Skip to main content
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Cited by
    This chapter has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Lee, Seung-Chul Kang, Bong Joo Koo, Min-Jeong Lee, Seung-Heon Han, Jae-Hyun Choi, Jae-Young Kim, Won Tae Jazbinsek, Mojca Yun, Hoseop Kim, Dongwook Rotermund, Fabian and Kwon, O-Pil 2017. New Electro-Optic Salt Crystals for Efficient Terahertz Wave Generation by Direct Pumping at Ti:Sapphire Wavelength. Advanced Optical Materials, Vol. 5, Issue. 5, p. 1600758.

  • Print publication year: 2015
  • Online publication date: August 2015

10 - Nonlinear optical infrared and terahertz frequency conversion


Nonlinear optical frequency conversion

As discussed in Chapter 2, there are many different possibilities for converting optical frequencies to other frequencies or even static fields in second-order nonlinear optical materials, such as sum- and difference-frequency generation, including second-harmonic generation and optical rectification (see Fig. 2.2). The big advantage of organic nonlinear optical materials compared with inorganic ones is high nonlinear optical figures-of-merit, reflecting their almost purely electronic response to external fields, as discussed in Section 3.2. Because of this, the best organic materials exhibit considerably higher second-order nonlinear optical susceptibilities compared with the best inorganic materials. This is illustrated in Fig. 10.1, which shows figures-of-merit for second-harmonic generation d2/n3 versus transparency range for various organic and inorganic crystals. One can clearly see that the nonlinear optical figures-of-merit of organic materials can be several orders of magnitude higher than in the best inorganic materials. This makes organic materials extremely attractive for nonlinear optical applications.

In the 1980s, the most attractive frequency conversion applications included frequency doubling because of the above advantages and because of the interest in generating blue or green coherent light by using widely available (near-)infrared laser sources, such as diode lasers [1], Ti:sapphire lasers, and Nd:YAG lasers. The early organic materials considered were transparent in the visible. Later on, organic materials with much higher nonlinear optical susceptibilities were developed, but these are no longer transparent in the visible (see Fig. 10.1) and therefore second-harmonic generation with these materials is of limited applicability. At present, the most attractive frequency-conversion applications with organic materials include infrared and far-infrared light generation, as well as generation of electromagnetic waves in the THz frequency range. In this section we mainly describe infrared frequency conversion possibilities with the best organic crystals, such as DAST, DSTMS, and OH1 (see Chapter 6 for details on these materials), and in the next section we look at THz generation with these and other organic materials.

