Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-20T04:19:39.097Z Has data issue: false hasContentIssue false

8 - Plasma-Surface Processing of Inorganic Materials: Micro- and Nano-Technologies

Published online by Cambridge University Press:  22 August 2009

Alexander Fridman
Affiliation:
Drexel University, Philadelphia
Get access

Summary

Thermal Plasma Spraying

Plasma Spraying as a Thermal Spray Technology

Plasma spraying is a thermal spray technology in which finely ground metallic and non-metallic materials are deposited on a substrate in a molten or semimolten state (Kudinov et al., 1990; Zhukov & Solonenko, 1990; Pawlowski, 1995; Vurzel & Nazarov, 2000; Fauchais, Vardelle, & Dussoubs, 2001; Fauchais, 2004; Knight, 1991, 1998, 2005; Yoshida, 2005). Two other technologies are combustion spray and wire-arc spray. The thermal plasma heat source is usually based on direct-current (DC)-arc or radiofrequency inductively coupled plasma (RF-ICP) discharge. It provides very high temperatures, over 8000 K at atmospheric pressure, which allows melting of any material. This is actually a major distinctive feature of plasma spraying. Although thermal plasma enables extremely high temperatures, the operational melting temperature in plasma spraying is usually kept at least 300 K lower than the vaporization or decomposition temperature to avoid losses in energy efficiency. Ground materials are either injected into plasma (in the case of RF discharges) or in the plasma jet (in the case of DC arcs), where they are heated, melted or softened, accelerated, and directed toward the surface or substrate being coated. Particles or droplets making impact with the substrate rapidly cool, solidify, cool further, contract, and build up incrementally to form a deposit. The basic coating building blocks, known as “splats,” typically undergo cooling rates in excess of in the case of metals (Jackson et al., 1981).

Type
Chapter
Information
Plasma Chemistry , pp. 499 - 588
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×