2004). Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116, 191–203.CrossRefGoogle ScholarPubMed
Pawson, T. & Scott, J. D. (1997). Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075–80.CrossRefGoogle ScholarPubMed
Pearson, G., Robinson, F., Beers, M.et al. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrin. Rev. 22, 153–83.Google ScholarPubMed
Pei, Z., Liu, G., Lubben, T. H. & Szczepankiewicz, B. G. (2004). Inhibition of protein tyrosine phosphatase 1B as a potential treatment of diabetes and obesity. Curr. Pharm. Des. 10, 3481–504.CrossRefGoogle ScholarPubMed
Pelicci, G., Lanfrancone, L., Grignani, F.et al. (1992). A novel transforming protein (SHC)with an SH2 domain is implicated in mitogenic signal transduction. Cell 70, 93–104.CrossRefGoogle ScholarPubMed
Phillips, M. S., Liu, Q., Hammond, H. A.et al. (1996). Leptin receptor missense mutation in the fatty Zucker rat. Nat. Genet. 13, 18–19.CrossRefGoogle ScholarPubMed
Pocai, A., Lam, T. K. T., Gutierrez-Juarez, R.et al. (2005a). Hypothalamic KATP channels control hepatic glucose production. Nature 434, 1026–31.CrossRefGoogle Scholar
Pocai, A., Morgan, K., Buettner, C., Gutierrez-Juarez, R., Obici, S. & Rossetti, L. (2005b). Central leptin acutely reverses diet-induced hepatic insulin resistance. Diabetes 54, 3182–9.CrossRefGoogle Scholar
Potashnik, R., Bloch-Damti, A., Bashan, N. & Rudich, A. (2003). IRS1 degradation and increased serine phosphorylation cannot predict the degree of metabolic insulin resistance induced by oxidative stress. Diabetologia 46, 639–48.CrossRefGoogle ScholarPubMed
Prasad, R. K. & Ismail-Beigi, F. (1999). Mechanism of stimulation of glucose transport by H2O2: role of PLC. Arch. Biochem. Biophys. 362, 113–22.CrossRefGoogle Scholar
Rahmouni, K. & Haynes, W. G. (2004). Leptin and the cardiovascular system. Rec. Prog. Horm. Res. 59, 225–44.CrossRefGoogle ScholarPubMed
Ravichandran, L. V., Chen, H., Li, Y. & Quon, M. J. (2001). Phosphorylation of PTP1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor. Mol. Endocrinol. 15, 1768–80.CrossRefGoogle ScholarPubMed
Ren, D., Li, M., Duan, C. & Rui, L. (2005). Identification of SH2-B as a key regulator of leptin sensitivity, energy balance, and body weight in mice. Cell Metab. 2, 95–104.CrossRefGoogle ScholarPubMed
Rieusset, J., Bouzakri, K., Chevillotte, E.et al. (2004). Suppressor of cytokine signaling 3 expression and insulin resistance in skeletal muscle of obese and type 2 diabetic patients. Diabetes 53, 2232–41.CrossRefGoogle ScholarPubMed
Rui, L., Mathews, L. S., Hotta, K., Gustafson, T. A. & Carter-Su, C. M. (1997). Identification of SH2-Bbeta as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling. Mol. Cell. Biol. 17, 6633–44.CrossRefGoogle ScholarPubMed
Rui, L., Herrington, J. & Carter-Su, C. (1999). SH2-B is required for nerve growth factor induced neuronal differentiation. J. Biol. Chem. 274, 10 590–4.CrossRefGoogle ScholarPubMed
Ruiz-Alcaraz, A. J., Liu, H. K., Cuthbertson, D. J.et al. (2005). A novel regulation of IRS1 (insulin receptor substrate-1) expression following short term insulin administration. Biochem. J. 392, 345–52.CrossRefGoogle ScholarPubMed
