Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T00:24:20.586Z Has data issue: false hasContentIssue false

15 - Prediction of pre-eclampsia

from Part I - Basic science

Published online by Cambridge University Press:  03 September 2009

Fiona Lyall
Affiliation:
University of Glasgow
Michael Belfort
Affiliation:
University of Utah
Get access

Summary

Summary

Pre-eclampsia is associated with significant maternal and fetal morbidity and mortality worldwide. While provision of adequate antenatal care would significantly reduce morbidity and mortality in third-world countries, in first-world countries efforts are being focused on identification of at-risk patients and on targeted therapies. Pre-eclampsia can be distinguished as early (<34 weeks gestation) and late (>34 weeks) onset phenotypes. While these have been thought traditionally to be synonymous with severe and mild disease phenotypes, respectively, recent analyses show that an appreciable amount of severe disease is also late onset. There is evolving evidence that there are different underlying etiologies that ultimately lead to this syndrome defined by hypertension, proteinuria and edema. It is unlikely that one single biomarker will identify all individuals destined to develop pre-eclampsia. Rather, panels of biomarkers specific for the different phenotypes may identify those at risk for pre-eclampsia prior to the appearance of overt disease. Importantly, these measurements may also provide different (biochemical) definitions of disease. In order to have a significant impact on clinical or economic outcome it is vital to identify women who will develop early onset disease or severe disease, as these phenotypes are those associated with significant morbidity and mortality. Similarly, therapies must be targeted at these same outcomes and not just the appearance of hypertension and proteinuria at term. While there is abundant evidence in the literature for changes in expression or concentration of many biomarkers in established disease, there is still a dearth of prospective studies with well-defined clinical outcomes in which prospective measurement of biomarkers have been made.

Type
Chapter
Information
Pre-eclampsia
Etiology and Clinical Practice
, pp. 215 - 231
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldrich, C., Verp, M. S., Walker, M. A. and Ober, C. (2000). A null mutation in HLA-G is not associated with preeclampsia or intrauterine growth retardation. J. Reprod. Immunol., 47, 41–8.CrossRefGoogle ScholarPubMed
American College of Obstetricians and Gynecologists. (1996). Hypertension in Pregnancy. Washington: The College. Technical Bulletin No. 219.
Anderson, G. D. and Sibai, B. M. (1986). In Obstetrics Normal and Problem Pregnancies, eds. Gabbe, S., Nieby, J. and Simpson, J.. New York: Churchill Livingstone, 845 pp.Google Scholar
Anim-Nyame, N., Hills, F. A., Sooranna, S. R., Steer, P. J. and Johnson, M. R. (2000). A longitudinal study of maternal plasma insulin-like growth factor binding protein-1 concentrations during normal pregnancy and pregnancies complicated by pre-eclampsia. Hum. Reprod., 15, 2215–19.CrossRefGoogle ScholarPubMed
Aquilina, J., Barnett, A., Thompson, O. and Harrington, K. (1999). Second-trimester maternal serum inhibin A concentration as an early marker for preeclampsia. Am. J. Obstet. Gynecol., 181, 131–6.CrossRefGoogle ScholarPubMed
Arborgast, B., Leeper, S. and Merrick, R. (1996). Plasma factors that determine endothelial cell lipid toxicity in vitro correctly identify women with preeclampsia in early and late gestation. Hypertens. Pregn., 15, 263–79.CrossRefGoogle Scholar
