Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T14:13:51.548Z Has data issue: false hasContentIssue false

9 - Formation of habitable planets

from Part II - Astronomical and geophysical context of the emergence of life

Published online by Cambridge University Press:  04 February 2011

John Chambers
Affiliation:
Carnegie Institution of Washington, Washington, USA
Muriel Gargaud
Affiliation:
Université de Bordeaux
Purificación López-Garcìa
Affiliation:
Université Paris-Sud 11
Hervé Martin
Affiliation:
Université de Clermont-Ferrand II (Université Blaise Pascal), France
Get access

Summary

Characteristics of a habitable planet

What is a habitable planet? There is no formal definition at present, but the term is generally understood to mean a planet that can sustain life in some form. This concept is of limited use in practice since the conditions required to support life are poorly constrained. A narrower definition of a habitable planet is one that shares some characteristics with Earth, and hence one that could support at least some of Earth's inhabitants. A commonly adopted minimum requirement is that a planet can sustain liquid water on its surface for geological periods of time. Earth is the only body in the Solar System that qualifies as habitable in this sense. One advantage of this definition is that it can be used to categorize hypothetical and observable planets in a relatively straightforward manner, and we will use it in the rest of this chapter. However, one should bear in mind that not all life-sustaining environments will be included under this definition. Tidally heated satellites of giant planets, like Europa, are likely to possess oceans of liquid water beneath a layer of ice (Cassen et al., 1979), but these objects would not be ‘habitable’ according to the conventional usage.

Planets that can support liquid water at their surface must have an atmosphere, and surface temperatures and pressures within a certain range. These planets will occupy a particular range of orbital distances from their star that is commonly referred to as the star's habitable zone (HZ).

Type
Chapter
Information
Origins and Evolution of Life
An Astrobiological Perspective
, pp. 136 - 153
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×