Sahu, A. (2004). Leptin signaling in the hypothalamus: emphasis on energy homeostasis and leptin resistance. Front. Neuroendocrinol. 24, 225–53.CrossRefGoogle Scholar
Sahu, A. & Metlakunta, A. S. (2005). Hypothalamic phosphatidylinositol 3-kinase phosphodiesterase 3B-cyclic AMP pathway of leptin signaling is impaired following chronic central leptin infusion. J. Neuroendocrinol. 17, 720–6.CrossRefGoogle ScholarPubMed
Salt, I. P., Connell, J. M. & Gould, G. W. (2000). 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes. Diabetes 49, 1649–56.CrossRefGoogle ScholarPubMed
Sasaoka, T., Wada, T., Fukui, K.et al. (2004). SH2-containing inositol phosphatase 2 predominantly regulates Akt2, and not Akt1, phosphorylation at the plasma membrane in response to insulin in 3T3-L1 adipocytes. J. Biol. Chem. 279, 14 835–43.CrossRefGoogle Scholar
Shanley, L. J., Irving, A. J. & Harvey, J. (2001). Leptin enhances NMDA receptor function and modulates hippocampal synaptic plasticity. J. Neurosci. 21, RC186.CrossRefGoogle ScholarPubMed
Shanley, L. J., O'Malley, D., Irving, A. J., Ashford, M. L. J. & Harvey, J. (2002). Leptin inhibits epileptiform-like activity in rat hippocampal neurones via PI 3-kinase-driven activation of BK channels. J. Physiol. 545, 933–44.CrossRefGoogle ScholarPubMed
Shaw, R. J., Lamia, K. A., Vasquez, D.et al. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–6.CrossRefGoogle ScholarPubMed
Shepherd, P. R., Withers, D. J. & Siddle, K. (1998). Phosphoinositide 3-kinase: the key switch mechanism in insulin signaling. Biochem. J. 333, 471–90.CrossRefGoogle Scholar
Shi, H., Cave, B., Inouye, K., Bjorbaek, C. & Flier, J. S. (2006). Overexpression of suppressor of cytokine signaling 3 in adipose tissue causes local but not systemic insulin resistance. Diabetes 55, 699–707.CrossRefGoogle Scholar
Shin, H. J., Oh, J., Kang, S. M.et al. (2005). Leptin induces hypertrophy via p38 mitogen-activated protein kinase in rat vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 329, 18–24.CrossRefGoogle ScholarPubMed
Shulman, G. I. (2000). Cellular mechanisms of insulin resistance. J. Clin. Invest. 106, 171–6.CrossRefGoogle ScholarPubMed
Sleeman, M. W., Wortley, K. E., Lai, K. M.et al. (2005). Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity. Nat. Med. 11, 199–205.CrossRefGoogle ScholarPubMed
Spangenburg, E. E., Brown, D. A., Johnson, M. S. & Moore, R. L. (2006). Exercise increases SOCS-3 expression in skeletal muscle: potential relationship to IL-6 expression. J. Physiol. Epub.CrossRefGoogle ScholarPubMed
Standaert, M. L., Galloway, L., Karnam, P., Bandyopadhyay, G., Moscat, J. & Farese, R. V. (1997). Protein kinase C-z as a downstream effector of phosphatidylinositol 3 kinase during insulin stimulation in rat adipocytes. J. Biol. Chem. 272, 30 075–82.CrossRefGoogle Scholar
Stanley, B. G., Kyrkouli, S. E., Lampert, S. & Leibowitz, S. F. (1986). Neuropeptide Y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. Peptides 7, 1189–92.CrossRefGoogle ScholarPubMed
Starr, R., Willson, T. A., Viney, E. M.et al. (1997). A family of cytokine-inducible inhibitors of signaling. Nature 387, 917–21.CrossRefGoogle Scholar
