Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T12:42:47.076Z Has data issue: false hasContentIssue false

Chapter 5 - Sellar and Suprasellar Region

Published online by Cambridge University Press:  01 July 2017

Murat Gokden
Affiliation:
University of Arkansas for Medical Sciences, Little Rock
Manoj Kumar
Affiliation:
University of Arkansas for Medical Sciences, Little Rock
Get access
Type
Chapter
Information
Neuropathologic and Neuroradiologic Correlations
A Differential Diagnostic Text and Atlas
, pp. 82 - 113
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dolecek, T. A., Propp, J. M., Stroup, N. E., Kruchko, C.. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-Oncology 2012; 14 (Suppl 5): v149. Erratum in Neuro-Oncology 2013; 15: 646–7.Google Scholar
Lopes, M. B. S., Scheithauer, B. W., Saeger, W.. Mesenchymal tumours of the pituitary region. In DeLellis, R. A., Lloyd, R. V., Heitz, P. U., Eng, C., eds., WHO Classification of Tumours, Pathology and Genetic of Tumours of Endocrine Organs. Lyon: IARC Press, 2004, pp. 41–3.Google Scholar
Simmons, N. E., Laws, E. R. Jr. Glioma occurrence after sellar irradiation: Case report and review. Neurosurgery 1998; 42: 172–8.CrossRefGoogle ScholarPubMed
Komotar, R. J., Burger, P. C., Carson, B. S., et al. Pilocytic and pilomyxoid hypothalamic/chiasmatic astrocytomas. Neurosurgery 2004; 54: 72–9.Google Scholar
Kornreich, L., Blaser, S., Schwarz, M., et al. Optic pathway glioma: Correlation of imaging findings with the presence of neurofibromatosis. Am J Neuroradiol 2001; 22: 1963–9.Google Scholar
Buslei, R., Rushing, E. J., Giangaspero, F., et al. Craniopharyngioma. In Louis, D. N., Ohgaki, H., Wiestler, O. D., et al., eds., WHO Classification of Tumours of the Central Nervous System. Lyon: IARC Press, 2016, pp. 324–8.Google Scholar
Zada, G., Lin, N., Ojerholm, E., et al. Craniopharyngioma and other cystic epithelial lesions of the sellar region: A review of clinical, imaging, and histopathologic relationships. Neurosurg Focus 2010; 28: E4.Google Scholar
Sartoretti-Schefer, S., Wichmann, W., Aguzzi, A., Valavanis, A.. MR differentiation of adamantinous and squamous-papillary craniopharyngiomas. Am J Neuroradiol, 1997; 18: 7787.Google Scholar
Sekine, S., Shibata, T., Kokubu, A., et al. Craniopharyngiomas of adamantinomatous type harbor beta-catenin gene mutations. Am J Pathol 2002; 161: 19972001.Google Scholar
Brastianos, P. K., Taylor-Weiner, A., Manley, P.E., et al. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet 2014; 46: 161–5.Google Scholar
Villano, J. L., Virk, I. Y., Ramirez, V., et al. Descriptive epidemiology of central nervous system germ cell tumors: Nonpineal analysis. Neuro-Oncology 2010; 12: 257–64.Google Scholar
Villano, J. L., Propp, J. M., Porter, K. R., et al. Malignant pineal germ-cell tumors: An analysis of cases from three tumor registries. Neuro-Oncology 2008; 10: 121–30.Google Scholar
Goodwin, T. L., Sainani, K., Fisher, P. G.. Incidence patterns of central nervous system germ cell tumors: A SEER Study. J Pediatr Hematol Oncol 2009; 31: 541–4.Google Scholar
Thakkar, J. P., Chew, L., Villano, J. L.. Primary CNS germ cell tumors: Current epidemiology and update on treatment. Med Oncol 2013; 30: 496.Google Scholar
Aizer, A. A., Sethi, R. V., Hedley-Whyte, E. T., et al. Bifocal intracranial tumors of nongerminomatous germ cell etiology: Diagnostic and therapeutic implications. Neuro-Oncology 2013; 15: 955–60.Google Scholar
Echevarría, M. E., Fangusaro, J., Goldman, S.. Pediatric central nervous system germ cell tumors: A review. Oncologist 2008; 13: 690–9.Google Scholar