Arngrimsson, R., Hayward, C., Nadaud, S., et al. (1997). Evidence for a familial pregnancy-induced hypertension locus in the eNOS-gene region. Am. J. Hum. Genet., 61, 354–62.CrossRefGoogle ScholarPubMed
Bahado-Singh, R. O., Oz, U., Isozaki, T., et al. (1998). Midtrimester urine human chorionic gonadotropin beta-subunit core fragment levels and the subsequent development of pre-eclampsia. Am. J. Obstet. Gynecol., 179, 738–41.CrossRefGoogle ScholarPubMed
Baker, P. N., Krasnow, J., Roberts, J. M. and Yeo, K. T. (1995). Elevated serum levels of vascular endothelial growth factor in patients with preeclampsia. Obstet. Gynecol., 86, 815–21.CrossRefGoogle ScholarPubMed
Barden, A., Beilin, L. J., Ritchie, J., Croft, K. D., Walters, B. N. and Michael, C. A. (1996). Plasma and urinary 8-iso-prostane as an indicator of lipid peroxidation in pre-eclampsia and normal pregnancy. Clin. Sci. (Lond.), 91, 711–18.CrossRefGoogle ScholarPubMed
Belgore, F. M., Blann, A. D., Li-Saw-Hee, F. L., Beevers, D. G. and Lip, G. Y. (2001). Plasma levels of vascular endothelial growth factor and its soluble receptor (SFlt-1) in essential hypertension. Am. J. Cardiol., 87, 805–7, A9.CrossRefGoogle Scholar
Bower, S., Bewley, S. and Campbell, S. (1993). Improved prediction of preeclampsia by two-stage screening of uterine arteries using the early diastolic notch and color Doppler imaging. Obstet. Gynecol., 82, 78–83.Google ScholarPubMed
Brockelsby, J., Hayman, R., Ahmed, A., Warren, A., Johnson, I. and Baker, P. (1999). VEGF via VEGF receptor-1 (Flt-1) mimics preeclamptic plasma in inhibiting uterine blood vessel relaxation in pregnancy: implications in the pathogenesis of preeclampsia. Lab. Invest., 79, 1101–11.Google ScholarPubMed
Caritis, S., Sibai, B., Hauth, J., et al. (1998). Low-dose aspirin to prevent preeclampsia in women at high risk. National Institute of Child Health and Human Development Network of Maternal–Fetal Medicine Units. N. Engl. J. Med., 338, 701–5.CrossRefGoogle ScholarPubMed
Caron, C., Goudemand, J., Marey, A., Beague, D., Ducroux, G. and Drouvin, F. (1991). Are haemo-static and fibrinolytic parameters predictors of preeclampsia in pregnancy-associated hypertension?Thromb. Haemost., 66, 410–14.Google Scholar
Chappell, L. C., Seed, P. T., Kelly, F. J., et al. (2002). Vitamin C and E supplementation in women at risk of preeclampsia is associated with changes in indices of oxidative stress and placental function. Am. J. Obstet. Gynecol., 187, 777–84.CrossRefGoogle Scholar
Chavarria, M. E., Lara-Gonzalez, L., Gonzalez-Gleason, A., Sojo, I. and Reyes, A. (2002). Maternal plasma cellular fibronectin concentrations in normal and preeclamptic pregnancies: a longitudinal study for early prediction of preeclampsia. Am. J. Obstet. Gynecol., 187, 595–601.CrossRefGoogle ScholarPubMed
Chesley, L. C., Annitto, J. E. and Cosgrove, R. A. (1968). The familial factor in toxemia of pregnancy. Obstet. Gynecol., 32, 303–11.Google ScholarPubMed
Chien, P. F., Arnott, N., Gordon, A., Owen, P. and Khan, K. S. (2000). How useful is uterine artery Doppler flow velocimetry in the prediction of pre-eclampsia, intrauterine growth retardation and perinatal death? An overview. Br. J. Obstet. Gynaecol., 107, 196–208.CrossRefGoogle ScholarPubMed
Cincotta, R. B. and Brennecke, S. P. (1998). Family history of pre-eclampsia as a predictor for pre-eclampsia in primigravidas. Int. J. Gynaecol. Obstet., 60, 23–7.CrossRefGoogle ScholarPubMed
Cotter, A. M., Molloy, A. M., Scott, J. M. and Daly, S. F. (2001). Elevated plasma homocysteine in early pregnancy: a risk factor for the development of severe pre-eclampsia. Am. J. Obstet. Gynecol., 185, 781–5.CrossRefGoogle Scholar