Stephens, L. R., Hughes, K. T. & Irvine, R. F. (1991). Pathway of phosphatidylinositol (3,4,5)-trisphosphate synthesis in activated neutrophils. Nature 351, 33–9.CrossRefGoogle ScholarPubMed
Stiles, B., Wang, Y., Stahl, A.et al. (2004). Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity. Proc. Natl. Acad. Sci. USA 101, 2082–7.CrossRefGoogle ScholarPubMed
Stokoe, D., Macdonald, S. G., Cadwallader, K., Symons, M. & Hancock, J. F. (1994). Activation of Raf as a result of recruitment to the plasma membrane. Science 264, 1463–7.CrossRefGoogle ScholarPubMed
Sturgill, T. W., Ray, L. B., Erikson, E. & Maller, J. L. (1988). Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 334, 715–18.CrossRefGoogle ScholarPubMed
Sutherland, C., O'Brien, R. M. & Granner, D. K. (1995). Phosphatidylinositol 3-kinase, but not p70/p85 ribosomal S6 protein kinase, is required for the regulation of phosphoenolpyruvate carboxykinase gene expression by insulin. J. Biol. Chem. 270, 15 501–6.CrossRefGoogle Scholar
Sutherland, C., Tebbey, P. W. & Granner, D. K. (1997). Oxidative and chemical stress mimic insulin by selectively inhibiting the expression of phosphoenolpyruvate carboxykinase in hepatoma cells. Diabetes 46, 17–22.CrossRefGoogle ScholarPubMed
Suzuki, R., Tobe, K., Aoyama, M.et al. (2004). Both insulin signaling defects in the liver and obesity contribute to insulin resistance and cause diabetes in Irs2(-/-) mice. J. Biol. Chem. 279, 25 039–49.CrossRefGoogle ScholarPubMed
Sweeney, G. (2002). Leptin signaling. Cell Signal. 14, 655–63.CrossRefGoogle Scholar
Szanto, J. & Kahn, C. R. (2000). Selective interaction between leptin and insulin signaling pathways in a hepatic cell line. Proc. Natl. Acad. Sci. USA 97, 2355–60.CrossRefGoogle Scholar
Taler, M., Shpungin, S., Salem, Y., Malovani, H., Pasder, O. & Nir, U. (2003). Fer is a downstream effector of insulin and mediates the activation of signal transducer and activator of transcription 3 in myogenic cells. Mol. Endocrinol. 17, 1580–92.CrossRefGoogle ScholarPubMed
Tanabe, K., Okuya, O., Tanizawa, Y., Matsutani, A. & Oka, Y. (1997). Leptin induces proliferation of pancreatic beta cell line MIN6 through activation of mitogen-activated protein kinase. Biochem. Biophys. Res. Commun. 241, 765–8.CrossRefGoogle Scholar
Tao, J., Malbon, C. C. & Wang, H. Y. (2001). Insulin stimulates tyrosine phosphorylation and inactivation of protein-tyrosine phosphatase 1B in vivo. J. Biol. Chem. 276, 29 520–5.CrossRefGoogle ScholarPubMed
Tartaglia, L. A., Dembski, M., Weng, X.et al. (1995). Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–71.CrossRefGoogle ScholarPubMed
Taylor, S. D. & Hill, B. (2004). Recent advances in protein tyrosine phosphatase 1B inhibitors. Expert Opin. Investig. Drugs 13, 199–214.CrossRefGoogle ScholarPubMed
Toker, A., Meyer, M., Reddy, K. K.et al. (1994). Activation of PKC family members by the novel polyphosphoinositides PI-3,4-P2 and PI-3,4,5-P3. J. Biol. Chem. 269, 32 358–67.Google Scholar
Uchida, T., Myers, M. G. Jr & White, M. F. (2000). IRS-4 mediates protein kinase B signaling during insulin stimulation without promoting antiapoptosis. Mol. Cell. Biol. 20, 126–38.CrossRefGoogle ScholarPubMed
