Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T15:49:43.920Z Has data issue: false hasContentIssue false

19 - Structural and functional magnetic resonance imaging in neurodegenerative diseases

from Part II - Neuroimaging in neurodegeneration

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Michael Samuel
Affiliation:
Department of Neurology, William Harvey Hospital, Ashford, Kent, UK
Alan Colchester
Affiliation:
Department of Neurology, William Harvey Hospital, Ashford, Kent, UK
Get access

Summary

Introduction

A full account of structural and functional MRI in neurodegenerative diseases would require an extensive volume. There are many neuroradiology texts which describe the common structural MRI abnormalities. MRI acquisition and processing techniques continue to develop apace and this chapter focuses on non-routine structural MRI and functional MRI (fMRI).

We define neurodegenerative diseases as having a distinct clinical picture, progressive natural history, focal or global pathology, and characteristic histopathology. This chapter describes diseases where neurodegeneration occurs intracranially, rather than in the spinal cord or peripheral nervous system. We do not include diseases where neurodegeneration occurs secondary to vascular or inflammatory processes, so we exclude diseases such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, multiple sclerosis or complex biochemical disorders (e.g. leukodystrophies), but we do include some disorders of copper, iron and calcium metabolism as well as prion diseases. Accepting our limitations, we limit our discussion to five categories of neurodegenerative disorders: [i] dementias, [ii] extrapyramidal disorders, [iii] motor system disorders, [iv] ataxias and [v] prion diseases. Of these, the application of non-routine MRI and fMRI to dementia and movement disorders has seen the largest expansion so far.

Structural MRI in neurodegenerative disorders

Structural MRI acquisition and postprocessing techniques

Typical routine clinical sequences, such as T1 and T2-weighted, fluid attenuated inversion recovery (FLAIR) and Short Tau Inversion Recovery (STIR) are effective at showing the location of pathological changes, but are seldom specific for the type of pathology. For this reason newer MRI techniques are being developed.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 253 - 289
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, M., Hosoya, T., Haku, T., Yamaguchi, K. & Kawanami, T. (1999). Evaluation of the substantia nigra in patients with Parkinsonian syndrome accomplished using multishot diffusion-weighted MR imaging. Am. J. Neuroradiol., 20, 1500–6Google ScholarPubMed
Aron, A. R., Schlaghecken, F., Fletcher, P. C.et al. (2003). Inhibition of subliminally primed responses is mediated by the caudate and thalamus: evidence from functional MRI and Huntington's disease. Brain, 126, 713–23CrossRefGoogle ScholarPubMed
Ashburner, J. & Friston, K. J. (1997). Multimodal image coregistration and partitioning – a unified framework. Neuroimage, 6, 209–17CrossRefGoogle ScholarPubMed
Ashburner, J. & Friston, K. J. (2000). Voxel-based morphometry – the methods. Neuroimage, 11, 805–21CrossRefGoogle ScholarPubMed
Atlas, S. W., Howard, R. S., Maldjian, J.et al. (1996). Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: findings and implications for clinical management. Neurosurgery, 38, 329–38CrossRefGoogle ScholarPubMed
Baciu, M., Bas, J. F., Segebarth, C. & Benabid, A. L. (2003). Presurgical fMRI evaluation of cerebral reorganization and motor deficit in patients with tumors and vascular malformations. Eur. J. Radiol., 46, 139–46CrossRefGoogle ScholarPubMed
Bahn, M. M., Kido, D. K., Lin, W. & Pearlman, A. L. (1997a). Brain magnetic resonance diffusion abnormalities in Creutzfeldt–Jakob disease. Arch. Neurol., 54, 1411–15CrossRefGoogle Scholar
Bahn, M. M., Lin, W., Silbergeld, D. L.et al. (1997b). Localization of language cortices by functional MR imaging compared with intracarotid amobarbital hemispheric sedation. Am. J. Roentgenol., 169, 575–9CrossRefGoogle Scholar
Bahn, M. M. & Parchi, P. (1999). Abnormal diffusion-weighted magnetic resonance images in Creutzfeldt–Jakob disease. Arch. Neurol., 56, 577–83CrossRefGoogle ScholarPubMed
Bammer, R. (2003). Basic principles of diffusion-weighted imaging. Eur. J. Radiol., 45, 169–84CrossRefGoogle ScholarPubMed
Bammer, R., Acar, B. & Moseley, M. E. (2003). In vivo MR tractography using diffusion imaging. Eur. J. Radiol., 45, 223–34CrossRefGoogle ScholarPubMed
Barber, R., Gholkar, A., Scheltens, P., Ballard, C., McKeith, I. G. & O'Brien, J. T. (1999a). Medial temporal lobe atrophy on MRI in dementia with Lewy bodies. Neurology, 52, 1153–8CrossRefGoogle Scholar
Barber, R., Scheltens, P., Gholkar, A.et al. (1999b). White matter lesions on magnetic resonance imaging in dementia with Lewy bodies, Alzheimer's disease, vascular dementia, and normal aging. J. Neurol. Neurosurg. Psychiatr., 67, 66–72CrossRefGoogle Scholar
Barber, R., Ballard, C., McKeith, I. G., Gholkar, A. & O'Brien, J. T. (2000a). MRI volumetric study of dementia with Lewy bodies: a comparison with AD and vascular dementia. Neurology, 54, 1304–9CrossRefGoogle Scholar
Barber, R., Gholkar, A., Scheltens, P., Ballard, C., McKeith, I. G. & O'Brien, J. T. (2000b). MRI volumetric correlates of white matter lesions in dementia with Lewy bodies and Alzheimer's disease. Int. J. Geriatr. Psychiatr., 15, 911–163.0.CO;2-T>CrossRefGoogle Scholar
Barber, R., McKeith, I. G., Ballard, C., Gholkar, A. & O'Brien, J. T. (2001a). A comparison of medial and lateral temporal lobe atrophy in dementia with Lewy bodies and Alzheimer's disease: magnetic resonance imaging volumetric study. Dement. Geriatr. Cogn Disord., 12, 198–205CrossRefGoogle Scholar
Barber, R., Panikkar, A. & McKeith, I. G. (2001b). Dementia with Lewy bodies: diagnosis and management. Int. J. Geriatr. Psychiatr., 16 Suppl 1, S12–183.0.CO;2-3>CrossRefGoogle Scholar
Barber, R., McKeith, I., Ballard, C. & O'Brien, J. (2002). Volumetric MRI study of the caudate nucleus in patients with dementia with Lewy bodies, Alzheimer's disease, and vascular dementia. J. Neurol. Neurosurg. Psychiatr., 72, 406–7CrossRefGoogle ScholarPubMed
Barboriak, D. P., Provenzale, J. M. & Boyko, O. B. (1994). MR diagnosis of Creutzfeld–Jakob disease: significance of high signal intensity of the basal ganglia. Am. J. Radiol., 162, 137–40Google Scholar
Bardinet, E., Colchester, A. C. F., Roche, A. et al. (2001). Registration of reconstructed post-mortem optical data with MR scans of the same patient. In Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science 2208. ed. W. J. Niessen & M. A. Viergever, pp. 957–965 Berlin: SpringerCrossRef