Rosenblum, M. K., Nakazato, Y., Matsutani, M.. CNS germ cell tumours. In Louis, D. N., Ohgaki, H., Wiestler, O. D., et al., eds., WHO Classification of Tumours of the Central Nervous System. Lyon: IARC Press, 2016, pp. 286–91.Google Scholar
Huang, X., Zhang, R., Mao, Y, Zhou, L. F.. Modified grading system for clinical outcome of intracranial non-germinomatous malignant germ cell tumors. Oncol Lett 2010; 1: 627–31.Google Scholar
Kato, T., Sawamura, Y., Tada, M., et al. Occult neurohypophyseal germinomas in patients presenting with central diabetes insipidus. Neurosurg Focus 1998; 5: E8.Google Scholar
Jaffe, R., Weiss, L. M., Facchett, F.. Tumours derived from Langerhans cells. In Swerdlow, S. H., Campo, E., Harris, N. L., et al., eds., WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press, 2008, pp. 358–60.Google Scholar
Donadieu, J., Rolon, M. A., Pion, I., et al. Incidence of growth hormone deficiency in pediatric-onset Langerhans cell histiocytosis: Efficacy and safety of growth hormone treatment. J Clin Endocrinol Metab 2004; 89: 604–9.Google Scholar
Marchand, I., Barkaoui, M. A., Garel, C., et al. Central diabetes insipidus as the inaugural manifestation of Langerhans cell histiocytosis: Natural history and medical evaluation of 26 children and adolescents. J Clin Endocrinol Metab 2011; 96: E1352–60.Google Scholar
Prayer, D., Grois, N., Prosch, H., et al. (2004). MR Imaging presentation of intracranial disease associated with Langerhans cell histiocytosis. Am J Neuroradiol 2004; 25: 880–91.Google Scholar
Kane, L. A., Leinung, M. C., Scheithauer, B. W., et al. Pituitary adenomas in childhood and adolescence. J Clin Endocrinol Metab 1994; 79: 1135–40.Google Scholar
Jagannathan, J., Dumont, A. S., Jane, J. A. Jr. Diagnosis and management of pediatric sellar lesions. Front Horm Res 2006; 34: 83104.Google Scholar
Lloyd, R. V., Kovacs, K., Young, W. F. Jr, et al. Pituitary tumors: Introduction. In DeLellis, R. A., Lloyd, R. V., Heitz, P. U., Eng, C., eds., World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: IARC Press, 2004, pp. 913.Google Scholar
Scheithauer, B. W., Kovacs, K., Horvath, E., et al. Pituitary carcinoma. In DeLellis, R. A., Lloyd, R. V., Heitz, P. U., Eng, C., eds., World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Endocrine Organs. Lyon: IARC Press, 2004, pp. 36–9.Google Scholar
Lopes, M. B. S., Scheithauer, B. W., Schiff, D.. Pituitary carcinoma: Diagnosis and treatment. Endocrine 2005; 28: 115–21.Google Scholar
Salehi, F., Agur, A., Scheithauer, B. W., et al. Ki-67 in pituitary neoplasms: A review – part I. Neurosurgery 2009; 65: 429–37.Google Scholar
Fahlbusch, R., Gerganov, V. M.. Non-functional pituitary tumors. In Kaye, A., Laws, E. R., eds., Brain Tumors: An Encyclopedia Approach, 3rd edn. Philadelphia, PA: Saunders Elsevier, 2012, pp. 672–91.Google Scholar
Laws, E. R. Jr, Jane, J. A. Jr, Thapar, K.. Diagnostic considerations and surgical results for hyperfunctioning pituitary adenomas. In Kaye, A., Laws, E. R., eds., Brain Tumors: An Encyclopedia Approach, 3rd edn. Philadelphia, PA: Saunders Elsevier, 2012, pp. 692722.Google Scholar
Greenman, Y., Stern, N.. Non-functioning pituitary adenomas. Best Pract Res Clin Endocrinol Metab 2009; 23: 625–38.Google Scholar
Wilson, C. B.. A decade of pituitary microsurgery: The Herbert Olivecrona lecture. J Neurosurg 1984; 61: 814–33.Google Scholar
Knosp, E., Steiner, E., Kitz, K., Matula, C.. Pituitary adenomas with invasion of the cavernous sinus space: A magnetic resonance imaging classification compared with surgical findings. Neurosurgery 1993; 33: 610–18.Google Scholar
