Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T03:36:52.756Z Has data issue: false hasContentIssue false

22 - Thermodynamics of convection

Published online by Cambridge University Press:  05 July 2013

Frank D. Stacey
Affiliation:
CSIRO Division of Exploration and Mining, Australia
Paul M. Davis
Affiliation:
University of California, Los Angeles
Get access

Summary

Preamble

We have a good measure of the rate of heat loss from the solid Earth to the atmosphere and oceans, 44.2 × 1012 W (Pollack et al. 1993). Although the final stage is observed as conduction through the crust and hydrothermal circulation of sea water through young ocean floor, most of the heat comes from the deep interior. Thermal diffusion in a body the size of the Earth is too slow to have cooled the lower mantle noticeably in its lifetime. The deep heat is transported upwards by hot material, driven by the buoyancy of its thermal dilation relative to the cooler material that sinks to replace it. The global scale motion is evident at the surface as tectonic activity, including continental drift and earthquakes, with volcanism as a side effect. Chapter 13 considers the stresses involved in this process and relates them to the mechanical energy derived from convection. The calculation of the energy is presented in this chapter. It is an application of classical thermodynamics.

The mechanical power of convection is the product of heat transport and a thermodynamic efficiency that we can calculate in two ways. First, we recognize that the mantle is a heat engine in the classical thermodynamic sense and that we can apply the Carnot theorem to derive the mechanical power of convection without an explicit consideration of the forces involved.

Type
Chapter
Information
Physics of the Earth , pp. 361 - 375
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×