Baron, J.-C., , Chetalat, G., Desgranges, B.et al. (2001). In vivo mapping of grey matter loss with voxel-based morphometry in mild Alzheimer's disease. Neuroimage, 14, 298–309CrossRefGoogle Scholar
Bartzokis, G. & Tishler, T. A. (2000). MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimer's and Huntington's disease. Cell Mol. Biol., (Noisy.-le-grand) 46, 821–33Google Scholar
Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J. & Aldroubi, A. (2000). In vivo fiber tractography using DT-MRI data. Magn. Reson. Med., 44, 625–323.0.CO;2-O>CrossRefGoogle ScholarPubMed
Belliveau, J. W., Kennedy, D. N. J., McKinstry, R. C.et al. (1991). Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 254, 716–19CrossRefGoogle ScholarPubMed
Benveniste, H., Einstein, G., Kim, K. R., Hulette, C. & Johnson, G. A. (1999). Detection of neuritic plaques in Alzheimer's disease by magnetic resonance microscopy. Proc. Natl Acad. Sci. USA, 96, 14079–84CrossRefGoogle ScholarPubMed
Billette de Villemeur, T., Deslys, J. P. & Gelot, A. (1996). Clinical and pathological aspects of iatrogenic Cruetzfeldt–Jakob disease. In Transmissable Subacute Spongiform Encephalopathies: Prion Diseases, ed. L. Court & B. Dodet, pp. 451–7. Paris: Elsevier
Binder, J. R., Swanson, S. J., Hammeke, T. A.et al. (1996). Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology, 46, 978–84CrossRefGoogle ScholarPubMed
Bookheimer, S. Y., Strojwas, M. H., Cohen, M. S.et al. (2000). Patterns of brain activation in people at risk for Alzheimer's disease. N. Engl. J. Med., 343, 450–6CrossRefGoogle ScholarPubMed
Brammer, M. J., Bullmore, E. T., Simmons, A.et al. (1997). Generic brain activation mapping in functional magnetic resonance imaging: a nonparametric approach. Magn. Reson. Imagin., 15, 763–70CrossRefGoogle ScholarPubMed
Brooks, B. R., Bushara, K., Khan, A.et al. (2000). Functional magnetic resonance imaging (fMRI) clinical studies in ALS – paradigms, problems and promises. Amyotroph. Lateral. Scler. Other Motor Neuron Disord., 1 Suppl 2, S23–32CrossRefGoogle ScholarPubMed
Brunberg, J. A., Jacquemont, S., Hagerman, R. J.et al. (2002). Fragile X premutation carriers: characteristic MR imaging findings of adult male patients with progressive cerebellar and cognitive dysfunction. Am. J. Neuroradiol., 23, 1757–66Google ScholarPubMed
Bucher, S. F., Seelos, K. C., Stehling, M., Oertel, W. H., Paulus, W. & Reiser, M. (1995). High-resolution activation mapping of basal ganglia with functional magnetic resonance imaging. Neurology, 45, 180CrossRefGoogle ScholarPubMed
Bucher, S. F., Seelos, K. C., Dodel, R. C., Paulus, W., Reiser, M. & Oertel, W. H. (1996). Pallidal lesions. Structural and functional magnetic resonance imaging. Arch. Neurol., 53, 682–6CrossRefGoogle ScholarPubMed
Buckner, R. L., Bandettini, P. A., O'Craven, K. M.et al. (1996). Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Am. J. Neuroradiol. USA, 93, 14878–83Google ScholarPubMed
Burggren, A. C., Small, G. W., Sabb, F. W. & Bookheimer, S. Y. (2002). Specificity of brain activation patterns in people at genetic risk for Alzheimer disease. Am. J. Geriatr. Psychiatr., 10, 44–51CrossRefGoogle ScholarPubMed
Burton, E. J., Karas, G., Paling, S. M.et al. (2002). Patterns of cerebral atrophy in dementia with Lewy bodies using voxel-based morphometry. Neuroimage, 17, 618–30CrossRefGoogle ScholarPubMed
Cannestra, A. F., Pouratian, N., Bookheimer, S. Y., Martin, N. A., Beckerand, D. P. & Toga, A. W. (2001). Temporal spatial differences observed by functional MRI and human intraoperative optical imaging. Cereb. Corte., 11, 773–82CrossRefGoogle ScholarPubMed
Carella, F., Grisoli, M., Savoiardo, M. & Testa, D. (1995). Magnetic resonance signal abnormalities along the pyramidal tracts in amyotrophic lateral sclerosis. Ital. J. Neurol. Sci., 16, 511–15CrossRefGoogle ScholarPubMed
Catalan, M. J., Ishii, K ., Honda, M., Samii, A . & Hallett, M. (1999). A PET study of sequential finger movements of varying length in patients with Parkinson's disease. Brain, 122, 483–95CrossRefGoogle ScholarPubMed
Chabriat, H., Pappata, S., Poupon, C.et al. (1999). Clinical severity in CADASIL related to ultrastructural damage in white matter: in vivo study with diffusion tensor MRI. Stroke, 30, 2637–43CrossRefGoogle ScholarPubMed
Chan, D., Fox, N. C., Scahill, R. I.et al. (2001). Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Ann. Neurol., 49, 433–42CrossRefGoogle ScholarPubMed
Chan, D., Janssen, J. C., Whitwell, J. L.et al. (2003). Change in rates of cerebral atrophy over time in early-onset alzheimer's disease: longitudinal MRI study. Lancet, 362, 1121–2CrossRefGoogle ScholarPubMed
Chapman, B., Turner, R., Ordidge, R. J.et al. (1987). Real-time movie imaging from a single cardiac cycle by NMR. Magn. Reson. Med., 5, 246–54CrossRefGoogle Scholar
Chazot, G., Brousolle, E., Lapras, C., Blatter, T. & Aguzzi, A. (1996). New variant of Creutzfeld–Jakob disease in a 26-year old French man. Lancet, 347, 1181CrossRefGoogle Scholar
Clare, S., Humberstone, M., Hykin, J., Blumhardt, L. D., Botwell, R. & Morris, P. (1999). Detecting activations in event–related fMRI using analysis of variance. Magn. Reson. Med., 42, 1117–223.0.CO;2-J>CrossRefGoogle ScholarPubMed
Clark, V. P., Lai, S. & Deckel, A. W. (2002). Altered functional MRI responses in Huntington's disease. Neuroreport, 13, 703–6CrossRefGoogle ScholarPubMed
Colchester, A. C. F., Hojjatoleslami, S. A., Will, R. G. & Collie, D. A. (2002). Quantitative validation of MR intensity of abnormalities in variant CJD. J. Neurol. Neurosurg. Psychiatr., 73(2), 216Google Scholar
Colchester, A. C. F., Kingsley, D., Lasserson, D.et al. (2001). Structural MRI volumetric analysis in patients with organic amnesia, 1: methods and comparative findings across diagnostic groups. J. Neurol. Neurosurg. Psychiatr., 71, 13–22CrossRefGoogle ScholarPubMed
Collie, D. A., Sellar, R. J., Zeidler, M., Colchester, A. C. F., Knight, R. & Will, R. G. (2001). MRI of Creutzfeldt–Jakob disease: imaging features and recommended MRI protocol. Clin. Radiol., 56, 726–39CrossRefGoogle ScholarPubMed
Conturo, T. E., Lori, N. F., Cull, T. S.et al. (1999). Tracking neuronal fibre pathways in the living human brain. Proc. Natl Acad. Sci., USA, 96, 10422–7CrossRefGoogle Scholar
Convit, A., Leon, M. J., Tarshish, C.et al. (1997). Specific hippocampal volume reductions in individuals at risk for Alzheimer's disease. Neurobiol. Agin., 18, 131–8CrossRefGoogle ScholarPubMed
Cordato, N. J., Pantelis, C., Halliday, G. M.et al. (2002). Frontal atrophy correlates with behavioural changes in progressive supranuclear palsy. Brain, 125, 789–800CrossRefGoogle ScholarPubMed