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Organic Electro-Optics and Photonics
  • Online ISBN: 9781139043885
  • Book DOI:
Please enter your name
Please enter a valid email address
Who would you like to send this to *
[1] Gunter, P., Asbeck, P. M., and Kurtz, S. K., Appl. Phys. Lett. 35, 461–463 (1979).
[2] Bosshard, C., Bösch, M., Liakatas, I.,Jäger, M., and Günter, P., in Nonlinear Optical Effects and Materials, Günter, P., Ed., Berlin Heidelberg New York, Springer Series in Optical Science, Vol. 72 (2000), p. 163.
[3] Wyncke, B. and Brehat, F., J. Phys. B 22, 363 (1989).
[4] Meier, U., Bosch, M., Bosshard, C., and Gunter, P., Synth. Met. 109, 19–22 (2000).
[5] Oudar, J. L. and Chemla, D. S., J. Chem. Phys. 66, 2664 (1977).
[6] Mutter, L., Brunner, F. D. J., Yang, Z., Jazbinsek, M., and Gunter, P., J. Opt. Soc. Am. B 24, 2556–2561 (2007).
[7] Auston, D. H., Cheung, K. P., and Smith, P. R., Appl. Phys. Lett. 45, 284–286 (1984).
[8] Tonouchi, M., Nat. Photon. 1, 97–105 (2007).
[9] Sutherland, R. L., Handbook of Nonlinear Optics, New York, Dekker, (2003).
[10] Brunner, F. D. J., Kwon, O. P., Kwon, S. J., et al., Opt. Express 16, 16496–16508 (2008).
[11] Rainbow Photonics AG,
[12] Kawase, K., Mizuno, M., Sohma, S., et al., Opt. Lett. 24, 1065 (1999).
[13] Kawase, K., Hatanaka, T., Takahashi, H., et al., Opt. Lett. 25, 1714–1716 (2000).
[14] Taniuchi, T., Shikata, J., and Ito, H., Electron. Lett. 36, 1414–1416 (2000).
[15] Kawase, K., Shikata, J., and Ito, H., Solid-State Mid-Infrared Laser Sources 89, 397–423 (2003).
[16] Taniuchi, T., Okada, S., and Nakanishi, H., J. Appl. Phys. 95, 5984 (2004).
[17] Taniuchi, I., Adachi, H., Okada, S., Sasaki, T., and Nakanishi, H., Electron. Lett. 40, 549 (2004).
[18] Taniuchi, I., Adachi, H., Okada, S., Sasaki, T., and Nakanishi, H., Electron. Lett. 40, 549–551 (2004).
[19] Taniuchi, T., Ikeda, S., Okada, S., and Nakanishi, H., Jpn. J. Appl. Phys. 2 44, L652 (2005).
[20] Takahashi, Y., Adachi, H., Taniuchi, T., et al., J. Photochem. Photobiol. A 183, 247 (2006).
[21] Satoh, T., Toya, Y., Yamamoto, S., et al., J. Opt. Soc. Am. B 27, 2507–2511 (2010).
[22] Tang, M., Minamide, H., Wang, Y., et al., Opt. Express 19, 779–786 (2011).
[23] Koichi, M., Miyamoto, K., Ujita, S., et al., Opt. Express 19, 18523–18528 (2011).
[24] Liu, J. and Merkt, F., Appl. Phys. Lett. 93, 131105 (2008).
[25] Liu, J., Schmutz, H., and Merkt, F., J. Mol. Spectrosc. 256, 61–63 (2009).
[26] Uchida, H., Sugiyama, T., Suizu, K., Osumi, T., and Kawase, K., Terahertz Sci. Technol. 4, 132–136 (2011).
[27] Zheng, X. M., McLaughlin, C. V., Cunningham, P., and Hayden, L. M., J. Nanoelectron. Optoelectron. 2, 58–76 (2007).
[28] Faure, J., Tilborg, J. Van, Kaindl, R. A., and Leemans, W. P., Opt. Quantum Electron. 36, 681–697 (2004).
[29] Schneider, A., Neis, M., Stillhart, M., et al., J. Opt. Soc. Am. B 23, 1822 (2006).
[30] Schneider, A., Stillhart, M., and Gunter, P., Opt. Express 14, 5376–5384 (2006).
[31] Walther, M., Jensby, K., Keiding, S. R., Takahashi, H., and Ito, H., Opt. Lett. 25, 911–913 (2000).
[32] Kwon, O. P., Kwon, S. J., Stillhart, M., et al., Cryst. Growth Des. 7, 2517–2521 (2007).
[33] Brunner, F. D. J., Schneider, A., and Gunter, P., Appl. Phys. Lett. 94, 061119 (2009).
[34] Miyamoto, K., Ohno, S., Fujiwara, M., et al., Opt. Express 17, 14832–14838 (2009).
[35] Kim, P. J., Jeong, J. H., Jazbinsek, M., et al., Cryst. Eng. Comm. 13, 444–451 (2011).
[36] Seo, J. Y., Choi, S. B., Jazbinsek, al., Cryst. Growth Des. 9, 5003–5005 (2009).
[37] Kim, P. J., Jeong, J. H., Jazbinsek, al., Adv. Funct. Mater. 22, 200–209 (2012).
[38] Stillhart, M., Schneider, A., and Gunter, P., J. Opt. Soc. Am. B 25, 1914–1919 (2008).
[39] Zhang, X. C., Ma, X. F., Jin, Y., et al., Appl. Phys. Lett. 61, 3080–3082 (1992).
[40] Han, P. Y., Tani, M., Pan, F., and Zhang, X. C., Opt. Lett. 25, 675 (2000).
[41] Carey, J. J., Bailey, R. T., Pugh, D., et al., Appl. Phys. Lett. 81, 4335–4337 (2002).
[42] Kuroyanagi, K., Yanagi, K., Sugita, al., J. Appl. Phys. 100, 043117 (2006).
[43] Kwon, E., Okada, S., and Nakanishi, H., Jpn. J. Appl. Phys. Part 2 46, L46–L48 (2007).
[44] Takayanagi, J., Kanamori, S., Suizu, K., et al., Opt. Express 16, 12859–12865 (2008).
[45] Hauri, C. P., Ruchert, C., Vicario, C., and Ardana, F., Appl. Phys. Lett. 99, 161116 (2011).
[46] Akiyama, K., Okada, S., Goto, Y., and Nakanishi, H., J. Cryst. Growth 311, 953–955 (2009).
[47] Matsukawa, T., Mineno, Y., Odani, T., et al., J. Cryst. Growth 299, 344–348 (2007).
[48] Kuroyanagi, K., Fujiwara, M., Hashimoto, H., et al., Jpn. J. Appl. Phys. Part 1 45, 4068–4073 (2006).
[49] Nahata, A., Auston, D. H., Wu, C. J., and Yardley, J. T., Appl. Phys. Lett. 67, 1358–1360 (1995).
[50] Sinyukov, A. M. and Hayden, L. M., Opt. Lett. 27, 55–57 (2002).
[51] Zheng, X. M., Sinyukov, A., and Hayden, L. M., Appl. Phys. Lett. 87, 081115 (2005).
[52] McLaughlin, C. V., Hayden, L. M., Polishak, B., et al., Appl. Phys. Lett. 92, 151107 (2008).
[53] Cunningham, P. D. and Hayden, L. M., Opt. Express 18, 23620–23625 (2010).
[54] Schneider, A., Biaggio, I., and Gunter, P., Appl. Phys. Lett. 84, 2229 (2004).
[55] Katayama, I., Akai, R., Bito, M., et al., Appl. Phys. Lett. 97, 021105 (2010).
[56] Wu, Q. and Zhang, X. C., Appl. Phys. Lett. 68, 1604–1606 (1996).
[57] Schneider, A. and Gunter, P., Appl. Phys. Lett. 90, 121125 (2007).
[58] Knoesel, E., Bonn, M., Shan, J., and Heinz, T. F., Phys. Rev. Lett. 86, 340–343 (2001).
[59] Mickan, S. P. and Zhang, X. C., Int. J. High Speed Electron. Systems 13, 601–676 (2003).
[60] Wang, F., Shan, J., Islam, M. A., et al., Nat. Mater. 5, 861–864 (2006).
[61] Chan, W. L., Deibel, J., and Mittleman, D. M., Rep. Prog. Phys. 70, 1325–1379 (2007).
[62] Withayachumnankul, W., Png, G. M., Yin, X., et al., Proc. IEEE 95, 1528–1558 (2007).
[63] Baxter, J. B. and Guglietta, G. W., Analyt. Chem. 83, 4342–4368 (2011).
[64] Hoffmann, M. C. and Fueloep, J. A., J. Phys. D: Appl. Phys. 44, 083001 (2011).
[65] Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F., and Bonn, M., Rev. Mod. Phys. 83, 543–586 (2011).