Cottier, J.-P., Destrieux, C., Brunereau, L., et al. Cavernous sinus invasion by pituitary adenoma: MR imaging. Radiology 2000; 215: 463–9.Google Scholar
Vieira, J. O., Cukiert, A. Jr, Liberman, B.. Evaluation of magnetic resonance imaging criteria for cavernous sinus invasion in patients with pituitary adenomas: Logistic regression analysis and correlation with surgical findings. Surg Neurol 2006; 65: 130–5.Google Scholar
Meij, B. P., Lopes, M. B. S., Ellegala, D. B., et al. The long-term significance of microscopic dural invasion in 354 patients with pituitary adenomas treated with transsphenoidal surgery. J Neurosurg 2002; 96: 195208CrossRefGoogle ScholarPubMed
Ebersold, M. J., Laws, E. R. Jr, Scheithauer, B. W., et al. Pituitary apoplexy treated by transsphenoidal surgery. A clinicopathologic and immunocytochemical study. J Neurosurg 1983; 58: 315–20.Google Scholar
Semple, P. L., Jane, J. A. Jr, Lopes, M. B., Laws, E. R. Jr. Pituitary apoplexy: Correlation between magnetic resonance imaging and histopathologic results. J Neurosurg 2008; 108: 909–15.Google Scholar
Scheithauer, B. W., Jaap, A. L., Horvath, E., et al. Clinically silent corticotroph tumors of the pituitary gland. Neurosurgery 2000; 47: 723–30.Google Scholar
Webb, K. M., Laurent, J. L., Okonkwo, D., et al. Clinical characteristics of silent corticotrophic adenomas and creation of an internet-accessible database to facilitate their multi-institutional study. Neurosurgery 2003; 53: 1076–85.Google Scholar
Covington, M. F., Chin, S. S., Osborn, A. G.. Pituicytoma, spindle cell oncocytoma, and granular cell tumor: Clarification and meta-analysis of the world literature since 1893. Am. J. Neuroradiol., 2011; 32: 2067–72.Google Scholar
Mete, O., Lopes, M. B., Asa, S. L.. Spindle cell oncocytomas and granular cell tumors of the pituitary are variants of pituicytoma. Am J Surg Pathol 2013; 37: 1694–9.Google Scholar
Lee, E. B., Tihan, T., Scheithauer, B. W., et al. Thyroid transcription factor 1 expression in sellar tumors: A histogenetic marker? J Neuropathol Exp Neurol 2009; 68: 482–8.CrossRefGoogle ScholarPubMed
Kleinschmidt-DeMasters, B. K., Lopes, M. B.. Update on hypophysitis and TTF-1 expressing sellar region masses. Brain Pathol 2013; 23: 495514.Google Scholar
Wesseling, P., Brat, D. J., Fuller, G. N.. Pituicytoma. In Louis, D. N., Ohgaki, H., Wiestler, O. D., et al., eds., WHO Classification of Tumours of the Central Nervous System. Lyon: IARC Press, 2016, pp. 332–3.Google Scholar
Lopes, M. B. S., Scheithauer, B. W., Saeger, W.. Granular cell tumour. In Louis, D. N., Ohgaki, H., Wiestler, O. D., et al., eds., WHO Classification of Tumours of the Central Nervous System. Lyon: IARC Press, 2016, pp. 329–31.Google Scholar
Graziani, N., Dufour, H., Figarella-Branger, D., et al. Suprasellar granular cell tumour, presenting with intraventricular haemorrhage. Br J Neurosurg 1995; 9: 97102.CrossRefGoogle ScholarPubMed
Vogelgesang, S., Junge, M. H., Gaab, M. R., et al. August 2001: Sellar/suprasellar mass in a 59-year-old woman. Brain Pathol 2002; 12: 135–6.Google ScholarPubMed
Roncaroli, F., Scheithauer, B. W., Cenacchi, C., et al. Spindle cell oncocytoma of the adenohypophysis: A tumor of follicostellate cells? Am J Surg Pathol 2002; 26: 1048–55.Google Scholar
Fuller, G. N., Scheithauer, B. W., Roncaroli, F., Wesseling, P.. Spindle cell oncocytoma of the adenohypophysis. In Louis, D. N., Ohgaki, H., Wiestler, O. D., et al., eds., WHO Classification of Tumours of the Central Nervous System. Lyon: IARC Press, 2016, pp. 334–6.Google Scholar