Coulthard, A., Hall, K., English, P. T.et al. (1999). Quantitative analysis of MRI signal intensity in new variant Creutzfeldt–Jakob disease. Br. J. Radiol., 72, 742–8CrossRefGoogle ScholarPubMed
Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res., 29, 162–73CrossRefGoogle ScholarPubMed
Davie, C. A., Barker, G. J., Machado, C., Miller, D. H. & Lees, A. J. (1997). Proton magnetic resonance spectroscopy in Steele–Richardson–Olszewski syndrome. Mov. Disord., 12, 767–71CrossRefGoogle ScholarPubMed
Leon, M. J., Convit, A., George, A. E.et al. (1996). In vivo structural studies of the hippocampus in normal aging and in incipient Alzheimer's disease. Ann. NY Acad. Sci., 17, 1–13CrossRefGoogle Scholar
Demaerel, P., Baert, A. L., Vanopdensboch, W. & Robberecht, R. (1997). Diffusion-weighted magnetic resonance imaging in Creutzfeldt–Jakob disease. Lancet, 349, 847–8CrossRefGoogle ScholarPubMed
Demaerel, P., Heiner, L., Robberecht, W., Sciot, R. & Wilms, G. (1999). Diffusion-weighted MRI in sporadic Creutzfeldt–Jakob disease. Neurology, 52, 205–8CrossRefGoogle ScholarPubMed
Desmond, P. M., O'Brien, J. T., Tress, B. M.et al. (1994). Volumetric and visual assessment of the mesial temporal structures in Alzheimer's disease. Austr. N. Z. J. Med., 24, 547–53CrossRefGoogle ScholarPubMed
Di Rocco, A., Molinari, S., Stollman, A. L., Decker, A. & Yahr, M. D. (1993). MRI abnormalities in Creutzfeldt–Jakob disease. Neuroradiology, 35, 584–5CrossRefGoogle ScholarPubMed
Dickerson, B. C., Goncharova, II., Sullivan, M. P.et al. (2001). MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer's disease. Neurobiol. Agin., 22, 747–54CrossRefGoogle ScholarPubMed
Doi, T., Iwasa, K., Makifuchi, T. & Takamori, M. (1999). White matter hyperintensities on MRI in a patient with corticobasal degeneration. Acta Neurol. Scand., 99, 199–201CrossRefGoogle Scholar
Dum, R. P. & Strick, P. L. (1991). The origin of corticospinal projections from the premotor areas in the frontal lobe. J. Neurosci., 11, 667–89CrossRefGoogle ScholarPubMed
Ellis, C. M., Simmons, A., Dawson, J. M., Williams, S. C. & Leigh, P. N. (1999a). Distinct hyperintense MRI signal changes in the corticospinal tracts of a patient with motor neuron disease. Amyotroph. Lateral. Scler. Other Motor Neuron Disord., 1, 41–4Google Scholar
Ellis, C. M., Simmons, A., Jones, D. K.et al. (1999b). Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology, 53, 1051–8CrossRefGoogle Scholar
Ellis, C. M., Suckling, J., Amaro, E Jr.et al. (2001). Volumetric analysis reveals corticospinal tract degeneration and extramotor involvement in ALS. Neurology, 57, 1571–8CrossRefGoogle ScholarPubMed
Erkinjuntti, T., Leee, D. H., Gao, F. Q.et al. (1993). Temporal lobe atrophy on magnetic resonance imaging in the diagnosis of early Alzheimer's disease. Arch. Neurol., 50, 305–10CrossRefGoogle Scholar
Esmonde, T. F. G. & Will, R. G. (1992). Magnetic resonance imaging in Creutzfeldt–Jakob disease. Ann. Neurol., 31, 230–1CrossRefGoogle ScholarPubMed
Falcone, S., Quencer, R. M., Bowen, B.et al. (1992). Creutzfeldt–Jakob disease: focal symmetrical cortical involvement demonstrated by MR imaging. Am. J. Neuroradiol., 13, 403–6Google ScholarPubMed
Finkenstaedt, M., Szudra, A., Zerr, I.et al. (1996). MR imaging of Creutzfeldt–Jakob disease. Radiology, 199, 793–8CrossRefGoogle ScholarPubMed
Foong, J., Maier, M., Clark, C. A., Barker, G. J., Miller, D. H. & Ron, M. A. (2000). Neuropathological abnormalities of the corpus callosum in schizophrenia: a diffusion tensor imaging study. J. Neurol. Neurosurg. Psychiatr., 68, 242–4CrossRefGoogle ScholarPubMed
Fox, N. C. & Freeborough, P. A. (1997). Brain atrophy progression measured from serial MRI: validation and application to Alzheimer's disease. J. Magn. Reson. Imagin., 7, 1069–75CrossRefGoogle ScholarPubMed
Fox, N. C., Freeborough, P. A., Mekkaoui, K. F., Stevens, J. M. & Rossor, M. N. (1997). Cerebral and cerebellar atrophy on serial magnetic resonance imaging in an initially symptom free subject at risk of familial prion disease. Br. Med. J., 315, 856–7CrossRefGoogle Scholar
Fox, P. T. & Raichle, M. E. (1986). Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl Acad. Sci., USA, 83, 1140–4CrossRefGoogle ScholarPubMed
Fox, P. T., Raichle, M. E., Mintun, M. A. & Dence, C. (1988). Nonoxidative glucose consumption during focal physiologic neural activity. Science, 241, 462–4CrossRefGoogle ScholarPubMed
Frahm, J., Bruhn, H., Merboldt, K.-D., & Hänicke, W. (1992). Dynamic MR imaging of human brain oxygenation during rest and photic stimulation. J. Magn. Reson. Imagin., 2, 501–5CrossRefGoogle ScholarPubMed
Frahm, J., Merboldt, K. D., Hanicke, W. & Haase, A. (1987). Flow suppression in rapid FLASH NMR images. Magn. Reson. Med., 4, 372–7CrossRefGoogle ScholarPubMed
Freeborough, P. A. & Fox, N. C. (1997). The boundary shift integral: an accurate and robust measure of cerebral volume changes from registered repeat MRI. IEEE Trans. Med. Imaging, 16, 623–9CrossRefGoogle ScholarPubMed
Frisoni, G. B., Beltramello, A., Weiss, C., Geroldi, C., Bianchetti, A. & Trabucchi, M. (1996). Linear measures of atrophy in mild Alzheimer's disease. Neuroradiology, 17, 913–23Google Scholar
Frisoni, G. B., Laakso, M. P., Beltramello, A.et al. (1999). Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer's disease. Neurology, 52, 91–100CrossRefGoogle ScholarPubMed
Friston, K. J., Ashburner, J., Poline, J.-P., , Frith, C. D., Heather, J. D. & Frackowiak, R. S. J. (1995a). Spatial registration and normalization of images. Hum. Brain Mapp., 2, 165–89CrossRefGoogle Scholar
Friston, K. J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M. D. & Turner, R. (1998). Event-related fMRI: characterizing differential responses. Neuroimage, 7, 30–40CrossRefGoogle ScholarPubMed
Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J.-P., , Frith, C. D. & Frackowiak, R. S. J. (1995b). Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp., 2, 189–210CrossRefGoogle Scholar
Friston, K. J., Holmes, A. P., Poline, J.-B., et al. (1995c). Analysis of fMRI time-series revisited. Neuroimage, 2, 45–53CrossRefGoogle Scholar
Friston, K. J., Williams, S. C., Howard, R., Frackowiak, R. S. J. & Turner, R. (1996). Movement related effects on fMRI time-series. Magn. Reson. Med., 35, 346–55CrossRefGoogle ScholarPubMed
Frostig, R. D., Lieke, E. E., T'so, D. Y. & Grinvald, A. (1990). Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution imaging of intrinsic signals. Proc. Natl Acad. Sci., USA, 87, 6082–6CrossRefGoogle ScholarPubMed
Garcia-Santos, J. M., Lopez-Corbalan, J. A., Martinez-Lage, J. F. & Sicilia-Guillen, J. (1996). CT and MRI in iatrogenic and sporadic Creutzfeld–Jakob disease: as far as imaging perceives. Neuroradiology, 38, 226–31CrossRefGoogle Scholar