Ueno, M., Carvalheira, J. B., Tambascia, R. C.et al. (2005). Regulation of insulin signaling by hyperinsulinaemia: role of IRS-1/2 serine phosphorylation and the mTOR/p70 S6K pathway. Diabetologia 48, 506–18.CrossRefGoogle ScholarPubMed
Ui, M., Okada, T., Hazeki, K. & Hazeki, O. (1995). Wortmannin as a unique probe for an intracellular signaling protein, phosphoinositide 3-kinase. Trends Biochem. Sci. 20, 303–7.CrossRefGoogle ScholarPubMed
Um, S. H., Frigerio, M., Watanabe, M.et al. (2004). Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200–5.CrossRefGoogle ScholarPubMed
Brink, G. R., O'Toole, T., Hardwick, J. C.et al. (2000). Leptin signaling in human peripheral blood mononuclear cells, activation of p38 and p42/44 mitogen-activated protein (MAP) kinase and p70 S6 kinase. Mol. Cell. Biol. Res. Commun. 4, 144–50.CrossRefGoogle ScholarPubMed
Vanhaesebroeck, B., Leevers, S. J., Panayotou, G. & Waterfield, M. D. (1997). Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem. Sci. 22, 267–72.CrossRefGoogle ScholarPubMed
Vanhaesebroeck, B., Leevers, S. J., Ahmadi, K.et al. (2001). Synthesis and function of 3 phosphorylated inositol lipids. Annu. Rev. Biochem. 70, 535–602.CrossRefGoogle ScholarPubMed
Vlahos, C. J., Matter, W. F., Hui, K. Y. & Brown, R. F. (1994). A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem. 269, 5241–8.Google Scholar
Manteuffel, S. R., Dennis, P. B., Pullen, N., Gingras, A. C., Sonenberg, N. & Thomas, G. (1997). The insulin-induced signaling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin-sensitive point immediately upstream of p70s6k. Mol. Cell. Biol. 17, 5426–36.CrossRefGoogle Scholar
Wang, J. & Riedel, H. (1998). Insulin-like growth factor-I receptor and insulin receptor association with a Src homology-2 domain-containing putative adapter. J. Biol. Chem. 273, 3136–9.CrossRefGoogle ScholarPubMed
White, M. F. (1998). The IRS-signaling system: a network of docking proteins that mediate insulin action. Mol. Cell. Biochem. 182, 3–11.CrossRefGoogle Scholar
White, M. F. (2002). IRS proteins and the common path to diabetes. Am. J. Physiol.Endocrinol. Metab. 283, E413–22.CrossRefGoogle ScholarPubMed
White, M. F. & Kahn, C. R. (1994). The insulin signaling system. J. Biol. Chem. 269, 1–4.Google ScholarPubMed
Whitehurst, A. W., Wilsbacher, J. L., You, Y., Luby-Phelps, K., Moore, M. S. & Cobb, M. H. (2002). ERK2 enters the nucleus by a carrier independent mechanism. Proc. Natl. Acad. Sci. USA 99, 7496–501.CrossRefGoogle ScholarPubMed
Wick, M. J., Dong, L. Q., Hu, D., Langlais, P. & Liu, F. (2001). Insulin-receptor-mediated p62dok tyrosine phosphorylation at residues 362 and 398 plays distinct roles for binding GAP and Nck and is essential for inhibiting insulin-stimulated activation of Ras and Akt. J. Biol. Chem. 278, 42 843–50.CrossRefGoogle Scholar
Wijesekara, N., Konrad, D., Eweida, M.et al. (2005). Muscle specific Pten deletion protects against insulin resistance and diabetes. Mol. Cell. Biol. 25, 1135–45.CrossRefGoogle ScholarPubMed
Williams, A. G., Hargreaves, A. C., Gunn-Moore, F. J. & Tavare, J. M. (1998). Stimulation of NPY gene expression by BDNF requires both the PLCg and shc binding sites on its receptor, TrkB. Biochem. J. 333, 505–9.CrossRefGoogle ScholarPubMed
