Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-16T16:51:37.505Z Has data issue: false hasContentIssue false

2 - The origins of the exclusion principle: an extremely natural prescriptive rule

Published online by Cambridge University Press:  07 August 2009

Michela Massimi
Affiliation:
University of Cambridge
Get access

Summary

The exclusion principle was the final outcome of Pauli's struggle to understand some spectroscopic anomalies in the early 1920s: doublets were observed in the spectra of alkali metals, singlets and triplets in the spectra of the alkaline earths, and even more anomalous patterns were observed when chemical elements were placed in an external magnetic field (anomalous Zeeman effect and Paschen–Back effect). These anomalous spectra challenged the old quantum theory, and prompted a radical theoretical change (Section 2.1). From 1920 to 1924 Alfred Landé, Werner Heisenberg, and Niels Bohr were all engaged in trying to save the traditional spectroscopic model (the so-called atomic core model) and to reconcile it with the observed anomalies. The impasse was solved only with Pauli's introduction of a fourth degree of freedom for the electron, and the consequent demise of the atomic core model (Section 2.2). What Pauli called the ‘twofoldness’ [Zweideutigkeit] of the electron's angular momentum was soon reinterpreted as the electron's spin (Section 2.3). Pauli's exclusion rule was announced in this semi-classical spectroscopic context that characterized the revolutionary transition from the old quantum theory to the new quantum theory around 1925.

The prehistory of Pauli's exclusion principle

Atomic spectra and the Bohr–Sommerfeld theory of atomic structure

The existence of spectral lines had been known to scientists since the beginning of the nineteenth century when Wollaston and Fraunhofer first observed the dark absorption lines in the spectrum of the Sun.

Type
Chapter
Information
Pauli's Exclusion Principle
The Origin and Validation of a Scientific Principle
, pp. 35 - 77
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×