Gertz, H.-J., , Henkes, H. & Cervos-Navarro, J. (1988). Creutzfeldt–Jakob disease: correlation of MRI and neuropathological findings. Neurology, 38, 1481–2CrossRefGoogle Scholar
Ghaemi, M., Hilker, R., Rudolf, J., Sobesky, J. & Heiss, W. D. (2002). Differentiating multiple system atrophy from Parkinson's disease: contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging. J. Neurol. Neurosurg. Psychiatr., 73, 517–23CrossRefGoogle ScholarPubMed
Gold, S., Christian, B., Arndt, S.et al. (1998). Functional MRI statistical software packages: a comparative analysis. Hum. Brain Mapp., 6, 73–843.0.CO;2-H>CrossRefGoogle ScholarPubMed
Grossman, M., Cooke, A., DeVita, C.et al. (2003). Grammatical and resource components of sentence processing in Parkinson's disease: an fMRI study. Neurology, 60, 775–81CrossRefGoogle Scholar
Guillerman, R. P. (2000). The eye-of-the-tiger sign. Radiology, 217, 895–6CrossRefGoogle ScholarPubMed
Hashimoto, M., Kitagaki, H., Imamura, T.et al. (1998). Medial temporal and whole-brain atrophy in dementia with Lewy bodies: a volumetric MRI study. Neurology, 51, 357–62CrossRefGoogle ScholarPubMed
Haslinger, B., Erhard, P., Kampfe, N.et al. (2001). Event-related functional magnetic resonance imaging in Parkinson's disease before and after levodopa. Brain, 124, 558–70CrossRefGoogle ScholarPubMed
Hauser, R. A., Murtaugh, F. R., Akhter, K., Gold, M. & Olanow, C. W. (1996). Magnetic resonance imaging of corticobasal degeneration. J. Neuroimagin., 6, 222–6CrossRefGoogle ScholarPubMed
Hojjat, S. A., Collie, D. A. & Colchester, A. C. F. (2002). The putamen intensity gradient in CJD diagnosis. In Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, ed. T. Dohi & R. Kikinis, pp. 524–32. Berlin: SpringerCrossRef
Howard, R., David, A., Woodruff, P.et al. (1997). Seeing visual hallucinations with functional magnetic resonance imaging. Dement. Geriatr. Cogn. Disord., 8, 73–7CrossRefGoogle ScholarPubMed
Howard, R. S. (1996). Creutzfeldt–Jakob disease in a young woman. Lancet, 347, 945–8Google Scholar
Huesgen, C. T., Burger, P. C., Crain, B. J. & Johnson, G. A. (1993). In vitro MR microscopy of the hippocampus in Alzheimer's disease. Neurology, 43, 145–52CrossRefGoogle ScholarPubMed
Humberstone, M., Clare, S., Hykin, J., Morris, P. G. & Sawle, G. V. (1997a). Measuring single cognitive events with whole brain functional magnetic resonance imaging. J. Neurol. Neurosurg. Psychiatr., 62, 204Google Scholar
Humberstone, M., Sawle, G. V., Clare, S.et al. (1997b). Functional magnetic resonance imaging of single motor events reveals human presupplementary motor area. Ann. Neurol., 42, 632–7CrossRefGoogle Scholar
Hutchinson, M. & Raff, U. (1999). Parkinson's disease: a novel MRI method for determining structural changes in the substantia nigra. J. Neurol. Neurosurg. Psychiatr., 67, 815–18CrossRefGoogle ScholarPubMed
Ikeda, M., Tanabe, H., Nakagawa, Y.et al. (1994). MRI-based quantitative assessment of the hippocampal region in very mild to moderate Alzheimer's disease. Neuroradiology, 36, 7–10CrossRefGoogle ScholarPubMed
Insausti, R., Juottonen, K., Soininen, H.et al. (1998). MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. Am. J. Neuroradiol., 19, 659–71Google ScholarPubMed
Insausti, R., Tunon, T., Sobreviela, T.et al. (1995). The human entorhinal cortex: a cytoarchitectonic atlas. J. Compar. Neurol., 335, 171–98CrossRefGoogle Scholar
Jack, C. R., Petersen, R. C., O'Brien, P. C. & Tangalos, E. G. (1992). MR-based hippocampal volumetry in the diagnosis of Alzheimer's disease. Neurology, 42, 183–8CrossRefGoogle Scholar
Jack, C. R., Petersen, R. C., Zu, Y. C.et al. (1997). Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease. Neurology, 49, 786–94CrossRefGoogle ScholarPubMed
Jech, R., Urgosik, D., Tintera, J.et al. (2001). Functional magnetic resonance imaging during deep brain stimulation: a pilot study in four patients with Parkinson's disease. Mov. Disord., 16, 1126–32CrossRefGoogle ScholarPubMed
Jech, R., Ruzicka, E., Tintera, J. & Urgosik, D. (2003). Reply: fMRI during deep brain stimulation. Mov Disord., 18, 461–2CrossRefGoogle Scholar
Jenkins, I. H., Fernandez, W., Playford, E. D.et al. (1992). Impaired activation of the supplementary motor area in Parkinson's disease is reversed when akinesia is treated with apomorphine. Ann. Neurol., 32, 749–57CrossRefGoogle ScholarPubMed
Johnson, S. C., Saykin, A. J., Baxter, L. C.et al. (2000). The relationship between fMRI activation and cerebral atrophy: comparison of normal aging and alzheimer disease. Neuroimage., 11, 179–87CrossRefGoogle ScholarPubMed
Jones, D. K., Simmons, A., Williams, S. C. R. & Horsfield, M. A. (1999). Non-invasive assessement of axonal fibre connectivity in the human brain via diffusion tensor MRI. Magn. Reson. Med., 42, 37–413.0.CO;2-O>CrossRefGoogle Scholar
Jones, D. K., Griffin, L. D., Alexander, D. C.et al. (2002). Spatial normalization and averaging of diffusion tensor MRI data sets. Neuroimage, 17, 592–617CrossRefGoogle ScholarPubMed
Juottonen, K., Laakso, M. P., Partanen, K. & Soininen, H. (1999). Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer's disease. Am. J. Neuroradiol., 20, 139–44Google Scholar
Kassubek, J., Juengling, F. D., Hellwig, B., Spreer, J. & Lucking, C. H. (2002). Thalamic gray matter changes in unilateral Parkinsonian resting tremor: a voxel-based morphometric analysis of 3-dimensional magnetic resonance imaging. Neurosci. Lett., 323, 29–32CrossRefGoogle ScholarPubMed
Kato, N., Arai, K. & Hattori, T. (2003). Study of the rostral midbrain atrophy in progressive supranuclear palsy. J. Neurol. Sci., 210, 57–60CrossRefGoogle ScholarPubMed
Kato, T., Erhard, P., Takayama, Y.et al. (1998). Human hippocampal long-term sustained response during word memory processing. Neuroreport, 9, 1041–7CrossRefGoogle ScholarPubMed
Kato, T., Ogawa, S. & Ugurbil, K. (2000). Functional suppression of long-term sustained response in the human hippocampal formation due to memory distraction. Neurosci. Lett., 291, 33–6CrossRefGoogle ScholarPubMed
Kato, T., Knopman, D. & Liu, H. (2001). Dissociation of regional activation in mild AD during visual encoding: a functional MRI study. Neurology, 57, 812–16CrossRefGoogle ScholarPubMed
Kenwright, C., Bardinet, E., Hojjat, S. A., Malandain, G., Ayache, N. & Colchester, A. C. F. (2003). 2-D to 3-D refinement of post-mortem optical and MRI co-registration. In Medical Image Computing and Computer-Assisted Intervention, ed. R. E. Ellis & T. M. Peters, pp. 935–44. Berlin: SpringerCrossRef
Kew, J. J., Leigh, P. N., Playford, E. D.et al. (1993). Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study. Brain, 116, 655–80CrossRefGoogle ScholarPubMed
Killany, R. J., Gomez-Isla, T., , Moss, M.et al. (2000). Use of structural magnetic resonance to predict who will get alzheimer's disease. Ann. Neurol., 47, 430–93.0.CO;2-I>CrossRefGoogle Scholar