Kloub, O., Perry, A., Tu, P. H., et al. Spindle cell oncocytoma of the adenohypophysis: Report of two recurrent cases. Am J Surg Pathol 2005; 29: 247–53.Google Scholar
Aho, C. J., Liu, C., Zelman, V., et al. Surgical outcomes in 118 patients with Rathke cleft cysts. J Neurosurg 2005; 102: 189–93.Google Scholar
Zada, G., Ditty, B., McNatt, S. A., et al. Surgical treatment of Rathke cleft cysts in children. Neurosurgery 2009; 64: 1132–7.Google Scholar
Byun, W. M., Kim, O. L., Kim, D.. MR imaging findings of Rathke's cleft cysts: Significance of intracystic nodules. Am J Neuroradiol 2000; 21: 485–8.Google Scholar
Le, B. H., Towfighi, J., Kapadia, S. B., Lopes, M. B.. Comparative immunohistochemical assessment of craniopharyngioma and related lesions. Endocr Pathol 2007; 18: 2330Google Scholar
Yasuda, M., Akiyama, N., Miyamoto, S., et al. Primary sellar lymphoma: Intravascular large B-cell lymphoma diagnosed as a double cancer and improved with chemotherapy, and literature review of primary parasellar lymphoma. Pituitary 2010; 13: 3947.Google Scholar
Kaufmann, T. J., Lopes, M. B., Laws, E. R. Jr, Lipper, M. H.. Primary sellar lymphoma: Radiologic and pathologic findings in two patients. Am J Neuroradiol, 2002; 23: 364–7.Google Scholar
Kovacs, K., Horvath, E., Vidal, R. S., et al. Secondary tumours. In DeLellis, R. A., Lloyd, R. V., Heitz, P. U., Eng, C., eds., WHO Classification of Tumours, Pathology and Genetic of Tumours of Endocrine Organs. Lyon: IARC Press, 2004, pp. 45–7.Google Scholar
Morita, A., Meyer, F. B., Laws, E. R. Jr. Symptomatic pituitary metastases. J Neurosurg 1998; 89: 6973.Google Scholar
Harsh, G. R.. Chordomas and chondrosarcomas of the skull base. In Kaye, A. H., Laws, E. R. Jr, eds., Brain Tumors: An Encyclopedic Approach, 3rd edn. Philadelphia, PA: Elsevier Saunders, 2012, pp. 723–42.Google Scholar
Bag, A. K., Chapman, P. R.. Neuroimaging: Intrinsic lesions of the central skull base region. Semin Ultrasound CT MR 2013; 34: 412–35.Google Scholar
Carpinteri, R., Patelli, I., Casanueva, F. F., Giustina, A.. Pituitary tumours: Inflammatory and granulomatous expansive lesions of the pituitary. Best Pract Res Clin Endocrinol Metab 2009; 23: 639–50.Google Scholar
Cheung, C. C., Ezzat, S., Smyth, H. S., et al. The spectrum and significance of primary hypophysitis. J Clin Endocrinol Metab 2001; 86: 1048–53.Google Scholar
Tashiro, T., Sano, T., Xu, B., et al. Spectrum of different types of hypophysitis: A clinicopathologic study of hypophysitis in 31 cases. Endocr Pathol 2002; 13: 183–95.CrossRefGoogle ScholarPubMed
Leung, G. K. K., Lopes, M. B. S., Thorner, M. O., et al. Primary hypophysitis: A single-center experience in 16 cases. J Neurosurg 2004; 101: 262–71.Google Scholar
Gutenberg, A., Hans, V., Puchner, M. J. A., et al. Primary hypophysitis: Clinical–pathologic correlations. Eur J Endocrinol 2006; 155: 101–7.Google Scholar
Folkerth, R. D., Price, D. L. Jr, Schwartz, M., et al. Xanthomatous hypophysitis. Am J Surg Pathol 1998; 22: 73641.Google Scholar
Deodhare, S. S., Bilbao, J. M., Kovacs, K., et al. Xanthomatous hypophysitis: A novel entity of obscure etiology. Endocr Pathol 1999; 10: 237–41.Google Scholar
Nakata, Y., Sato, N., Masumoto, T., et al. Parasellar T2 dark sign on MR imaging in patients with lymphocytic hypophysitis. Am J Neuroradiol 2010; 31: 1944–50.Google Scholar
Hoitsma, E., Faber, C. G., Drent, M., Sharma, O. P.. Neurosarcoidosis: A clinical dilemma. Lancet Neurol 2004; 3: 397407.Google Scholar