Dechend, R., Viedt, C., Muller, D. N., et al. (2003). AT1 receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase. Circulation, 107, 1632–9.CrossRefGoogle ScholarPubMed
Dekker, G. A., Vries, J. I., Doelitzsch, P. M., et al. (1995). Underlying disorders associated with severe early-onset preeclampsia. Am. J. Obstet. Gynecol., 173, 1042–8.CrossRefGoogle ScholarPubMed
Eskenazi, B., Fenster, L. and Sidney, S. (1991). A multivariate analysis of risk factors for preeclampsia. J. Am. Med. Ass., 266, 237–41.CrossRefGoogle ScholarPubMed
Estelles, A., Gilabert, J., Espana, F., Aznar, J. and Galbis, M. (1991). Fibrinolytic parameters in normotensive pregnancy with intrauterine fetal growth retardation and in severe preeclampsia. Am. J. Obstet. Gynecol., 165, 138–42.CrossRefGoogle ScholarPubMed
Fitzgerald, D. J., Entman, S. S., Mulloy, K. and FitzGerald, G. A. (1987a). Decreased prostacyclin biosynthesis preceding the clinical manifestation of pregnancy-induced hypertension. Circulation, 75, 956–63.CrossRefGoogle Scholar
Fitzgerald, D. J., Mayo, G., Catella, F., Entman, S. S. and FitzGerald, G. A. (1987b). Increased thromboxane biosynthesis in normal pregnancy is mainly derived from platelets. Am. J. Obstet. Gynecol., 157, 325–30.CrossRefGoogle Scholar
Fleischer, A., Schulman, H., Farmakides, G., et al. (1986). Uterine artery Doppler velocimetry in pregnant women with hypertension. Am. J. Obstet. Gynecol., 154, 806–13.CrossRefGoogle ScholarPubMed
Gratton, R. J., Asano, H. and Han, V. K. (2002). The regional expression of insulin-like growth factor II (IGF-II) and insulin-like growth factor binding protein-1 (IGFBP-1) in the placentae of women with pre-eclampsia. Placenta, 23, 303–10.CrossRefGoogle ScholarPubMed
Grobman, W. A. and Wang, E. Y. (2000). Serum levels of activin A and inhibin A and the subsequent development of preeclampsia. Obstet. Gynecol., 96, 390–4.Google ScholarPubMed
Grobman, W. A. and Kazer, R. R. (2001). Serum insulin, insulin-like growth factor-I, and insulin-like growth factor binding protein-1 in women who develop preeclampsia. Obstet. Gynecol., 97, 521–6.Google ScholarPubMed
Haig, D. (1993). Genetic conflicts in human pregnancy. Q. Rev. Biol., 68, 495–532.CrossRefGoogle ScholarPubMed
Harrison, G. A., Humphrey, K. E., Jones, N., et al. (1997). A genomewide linkage study of preeclampsia/eclampsia reveals evidence for a candidate region on 4q. Am. J. Hum. Genet., 60, 1158–67.Google ScholarPubMed
Hietala, R., Turpeinen, U. and Laatikainen, T. (2001). Serum homocysteine at 16 weeks and subsequent preeclampsia. Obstet. Gynecol., 97, 527–9.Google ScholarPubMed
Hornig, C., Barleon, B., Ahmad, S., Vuorela, P., Ahmed, A. and Weich, H. A. (2000). Release and complex formation of soluble VEGFR-1 from endothelial cells and biological fluids. Lab. Invest., 80, 443–54.CrossRefGoogle ScholarPubMed
Hsu, C. D., Chan, D. W., Iriye, B., Johnson, T. R., Hong, S. F. and Repke, J. T. (1994). Elevated serum human chorionic gonadotropin as evidence of secretory response in severe preeclampsia. Am. J. Obstet. Gynecol., 170, 1135–8.CrossRefGoogle ScholarPubMed
Hutt, R., Ogunniyi, S. O., Sullivan, M. H. and Elder, M. G. (1994). Increased platelet volume and aggregation precede the onset of preeclampsia. Obstet. Gynecol., 83, 146–9.Google ScholarPubMed
Izumi, A., Minakami, H., Kuwata, T. and Sato, I. (1997). Calcium-to-creatinine ratio in spot urine samples in early pregnancy and its relation to the development of preeclampsia. Metabolism, 46, 1107–8.CrossRefGoogle ScholarPubMed