Kim, H. C. (2001). Diffusion-weighted MR imaging in biopsy-proven Creutzfeldt–Jakob disease. Korean J. Radiol., 2, 192–6CrossRefGoogle ScholarPubMed
Kitagaki, H., Hirono, N., Ishii, K. & Mori, E. (2000). Corticobasal degeneration: evaluation of cortical atrophy by means of hemispheric surface display generated with MR images. Radiology, 216, 31–8CrossRefGoogle ScholarPubMed
Kleinschmidt, A., Orbig, H., Requardt, M.et al. (1996). Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near – infrared spectroscopy. J. Cereb. Blood Flow Metab., 16, 817–26CrossRefGoogle ScholarPubMed
Knopman, D. S., DeKosky, S. T., Cummings, J. L.et al. (2001). Practice parameter: diagnosis of dementia (an evidence-based review). Neurology, 56, 1143–53CrossRefGoogle Scholar
Konrad, C., Henningsen, H., Bremer, J.et al. (2002). Pattern of cortical reorganization in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Exp. Brain Res., 143, 51–6CrossRefGoogle ScholarPubMed
Kovanen, J., Erkinjuntii, T., Livanainen, M.et al. (1985). Cerebral MR and CT imaging in Creutzfeldt–Jakob disease. J. Comput. Assist. Tomogr., 9, 125–8CrossRefGoogle ScholarPubMed
Krasuski, J. S., Alexander, G. E., Horwitz, B.et al. (1998). Volumes of medial temporal lobe structures in patients with Alzheimer's disease and mild cognitive impairment. Biol. Psychiatr., 43, 60–8CrossRefGoogle ScholarPubMed
Kropp, S., Finkenstaedt, M., Zerr, I., Schroeter, A. & Poser, S. (2000). Diffusion-weighted MRI in patients with Creutzfeldt–Jakob disease. Nervenarzt, 71, 91–5CrossRefGoogle ScholarPubMed
Kruger, H., Meesmann, C., Rohrbach, E., Muller, J. & Mertens, H. G. (1990). Panencephalopathic type of Creutzfeldt–Jakob disease with primary extensive involvement of white matter. Eur. Neurol., 30, 115–19CrossRefGoogle ScholarPubMed
Kwong, K. K. (1995). Functional magnetic resonance imaging with echo planar imaging. Magn. Reson. Quart., 11, 1–20Google ScholarPubMed
Kwong, K. K., Belliveau, J. W., Chesler, D. A.et al. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl Acad. Sci., USA, 89, 5675–9CrossRefGoogle ScholarPubMed
Laakso, M. P. (2002). Structural imaging in cognitive impaiment and the dementias. Curr. Opin. Neurol., 15, 415–21CrossRefGoogle Scholar
Laakso, M. P., Soininen, H., Partanen, K.et al. (1995). Volumes of hippocampus, amygdala and frontal lobes in the MRI-based diagnosis of early Alzheimer's disease: correlation with memory functions. J. Neural Transm., Parkinson's Dis. Demen., 9, 73–86CrossRefGoogle ScholarPubMed
Laakso, M. P., Soininen, H., Partanen, K.et al. (1998). MRI of the hippocampus in Alzheimer's disease: sensitivity, specificity, and analysis of the incorrectly classified subjects. Neurobiol. Agin., 19, 23–31CrossRefGoogle ScholarPubMed
Lai, S., Hopkins, A. L., Haacke, E. M.et al. (1993). Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at 1.5 Tesla: preliminary results. Magn. Reson. Med., 30, 387–92CrossRefGoogle ScholarPubMed
Lane, K. L., Brown, P., Howel, D. N.et al. (1994). Creutzfeldt–Jakob disease in a pregnant woman with an implanted dura mater graft. Neurosurgery, 34, 737–40Google Scholar
Bihan, D., Mangin, J. F., Poupon, C.et al. (2001). Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imagin., 13, 534–46CrossRefGoogle ScholarPubMed
Lehericy, S., Baulac, M., Chiras, J.et al. (1998). Amygdalohippocampal MR volume measurements in the early stages of Alzheimer disease. Am. J. Neuroradiol., 15, 929–37Google Scholar
Leigh, P. N., Simmons, A., Williams, S., Williams, V., Turner, M. & Brooks, D. (2002). Imaging: MRS/MRI/PET/SPECT: summary. Amyotroph. Lateral. Scler. Other Motor Neuron Disord., 3 Suppl 1, S75–S80CrossRefGoogle ScholarPubMed
Loubinoux, I., Boulanouar, K., Ranjeva, J. P.et al. (1999). Cerebral functional magnetic resonance imaging activation modulated by a single dose of the monoamine neurotransmission enhancers fluoxetine and fenozolone during hand sensorimotor tasks. J. Cereb. Blood Flow Metab., 19, 1365–75CrossRefGoogle ScholarPubMed
Mao-Draayer, Y., , Braff, S. P., Nagle, K. J., Pendlebury, W., Penar, P. L. & Shapiro, R. E. (2002). Emerging patterns of diffusion-weighted MR imaging in Creutzfeld–Jakob disease: case report and review of the literature. Am. J. Neuroradiol., 23, 550–6Google Scholar
Martindale, J. L., Geschwind, M. D. & Miller, B. L. (2003). Psychiatric and neuroimaging findings in Creutzfeldt–Jakob disease. Geriat. Disord., 5, 43–6Google ScholarPubMed
Matoba, M. (2001). Creutzfeldt-Jakob disease: serial changes on diffusion-weighted MRI. J. Comput. Assist. Tomogr., 25, 274–7CrossRefGoogle ScholarPubMed
McClure, S. M., Berns, G. S. & Montague, P. R. (2003). Temporal prediction errors in a passive learning task activate human striatum. Neuron, 38, 339–46CrossRefGoogle Scholar
Mechelli, A., Henson, R. N., Price, C. J. & Friston, K. J. (2003). Comparing event-related and epoch analysis in blocked design fMRI. Neuroimage, 18, 806–10CrossRefGoogle ScholarPubMed
Mendez, O. E., Shang, J., Jungreis, C. A. & Kaufer, D. I. (2003). Diffusion-weighted MRI in Creutzfeldt–Jakob disease: a better diagnostic marker than CSF protein 14-3-3?J. Neuroimagin., 13, 147–51CrossRefGoogle ScholarPubMed
Middelkoop, H. A., Flier, W. M., Burton, E. J.et al. (2001). Dementia with Lewy bodies and AD are not associated with occipital lobe atrophy on MRI. Neurology, 57, 2117–20CrossRefGoogle Scholar
Milton, W. J., Atlas, S. W., Lavi, E. & Mollman, J. E. (1991). Magnetic resonance imaging of Creutzfeldt–Jakob disease. Ann. Neurol., 29, 438–40CrossRefGoogle Scholar
Mittal, S., Farmer, P., Kalina, P., Kingsley, P. B. & Halperin, J. (2002). Correlation of diffusion-weighted magnetic resonance imaging with neuropathology in Creutzfeld–Jakob Disease. Arch. Neurol., 59, 128–34CrossRefGoogle Scholar
Molinuevo, J. L., Munoz, E., Valldeoriola, F. & Tolosa, E. (1999). The eye of the tiger sign in cortical-basal ganglionic degeneration. Mov. Disord., 14, 169–713.0.CO;2-#>CrossRefGoogle ScholarPubMed
Molko, N., Cohen, L., Mangin, J. F.et al. (2002). Visualizing the neural bases of a disconnection syndrome with diffusion tensor imaging. J. Cogn. Neurosci., 14, 629–36CrossRefGoogle ScholarPubMed
Murata, T., Shiga, Y., Higano, S., Takahashi, S. & Mugikura, S. (2002). Conspicuity and evolution of lesions in Creutzfeldt–Jakob disease at diffusion-weighted imaging. Am. J. Neuroradiol., 23, 1164–72Google ScholarPubMed
Na, D. L., Suh, C. K., Choi, S. H., et al. (1999). Diffusion-weighted magnetic resonance imaging in probable Creutzfeldt–Jakob disease. Arch. Neurol., 56, 951–7CrossRefGoogle ScholarPubMed
Naka, H., Ohshita, T., Murata, Y., Imon, Y., Mimori, Y. & Nakamura, S. (2002). Characteristic MRI findings in multiple system atrophy: comparison of the three subtypes. Neuroradiology, 44, 204–9CrossRefGoogle ScholarPubMed