Bihan, H., Christozova, V., Dumas, J. L., et al. Sarcoidosis: Clinical, hormonal, and magnetic resonance imaging (MRI) manifestations of hypothalamic-pituitary disease in 9 patients and review of the literature. Medicine 2007; 86: 259–68.Google Scholar
Grossman, R. I., Yousem, D. M.. Infectious and noninfectious inflammatory disease of the brain. In Neuroradiology: The Requisites, 2nd edn. Philadelphia, PA: Mosby Elsevier, 2003, pp. 273330.Google Scholar
Katzman, G. L., Langford, C. A., Sneller, M., et al. Pituitary involvement by Wegener's granulomatosis: A report of two cases. Am J Neuroradiol 1999; 20: 519–23.Google Scholar
Vates, G. E., Berger, M. S., Wilson, C. B.. Diagnosis and management of pituitary abscess: A review of twenty-four cases. J Neurosurg 2001; 95: 233–41.Google Scholar
Razek, A. A. K. A., Castillo., M. Imaging lesions of the cavernous sinus. Am J Neuroradiol 2009; 30: 444–52.Google Scholar
Johnston, J. J., Olivos-Glander, I., Killoran, C., et al. Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister–Hall syndromes: Robust phenotype prediction from the type and position of GLI3 mutations. Am J Hum Genet 2005; 76: 609–22.Google Scholar
Johnston, J. J., Sapp, J. C., Turner, J. T., et al. Molecular analysis expands the spectrum of phenotypes associated with GLI3 mutations. Hum Mutat 2010; 31: 1142–54.Google Scholar
Mittal, S., Mittal, M., Montes, J. L., et al. Hypothalamic hamartomas. Part 1. Clinical, neuroimaging, and neurophysiological characteristics. Neurosurg Focus 2013; 34: E6.CrossRefGoogle ScholarPubMed
Jung, H., Probst, E. Neumaier, Hauffa, B. P., et al. Association of morphological characteristics with precocious puberty and/or gelastic seizures in hypothalamic hamartoma. J Clin Endocrinol Metab 2003; 88: 4590–5.Google Scholar
Coons, S. W., Rekate, H. L., Prenger, E. C., et al. The histopathology of hypothalamic hamartomas: Study of 57 cases. J Neuropathol Exp Neurol 2007; 66: 131–41.Google Scholar
Beggs, J., Nakada, S., Fenoglio, K., et al. Hypothalamic hamartomas associated with epilepsy: Ultrastructural features. J Neuropathol Exp Neurol 2008; 67: 657–68.Google Scholar
Bergland, R. M., Ray, B. S., Torack, R. M.. Anatomical variations in the pituitary gland and adjacent structures in 225 human autopsy cases. J Neurosurg 1968; 28: 93–9.Google Scholar
Giustina, A., Aimaretti, G., Bondanelli, M., et al. Primary empty sella: Why and when to investigate hypothalamic-pituitary function. J Endocrinol Invest 2010; 33: 343–6.Google Scholar
Durodoye, O. M., Mendlovic, D. B., Brenner, R. S., Morrow, J. S.. Endocrine disturbances in empty sella syndrome: Case reports and review of literature. Endocr Pract 2005; 11: 120–4.Google Scholar
Maghnie, M., Genovese, E., Villa, A., et al. Dynamic MRI in the congenital agenesis of the neural pituitary stalk syndrome: The role of the vascular pituitary stalk in predicting residual anterior pituitary function. Clin Endocrinol 1996; 45: 281–90.Google Scholar
Vittore, C. P., Murray, R. A., Martin, L. S.. Case 79: Pituitary duplication. Radiology 2005; 234: 411–14.Google Scholar
Webb, E. A., Dattani, M. T.. Septo-optic dysplasia. Eur J Hum Genet 2010; 18: 393–7.Google Scholar
McNay, D. E., Turton, J. P., Kelberman, D., et al. HESX1 mutations are an uncommon cause of septooptic dysplasia and hypopituitarism. J Clin Endocrinol Metab 2007; 92: 691–7.Google Scholar
Cerbone, M., Guemes, M., Dattani, M.. Clinical, biochemical and neuroradiological characterization of a cohort of patients with septo-optic dysplasia and multiple pituitary hormone deficiencies. Endocrine Abstracts 2013; see http://www.endocrine-abstracts.org/ea/0033/ea0033oc5.2.htmGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×