Key, T. J., Pike, M. C., Moore, J. W., Wang, D. Y. and Morgan, B. (1990). The relationship of free fatty acids with the binding of oestradiol to SHBG and to albumin in women. J. Steroid Biochem., 35, 35–8.CrossRefGoogle ScholarPubMed
Koga, K., Osuga, Y., Yoshino, O., et al. (2003). Elevated serum soluble vascular endothelial growth factor receptor 1 (sVEGFR-1) levels in women with preeclampsia. J. Clin. Endocrinol. Metab., 88, 2348–51.CrossRefGoogle ScholarPubMed
Konijnenberg, A., Stokkers, E. W., Post, J. A., et al. (1997). Extensive platelet activation in preeclampsia compared with normal pregnancy: enhanced expression of cell adhesion molecules. Am. J. Obstet. Gynecol., 176, 461–9.CrossRefGoogle ScholarPubMed
Laasanen, J., Heinonen, S., Hiltunen, M., Mannermaa, A. and Laakso, M. (2002). Polymorphism in the peroxisome proliferator-activated receptor-gamma gene in women with preeclampsia. Early Hum. Dev., 69, 77–82.CrossRefGoogle ScholarPubMed
Bouteiller, P., Pizzato, N., Barakonyi, A. and Solier, C. (2003). HLA-G, pre-eclampsia, immunity and vascular events. J. Reprod. Immunol., 59, 219–34.CrossRefGoogle ScholarPubMed
Lim, K. H., Friedman, S. A., Ecker, J. L., Kao, L. and Kilpatrick, S. J. (1998). The clinical utility of serum uric acid measurements in hypertensive diseases of pregnancy. Am. J. Obstet. Gynecol., 178, 1067–71.CrossRefGoogle ScholarPubMed
Lindoff, C., Ingemarsson, I., Martinsson, G., Segelmark, M., Thysell, H. and Astedt, B. (1997). Preeclampsia is associated with a reduced response to activated protein C. Am. J. Obstet. Gynecol., 176, 457–60.CrossRefGoogle ScholarPubMed
Livingston, J. C., Barton, J. R., Park, V., Haddad, B., Phillips, O. and Sibai, B. M. (2001). Maternal and fetal inherited thrombophilias are not related to the development of severe preeclampsia. Am. J. Obstet. Gynecol., 185, 153–7.CrossRefGoogle Scholar
Lyall, F. (2002). The human placental bed revisited. Placenta, 23, 555–62.CrossRefGoogle ScholarPubMed
Lyall, F., Greer, I. A., Boswell, F. and Fleming, R. (1997). Suppression of serum vascular endothelial growth factor immunoreactivity in normal pregnancy and in pre-eclampsia. Br. J. Obstet. Gynaecol., 104, 223–8.CrossRefGoogle ScholarPubMed
Makkonen, N., Heinonen, S., Hiltunen, M., Helisalmi, S., Mannermaa, A. and Kirkinen, P. (2001). Apolipoprotein E alleles in women with pre-eclampsia. J. Clin. Pathol., 54, 652–4.CrossRefGoogle ScholarPubMed
Martinez-Abundis, E., Gonzalez-Ortiz, M. and Pascoe-Gonzalez, S. (2000). Serum leptin levels and the severity of preeclampsia. Arch. Gynecol. Obstet., 264, 71–3.CrossRefGoogle ScholarPubMed
Masuzaki, H., Ogawa, Y., Sagawa, N., et al. (1997). Nonadipose tissue production of leptin: leptin as a novel placenta-derived hormone in humans. Nat. Med., 3, 1029–33.CrossRefGoogle ScholarPubMed
Maynard, S. E., Min, J. Y., Merchan, J., et al. (2003). Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest., 111, 649–58.CrossRefGoogle ScholarPubMed
McKay, D. G. (1981). Chronic intravascular coagulation in normal pregnancy and preeclampsia. Contrib. Nephrol., 25, 108–19.CrossRefGoogle ScholarPubMed
Millar, J. G., Campbell, S. K., Albano, J. D., Higgins, B. R. and Clark, A. D. (1996). Early prediction of pre-eclampsia by measurement of kallikrein and creatinine on a random urine sample. Br. J. Obstet. Gynaecol., 103, 421–6.CrossRefGoogle ScholarPubMed
Missfelder-Lobos, H., Teran, E., Lees, C., Albaiges, G. and Nicolaides, K. H. (2002). Platelet changes and subsequent development of pre-eclampsia and fetal growth restriction in women with abnormal uterine artery Doppler screening. Ultrasound Obstet. Gynecol., 19, 443–8.CrossRefGoogle ScholarPubMed