O'Brien, J. T., Desmond, P. M., Ames, D., Schweitzer, I., Chiu, E. & Tress, B. M. (1997). Temporal lobe magnetic resonance imaging can differentiate Alzheimer's disease from normal ageing, depression, vascular dementia and other causes of cognitive impairment. Psychol. Med., 27, 1267–75CrossRefGoogle ScholarPubMed
O'Brien, J. T., Paling, S., Barber, R.et al. (2001). Progressive brain atrophy on serial MRI in dementia with Lewy bodies, AD, and vascular dementia. Neurology, 56, 1386–8CrossRefGoogle ScholarPubMed
Ogawa, S., Lee, T. M., Kay, A. R. & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl Acad. Sci., USA, 3, 9868–72CrossRefGoogle Scholar
Ohshita, T., Oka, M., Imon, Y., Yamaguchi, S., Mimori, Y. & Nakamura, S. (2000). Apparent diffusion coefficient measurements in progressive supranuclear palsy. Neuroradiology, 42, 643–7CrossRefGoogle ScholarPubMed
Ohnishi, T., Matsuda, H., Tabira, T.et al. (2001). Changes in brain morphology in Alzheimer disease and normal aging: is Alzheimer disease an exaggerated aging process?Am. J. Neuroradiol., 22, 1680–5Google ScholarPubMed
Oikawa, H., Sasaki, M., Tamakawa, Y., Ehara, S. & Tohyama, K. (2002). The substantia nigra in Parkinson disease: proton density-weighted spin-echo and fast short inversion time inversion-recovery MR findings. Am. J. Neuroradiol., 23, 1747–56Google ScholarPubMed
Oka, M., Katayama, S., Imon, Y., Ohshita, T., Mimori, Y. & Nakamura, S. (2001). Abnormal signals on proton density-weighted MRI of the superior cerebellar peduncle in progressive supranuclear palsy. Acta Neurol. Scand., 104, 1–5CrossRefGoogle ScholarPubMed
Oliva, D., Carella, F., Savoiardo, M.et al. (1993). Clinical and magnetic resonance features of the classic and akinetic-rigid variants of Huntington's disease. Arch. Neurol., 50, 17–19CrossRefGoogle ScholarPubMed
Oppenheim, C., Brandel, J.-P., , Hauw, J.-J., , Deslys, J.-P., & Fontaine, B. (2000). MRI and the second French case of vCJD. Lancet, 356, 253–4CrossRefGoogle ScholarPubMed
Pantel, J., Schroder, J., Schad, L. R.et al. (1997). Quantitative magnetic resonance imaging and neuropsychological functions in dementia of the Alzheimer type. Psychol. Med., 27, 221–9CrossRefGoogle ScholarPubMed
Pantel, J., Schroder, J., Essig, M.et al. (1998). In vivo quantification of brain volumes in subcortical vascular dementia and Alzheimer's disease. An MRI-based study. Demen, Geriatr. Cogn. Disord., 9, 316Google ScholarPubMed
Pariente, J., Loubinoux, I., Carel, C.et al. (2001). Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke. Ann. Neurol., 50, 718–29CrossRefGoogle Scholar
Parker, G. J. M., Wheeler-Kingshott, C. A. M. & Barker, G. J. (2001). Distributed anatomical brain connectivity derived from diffusion tensor imaging. In Information Processing in Medical Imaging, ed. M. F. Sana, pp. 106–120. Berlin: SpringerCrossRef
Pearl, G. S. & Anderson, R. E. (1989). Creutzfeldt–Jakob disease: high caudate signal on magnetic resonance imaging. South. Med. J., 82, 1177–80CrossRefGoogle ScholarPubMed
Pelled, G., Bergman, H. & Goelman, G. (2002). Bilateral overactivation of the sensorimotor cortex in the unilateral rodent model of Parkinson's disease – a functional magnetic resonance imaging study. Eur. J. Neurosci., 15, 389–94CrossRefGoogle ScholarPubMed
Phanthumchinda, K. (1999). Syndrome of progressive ataxia and palatal myoclonus: a case report. J. Med. Assoc. Thai., 82, 1154–7Google ScholarPubMed
Pierpaoli, C., Jezzard, P., Basser, P. J., Barnett, A. & Di Chiro, G. (1996). Diffusion tensor MR imaging of the human brain. Radiology, 201, 637–48CrossRefGoogle ScholarPubMed
Playford, E. D., Jenkins, I. H., Passingham, R. E., Nutt, J., Frackowiak, R. S. & Brooks, D. J. (1992). Impaired mesial frontal and putamen activation in Parkinson's disease: a positron emission tomography study. Ann. Neurol., 32, 151–61CrossRefGoogle ScholarPubMed
Pocchiari, M., Masullo, C., Salvatore, M., Genuardi, M. & Galgani, S. (1992). Creutzfeldt–Jakob disease after non-commercial dura mater graft. Lancet, 340, 614–15CrossRefGoogle ScholarPubMed
Poser, S., Mollenhauer, B., Kraubeta, A.et al. (1999). How to improve the clinical diagnosis of Creutzfeldt–Jakob disease. Brain, 122, 2345–51CrossRefGoogle ScholarPubMed
Poupon, C., Clark, C. A., Frouin, V.et al. (2000). Regularisation of diffusion-based maps for the tracking of brain white matter fascicles. Neuroimage, 12, 184–95CrossRefGoogle Scholar
Pouratian, N., Bookheimer, S. Y., Rex, D. E., Martin, N. A. & Toga, A. W. (2002). Utility of preoperative functional magnetic resonance imaging for identifying language cortices in patients with vascular malformations. J. Neurosurg., 97, 21–32CrossRefGoogle ScholarPubMed
Prvulovic, D., Hubl, D., Sack, A. T.et al. (2002). Functional imaging of visuospatial processing in Alzheimer's disease. Neuroimage, 17, 1403–14CrossRefGoogle ScholarPubMed
Pucci, E., Belardinelli, N., Regnicolo, L.et al. (1998). Hippocampus and parahippocampal gyrus linear measurements based on magnetic resonance in Alzheimer's disease. Eur. Neurol., 39, 16–25CrossRefGoogle ScholarPubMed
Puce, A., Constable, R. T., Luby, M. L.et al. (1995). Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J. Neurosurg., 83, 262–70CrossRefGoogle ScholarPubMed
Rabinstein, A. A., Whiteman, M. L. & Shebert, R. T. (2002). Abnormal diffusion-weighted magnetic resonance imaging in Creutzfeldt–Jakob disease following corneal transplantations. Arch. Neurol., 59, 637–9CrossRefGoogle ScholarPubMed
Radanovic, M., Senaha, M. L. H., Mansur, L. L.et al. (2001). Primary progressive aphasia: analysis of 16 cases. Arch. Neuropsychiat., 59, 512–20Google Scholar
Rao, S. M., Binder, J. R., Bandettini, P. A.et al. (1993). Functional magnetic resonance imaging of complex human movements. Neurology, 43, 2311–18CrossRefGoogle ScholarPubMed
Rascol, O., Sabatini, U., Chollet, F.et al. (1994). Normal activation of the supplementary motor area in patients with Parkinson's disease undergoing long-term treatment with levodopa. J. Neurol. Neurosurg. Psychiatr., 57, 567–71CrossRefGoogle ScholarPubMed
Rezai, A. R., Lozano, A. M., Crawley, A. P.et al. (1999). Thalamic stimulation and functional magnetic resonance imaging: localization of cortical and subcortical activation with implanted electrodes. Technical note. J. Neurosurg., 90, 583–90CrossRefGoogle ScholarPubMed
Richter, W., Andersen, P. M., Georgopoulos, A. P. & Kim, S.-, G. (1997). Sequential activity in human motor areas during a delayed cued finger movement task studied by time – resolved fMRI. Neuroreport, 8, 1257–61CrossRefGoogle ScholarPubMed