Williams, M. R., Arthur, J. S., Balendran, A.et al. (2000). The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells. Curr. Biol. 10, 439–48.CrossRefGoogle ScholarPubMed
Withers, D. J. & White, M. (2000). Perspective: the insulin signaling system – a common link in the pathogenesis of type 2 diabetes. Endocrinology 141, 1917–21.CrossRefGoogle ScholarPubMed
Witters, L. A. & Kemp, B. E. (1992). Insulin activation of acetyl-CoA carboxylase accompanied by inhibition of the 5′-AMP-activated protein kinase. J. Biol. Chem. 267, 2864–7.Google ScholarPubMed
Wynne, K., Stanley, S., McGowan, B. & Bloom, S. (2005). Appetite control. J. Endocrinol. 184, 291–318.CrossRefGoogle ScholarPubMed
Yamagishi, S. I., Edelstein, D., Du, X. L., Kaneda, Y., Guzman, M. & Brownlee, M. (2001). Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A. J. Biol. Chem. 276, 25096–100.CrossRefGoogle ScholarPubMed
Yamanashi, Y. & Baltimore, D. (1997). Identification of the Abl- and rasGAP-associated 62 kDa protein as a docking protein, Dok. Cell 88, 205–11.CrossRefGoogle ScholarPubMed
Zabolotny, J. M., Bence-Hanulec, K. K., Stricker-Krongrad, A.et al. (2002). PTP1B regulates leptin signal transduction in vivo. Dev. Cell 2, 489–95.CrossRefGoogle ScholarPubMed
Zarjevski, N., Cusin, I., Vettor, R., Rohner-Jeanrenaud, F. & Jeanrenaud, B. (1993). Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity. Endocrinology 133, 1753–8.CrossRefGoogle ScholarPubMed
Zhang, E. E., Chapeau, E., Hagihara, K. & Feng, G. S. (2004). Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism. Proc. Natl. Acad. Sci. USA 101, 16064–9.CrossRefGoogle ScholarPubMed
Zhang, W., Zong, C. S., Hermanto, U., Lopez-Bergami, P., Ronai, Z. & Wang, L. H. (2006). RACK1 recruits STAT3 specifically to insulin and insulin-like growth factor 1 receptors for activation, which is important for regulating anchorage-independent growth. Mol. Cell. Biol. 26, 413–24.CrossRefGoogle ScholarPubMed
Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L. & Friedman, J. M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–32.CrossRefGoogle ScholarPubMed
Zhao, A. Z., Bornfeldt, K. E. & Beavo, J. A. (1998). Leptin inhibits insulin secretion by activation of PDE 3B. J. Clin. Invest. 102, 869–73.CrossRefGoogle Scholar
Zhao, A. Z., Shinohara, M. M., Huang, D.et al. (2000). Leptin induces insulin-like signaling that antagonises cAMP elevation by glucagon in hepatocytes. J. Biol. Chem. 275, 11 348–54.CrossRefGoogle Scholar
Zhao, A. Z., Huan, J. N., Gupta, S., Pal, R. & Sahu, A. (2002). A phosphatidylinositol 3 kinase phosphodiesterase 3B-cyclic AMP pathway in hypothalamic action of leptin on feeding. Nat. Neurosci. 5, 727–8.CrossRefGoogle ScholarPubMed
Zheng, C. F. & Guan, K. L. (1994). Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues. Embo. J. 13, 1123–31.Google ScholarPubMed
Zinker, B. A., Rondinone, C. M., Trevillyan, J. M.et al. (2002). PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proc. Natl. Acad. Sci. USA 99, 11 357–62.CrossRefGoogle ScholarPubMed
Zong, H., Ren, J. M., Young, L. H.et al. (2002). AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc. Natl. Acad. Sci. USA 99, 15 983–7.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×