Moses, E. K., Lade, J. A., Guo, G., et al. (2000). A genome scan in families from Australia and New Zealand confirms the presence of a maternal susceptibility locus for pre-eclampsia, on chromosome 2. Am. J. Hum. Genet., 67, 1581–5.CrossRefGoogle ScholarPubMed
Muttukrishna, S., Knight, P. G., Groome, N. P., Redman, C. W. and Ledger, W. L. (1997). Activin A and inhibin A as possible endocrine markers for pre-eclampsia. Lancet, 349, 1285–8.CrossRefGoogle ScholarPubMed
Muttukrishna, S., North, R. A., Morris, J., et al. (2000). Serum inhibin A and activin A are elevated prior to the onset of pre-eclampsia. Hum. Reprod., 15, 1640–5.CrossRefGoogle ScholarPubMed
Myatt, L., Brewer, A. and Prada, J. (1992). In 39th Annual Meeting, Society for Gynecologic Investigation, San Antonio, Texas.Google Scholar
Myatt, L. and Miodovnik, M. (1999). Prediction of preeclampsia. Semin. Perinatol., 23, 45–57.CrossRefGoogle ScholarPubMed
Myatt, L. for the NICHD MFMU Network. (2001). Do women at high risk develop preeclampsia earlier in gestation than those at low risk?Am. J. Obstet. Gynecol., 184, S81.Google Scholar
Myatt, L. for the NICHD MFMU Network. (2002). Differences in the time of diagnosis of mild vs severe preeclampsia between low and high risk patient groups. Hypertens. Pregn., 21 (Suppl. 1), 63.Google Scholar
Naicker, T., Khedun, S. M., Moodley, J. and Pijnenborg, R. (2003). Quantitative analysis of trophoblast invasion in preeclampsia. Acta Obstet. Gynecol. Scand., 82, 722–9.CrossRefGoogle ScholarPubMed
Nebert, D. W. (2000). Extreme discordant phenotype methodology: an intuitive approach to clinical pharmacogenetics. Eur. J. Pharmacol., 410, 107–20.CrossRefGoogle ScholarPubMed
Nevils, B. and Conrad, K. (1995). Increased circulating levels of TNFa in preeclampsia: a possible role for cytokines in the pathogenesis of the disease. J. Soc. Gyn. Invest., 2, 311.CrossRefGoogle Scholar
O'Brien, M., Dausset, J., Carosella, E. D. and Moreau, P. (2000). Analysis of the role of HLA-G in preeclampsia. Hum. Immunol., 61, 1126–31.CrossRefGoogle ScholarPubMed
O'Brien, T. E., Ray, J. G. and Chan, W. S. (2003). Maternal body mass index and the risk of preeclampsia: a systematic overview. Epidemiology, 14, 368–74.CrossRefGoogle ScholarPubMed
Ohkuchi, A., Minakami, H., Aoya, T., et al. (2001). Expansion of the fraction of Th1 cells in women with preeclampsia: inverse correlation between the percentage of Th1 cells and the plasma level of PAI-2. Am. J. Reprod. Immunol., 46, 252–9.CrossRefGoogle ScholarPubMed
Pang, Z. J. and Xing, F. Q. (2003). Comparative study on the expression of cytokine–receptor genes in normal and preeclamptic human placentas using DNA microarrays. J. Perinat. Med., 31, 153–62.CrossRefGoogle ScholarPubMed
Pearson, H. (2002). Reproductive immunology: immunity's pregnant pause. Nature, 420, 265–6.CrossRefGoogle ScholarPubMed
Perkins, A. V., Linton, E. A., Eben, F., Simpson, J., Wolfe, C. D. and Redman, C. W. (1995). Corticotrophin-releasing hormone and corticotrophin-releasing hormone binding protein in normal and pre-eclamptic human pregnancies. Br. J. Obstet. Gynaecol., 102, 118–22.CrossRefGoogle ScholarPubMed
Petraglia, F., Vita, D., Gallinelli, A., et al. (1995). Abnormal concentration of maternal serum activin-A in gestational diseases. J. Clin. Endocrinol. Metab., 80, 558–61.Google ScholarPubMed
Phupong, V., Dejthevaporn, T., Tanawattanacharoen, S., Manotaya, S., Tannirandorn, Y. and Charoenvidhya, D. (2003). Predicting the risk of preeclampsia and small for gestational age infants by uterine artery Doppler in low-risk women. Arch. Gynecol. Obstet., 268, 158–61.CrossRefGoogle ScholarPubMed