Rombouts, S. A., Barkhof, F., Meel, C. S. & Scheltens, P. (2002). Alterations in brain activation during cholinergic enhancement with rivastigmine in Alzheimer's disease. J. Neurol. Neurosurg. Psychiatr., 73, 665–71CrossRefGoogle ScholarPubMed
Rosas, H. D., Goodman, J., Chen, Y. I.et al. (2001). Striatal volume loss in HD as measured by MRI and the influence of CAG repeat. Neurology, 57, 1025–8CrossRefGoogle ScholarPubMed
Rosas, H. D., Liu, A. K., Hersch, S.et al. (2002). Regional and progressive thinning of the cortical ribbon in Huntington's disease. Neurology, 58, 695–701CrossRefGoogle ScholarPubMed
Rosas, H. D., Koroshetz, W. J., Chen, Y. I.et al. (2003). Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology, 60, 1615–20CrossRefGoogle ScholarPubMed
Rowe, J., Stephan, K. E., Friston, K., Frackowiak, R., Lees, A. & Passingham, R. (2002). Attention to action in Parkinson's disease: impaired effective connectivity among frontal cortical regions. Brain, 125, 276–89CrossRefGoogle ScholarPubMed
Sabatini, U., Boulanouar, K., Fabre, N.et al. (2000). Cortical motor reorganization in akinetic patients with Parkinson's disease: a functional MRI study. Brain, 123 (Pt 2), 394–403CrossRefGoogle ScholarPubMed
Sach, M., Winkler, G., Glauche, V.et al. (2004). Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain, 127, 340–50CrossRefGoogle ScholarPubMed
Samman, I., Wöhrle, J. C., Sommer, A., Hennerici, M., Schulz-Schaeffer, W. J. & Kretzschmar, H. A. (1999). Clinical range and MRI in Creutzfeldt–Jakob disease with heterozygosity at codon 129 and prion protein type 2. J. Neurol. Neurosurg., Psychiatr., 67, 678–81CrossRefGoogle ScholarPubMed
Samuel, M., Ceballos-Baumann, A. O., Blin, J.et al. (1997). Evidence for lateral premotor and parietal overactivity in Parkinson's disease during sequential and bimanual movements. A PET study. Brain, 120, 963–76CrossRefGoogle ScholarPubMed
Samuel, M., Williams, S. C., Leigh, P. N.et al. (1998). Exploring the temporal nature of hemodynamic responses of cortical motor areas using functional MRI. Neurology, 51, 1567–75CrossRefGoogle ScholarPubMed
Samuel, M., Ceballos-Baumann, A. O., Boecker, H. & Brooks, D. J. (2001). Motor imagery in normal subjects and Parkinson's disease patients: an H215O PET study. Neuroreport, 12, 821–8CrossRefGoogle Scholar
Samuel, M., Tuite, P., Torus, N., Sharpe, J. & Lang, A. E. (2004). Progressive ataxia and palatal tremor (PAPT): clinical, ocular, motility and MRI assessment with review of palatal tremors. Brain, 127, 1252–68CrossRefGoogle ScholarPubMed
Savoiardo, M., Halliday, W. C., Nardocci, N.et al. (1993). Hallervorden-Spatz disease: MR and pathologic findings. Am. J. Neuroradiol., 14, 155–62Google ScholarPubMed
Saykin, A. J., Flashman, L. A., Frutiger, S. A.et al. (1999). Neuroanatomic substrates of semantic memory impairment in Alzheimer's disease: patterns of functional MRI activation. J. Int. Neuropsychol. Soc., 5, 377–92CrossRefGoogle ScholarPubMed
Scheltens, P., Launer, L. J., Barkhof, F., Weinstein, H. C. & Jonker, G. (1997). The diagnostic value of magnetic resonance imaging and technetium 99m-HMPAO single-photo-emission-computed-tomography for the diagnosis of Alzheimer disease in a community-dwelling elderly population. Alzheimer Dis. Assoc. Disord., 11, 63–70CrossRefGoogle Scholar
Scheltens, P., Leys, D., Barkhol, F.et al. (1992). Atrophy of medial temporal lobes on MRI in probable Alzheimer's disease and normal aging: diagnostic value and neuropsychological correlates. J. Neurol. Neurosurg. Psychiatr., 55, 967–72CrossRefGoogle Scholar
Schocke, M. F., Seppi, K., Esterhammer, R.et al. (2002). Diffusion-weighted MRI differentiates the Parkinson variant of multiple system atrophy from PD. Neurology, 58, 575–80CrossRefGoogle ScholarPubMed
Schroter, A., Zerr, I., Henkel, K., Tschampa, H. J., Finkenstaedt, M. & Poser, S. (2000). Magnetic resonance imaging in the clinical diagnosis of Creutzfeldt–Jakob disease. Arch. Neurol., 57, 1751–7CrossRefGoogle ScholarPubMed
Schulz, J. B., Skalej, M., Wedekind, D.et al. (1999). Magnetic resonance imaging-based volumetry differentiates idiopathic Parkinson's syndrome from multiple system atrophy and progressive supranuclear palsy. Ann. Neurol., 45, 65–743.0.CO;2-1>CrossRefGoogle ScholarPubMed
Sellar, R. J.Will, W. & Zeidler, M. (1997). MR Imaging of new variant Creutzfeldt–Jakob disease: the pulvinar sign. Neuroradiology, 39, S53Google Scholar
Sellar, R. J., Collie, D. A. & Will, R. G. (2002). Progress in understanding Creutzfeldt–Jakob disease. Am. J. Neuroradiol., 23, 1070–2Google Scholar
Seppi, K., Schocke, M. F., Esterhammer, R.et al. (2003). Diffusion-weighted imaging discriminates progressive supranuclear palsy from PD, but not from the parkinson variant of multiple system atrophy. Neurology, 60, 922–7CrossRefGoogle Scholar
Sethi, K. D., Adams, R. J., Loring, D. W. & el Gammal, T. (1988). Hallervorden-Spatz syndrome: clinical and magnetic resonance imaging correlations. Ann. Neurol., 24, 692–4CrossRefGoogle ScholarPubMed
Small, S. A., Perera, G. M., DeLaPaz, R., Mayeux, R. & Stern, Y. (1999). Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer's disease. Ann. Neurol., 45, 466–723.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Small, S. A., Nava, A. S., Perera, G. M., DeLaPaz, R. & Stern, Y. (2000). Evaluating the function of hippocampal subregions with high-resolution MRI in Alzheimer's disease and aging. Microsc. Res. Tech., 51, 101–83.0.CO;2-H>CrossRefGoogle ScholarPubMed
Small, S. A., Tsai, W. Y., DeLaPaz, R., Mayeux, R. & Stern, Y. (2002). Imaging hippocampal function across the human life span: is memory decline normal or not? Ann. Neurol., 51, 290–5CrossRefGoogle ScholarPubMed
Smith, C. D., Andersen, A. H., Kryscio, R. J.et al. (1999). Altered brain activation in cognitively intact individuals at high risk for Alzheimer's disease. Neurology, 53, 1391–6CrossRefGoogle ScholarPubMed
Soliveri, P., Monza, D., Paridi, D.et al. (1999). Cognitive and magnetic resonance imaging aspects of corticobasal degeneration and progressive supranuclear palsy. Neurology, 53, 502–7CrossRefGoogle ScholarPubMed
Sperling, M. R. & Herrmann, C Jr. (1985). Syndrome of palatal myoclonus and progressive ataxia: two cases with magnetic resonance imaging. Neurology, 35, 1212–14CrossRefGoogle ScholarPubMed
Sperling, R. A., Bates, J. F., Chua, E. F.et al. (2003). fMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease. J. Neurol. Neurosurg. Psychiatr., 74, 44–50CrossRefGoogle Scholar
Stark, C. E. & Squire, L. R. (2000). Functional magnetic resonance imaging (fMRI) activity in the hippocampal region during recognition memory. J. Neurosci., 20, 7776–81CrossRefGoogle ScholarPubMed
Strupp, J. (1996). Stimulate. A GUI based fMRI analysis software package. Neuroimage, 3, 306CrossRefGoogle Scholar
Talairach, J. & Tournoux, P. (1988). A Co-planar Stereotaxic Atlas of a Human Brain. Stuttgart: Thieme
Thadani, V., Penar, P. L., Partington, J.et al. (1988). Creutzfeldt–Jakob disease probably acquired from a cadaveric dura mater graft. J. Neurosurg., 69, 766–9CrossRefGoogle ScholarPubMed
Thulborn, K. R., Martin, C. & Voyvodic, J. T. (2000). Functional MR imaging using a visually guided saccade paradigm for comparing activation patterns in patients with probable Alzheimer's disease and in cognitively able elderly volunteers. Am. J. Neuroradiol., 21, 524–31Google ScholarPubMed
Tokumaru, A. M., O'uchi, T., Kuru, Y., Maki, T., Murayama, S. & Horichi, Y. (1996). Corticobasal degeneration: MR with histopathologic comparison. Am. J. Neuroradiol., 17, 1849–52Google ScholarPubMed
Toma, K., Honda, M., Hanakawa, T.et al. (1999). Activities of the primary and supplementary motor areas increase in preparation and execution of voluntary muscle relaxation: An event – related fMRI study. J. Neurosci., 19, 3527–34CrossRefGoogle ScholarPubMed
Tomiyasu, H., Yoshii, F ., Ohnuki, Y., Ikeda, J. E. & Shinohara, Y. (1998). The brainstem and thalamic lesions in dentatorubral-pallidoluysian atrophy: an MRI study. Neurology, 50, 1887–90CrossRefGoogle ScholarPubMed
Turner, R. & Grinvald, A. (1994). Direct visualization of patterns of deoxygenation and reoxygenation in monkey cortical vasculature during functional brain activation. Proc. Soc. Magn. Reson. Med., 2, 430Google Scholar
Turner, R., Howseman, A., Rees, G. E., Josephs, O. & Friston, K. (1998). Functional magnetic resonance imaging of the human brain: data acquisition and analysis. Exp. Brain Res., 123, 5–12CrossRefGoogle ScholarPubMed
Turner, R., Jezzard, P., Wen, H.et al. (1993). Functional mapping of the human visual cortex at 4 and 1.5 tesla using deoxygenation contrast EPI. Magn. Reson. Med., 29, 277–9CrossRefGoogle ScholarPubMed
Tyszka, J. M., Grafton, S. T., Chew, W., Woods, R. P. & Colletti, P. M. (1994). Parceling of mesial frontal motor areas during ideation and movement using functional magnetic resonance imaging at 1.5 tesla [see comments]. Ann. Neurol., 35, 746–9CrossRefGoogle Scholar
Tzeng, B.-C., , Chen, C.-Y., , Lee, C.-C., , Chen, F.-H., , Chou, T.-Y., & Zimmerman, R. A. (1997). Rapid spongiform degeneration of the cerebrum and cerebellum in Creutzfeldt–Jakob disease. Am. J. Neuroradiol., 18(3), 583–6Google Scholar
Uchino, A., Yoshinaga, M., Shiokawa, O., Hata, H. & Ohno, M. (1991). Serial MR imaging in Creutzfeldt–Jakob disease. Neuroradiology, 33, 364–7CrossRefGoogle Scholar
Ueki, Y., Isozaki, E., Miyazaki, Y.et al. (2002). Clinical and neuroradiological improvement in chronic acquired hepatocerebral degeneration after branched-chain amino acid therapy. Acta Neurol. Scand., 106, 113–16CrossRefGoogle ScholarPubMed
Urbach, H., Klisch, J., Wolf, H. K., Brechtelsbauer, D., Gass, S. & Solymosi, L. (1998). MRI in sporadic Creutfeld–Jakob disease: correlation with clinical and neuropathological data. Neuroradiology, 40, 65–70CrossRefGoogle Scholar
Van Leemput, K., Maes, F., Vandermeulen, D. & Suetens, P. (1998). Automatic segmentation of brain tissues and MR bias field correction using a digital brain atlas. In Medical Image Computing and Computer-Assisted Intervention – MICCAI'98, ed. W. M. Wells III, A. C. F. Colchester & S. Delp, pp. 1222–9. Berlin: SpringerCrossRef
Leemput, K., Maes, F., Vandermeulen, D., Colchester, A. C. F. & Suetens, P. (2001). Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Trans. Med. Imaging, 20, 677–88CrossRefGoogle ScholarPubMed
Wahlund, L. O., Julin, P., Johansson, S. E. & Scheltens, P. (2000). Visual rating and volumetry of the medial temporal lobe on magnetic resonance imaging in dementia. A comparative study. J. Neurol. Neurosurg. Psychiatr., 69, 630–5CrossRefGoogle ScholarPubMed
Warach, S., Chien, D., Li, W., Ronthal, M. & Edelman, R. R. (1992). Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology, 42, 1717–23CrossRefGoogle ScholarPubMed
Watanabe, J., Sugiura, M., Sato, K.et al. (2002). The human prefrontal and parietal association cortices are involved in NO-GO performances: an event-related fMRI study. Neuroimage, 17, 1207–16CrossRefGoogle Scholar
Weisskoff, R. M. & Cohen, M. S. (1997). Echo planar imaging: technology and techniques. In Advancd MR Imaging Techniques, ed. W. G., Bradley & G. M. Bydder, pp. 63–98. London: Martin Dunitz Ltd.
Wells, W. M., Grimson, W. E. L., Kikinis, R. & Jolesz, F. A. (1996). Adaptive segmentation of MRI data. IEEE Trans. Med. Imaging, 15, 429–42CrossRefGoogle ScholarPubMed
Wessel, K. & Nitschke, M. F. (1997). Cerebellar somatotopic representation and cerebro-cerebellar interconnections in ataxic patients. Prog. Brain Res., 114, 577–88CrossRefGoogle ScholarPubMed
Westin, C.-F., Maier, S. E., Khidir, B., Everett, P., Jolesz, F. A. & Kikinis, R. (1999). Image processing for diffusion tensor magnetic resonance imaging. In Medical Image Computing and Computer-Assisted Intervention, ed. C. J. Tayler & A. C. F. Colchester, pp. 441–52. Berlin: SpringerCrossRef
Will, R. G., Ironside, J. W., Zeidler, M.et al. (1996). A new variant of Creutzfeldt–Jakob disease in the UK. Lancet, 347, 921–6CrossRefGoogle ScholarPubMed
Wills, A. J., Sawle, G. V., Guilbert, P. R. & Curtis, A. R. (2002). Palatal tremor and cognitive decline in neuroferritinopathy. J. Neurol. Neurosurg. Psychiatr., 73, 91–2CrossRefGoogle ScholarPubMed
Windl, O., Dempster, M., Estibiero, J. P.et al. (1996). Genetic basis of Creutzfeldt–Jakob disease in the United Kingdom: a systematic analysis of predisposing mutations and allelic variations in the PRNP gene. Hum. Genet., 98, 259–64CrossRefGoogle Scholar
Yee, A. S., Simon, J. H., Anderson, C. A., Sze, C.-I. & Filley, C. M. (1999). Diffusion-weighted MRI of right hemisphere dysfunction in Creutzfeldt–Jakob disease. Neurology, 52, 1514–15CrossRefGoogle ScholarPubMed
Yoshikawa, K., Nakata, Y., Yamada, K. & Nakagawa, M. (2004). Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI. J. Neurol. Neurosurg. Psychiatr., 75, 481–4CrossRefGoogle ScholarPubMed
Zeidler, M., Sellar, R. J., Collie, D. A.et al. (2000). The pulvinar sign on magnetic resonance imaging in variant Creutzfeldt–Jakob disease. Lancet, 355, 1412–18CrossRefGoogle ScholarPubMed
Zeidler, M., Stewart, G. E., Barraclough, C. R.et al. (1997). New variant Creutzfeldt–Jakob disease: neurological features and diagnostic tests. Lancet, 350, 903–7CrossRefGoogle ScholarPubMed
Ziemann, U., Winter, M., Reimers, C. gD, Reimers, K., Tergau, F. & Paulus, W. (1997). Impaired motor cortex inhibition in patients with amyotrophic lateral sclerosis. Evidence from paired transcranial magnetic stimulation. Neurology, 49, 1292–8CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×