Pijnenborg, R., Bland, J. M., Robertson, W. B. and Brosens, I. (1983). Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta, 4, 397–413.CrossRefGoogle ScholarPubMed
Pouta, A. M., Hartikainen, A. L., Vuolteenaho, O. J., Ruokonen, A. O. and Laatikainen, T. J. (1998). Midtrimester N-terminal proatrial natriuretic peptide, free beta hCG, and alpha-fetoprotein in predicting preeclampsia. Obstet. Gynecol., 91, 940–4.Google ScholarPubMed
Ranheim, T., Staff, A. C. and Henriksen, T. (2001). VEGF mRNA is unaltered in decidual and placental tissues in preeclampsia at delivery. Acta Obstet. Gynecol. Scand., 80, 93–8.CrossRefGoogle ScholarPubMed
Regan, C. L., Levine, R. J., Baird, D. D., et al. (2001). No evidence for lipid peroxidation in severe preeclampsia. Am. J. Obstet. Gynecol., 185, 572–8.CrossRefGoogle ScholarPubMed
Reimer, T., Koczan, D., Gerber, B., Richter, D., Thiesen, H. J. and Friese, K. (2002). Microarray analysis of differentially expressed genes in placental tissue of pre-eclampsia: up-regulation of obesity-related genes. Mol. Hum. Reprod., 8, 674–80.CrossRefGoogle ScholarPubMed
Roberts, J. M., Taylor, R. N., Musci, T. J., Rodgers, G. M., Hubel, C. A. and McLaughlin, M. K. (1989). Preeclampsia: an endothelial cell disorder. Am. J. Obstet. Gynecol., 161, 1200–4.CrossRefGoogle Scholar
Saito, S., Sakai, M., Sasaki, Y., Tanebe, K., Tsuda, H. and Michimata, T. (1999). Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1: Th2 cell ratio during normal human pregnancy and preeclampsia. Clin. Exp. Immunol., 117, 550–5.CrossRefGoogle ScholarPubMed
Sakai, M., Tsuda, H., Tanebe, K., Sasaki, Y. and Saito, S. (2002). Interleukin-12 secretion by peripheral blood mononuclear cells is decreased in normal pregnant subjects and increased in preeclamptic patients. Am. J. Reprod. Immunol., 47, 91–7.CrossRefGoogle ScholarPubMed
Saleh, A. A., Bottoms, S. F., Farag, A. M., et al. (1992). Markers for endothelial injury, clotting and platelet activation in preeclampsia. Arch. Gynecol. Obstet., 251, 105–10.CrossRefGoogle ScholarPubMed
Sattar, N., Ramsay, J., Crawford, L., Cheyne, H. and Greer, I. A. (2003). Classic and novel risk factor parameters in women with a history of preeclampsia. Hypertension, 42, 39–42.CrossRefGoogle ScholarPubMed
Savvidou, M. D., Hingorani, A. D., Tsikas, D., Frolich, J. C., Vallance, P. and Nicolaides, K. H. (2003). Endothelial dysfunction and raised plasma concentrations of asymmetric dimethylarginine in pregnant women who subsequently develop pre-eclampsia. Lancet, 361, 1511–17.CrossRefGoogle ScholarPubMed
Serin, I. S., Ozcelik, B., Basbug, M., et al. (2002). Predictive value of tumor necrosis factor alpha (TNF-alpha) in preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol., 100, 143–5.CrossRefGoogle Scholar
Sibai, B. M., el-Nazer, A. and Gonzalez-Ruiz, A. (1986). Severe preeclampsia-eclampsia in young primigravid women: subsequent pregnancy outcome and remote prognosis. Am. J. Obstet. Gynecol., 155, 1011–16.CrossRefGoogle ScholarPubMed
Sibai, B. M., Caritis, S. N., Thom, E., et al. (1993). Prevention of preeclampsia with low-dose aspirin in healthy, nulliparous pregnant women. The National Institute of Child Health and Human Development Network of Maternal–Fetal Medicine Units. N. Engl. J. Med., 329, 1213–18.CrossRefGoogle ScholarPubMed
Sibai, B. M., Gordon, T., Thom, E., et al. (1995). Risk factors for preeclampsia in healthy nulliparous women: a prospective multicenter study. The National Institute of Child Health and Human Development Network of Maternal–Fetal Medicine Units. Am. J. Obstet. Gynecol., 172, 642–8.CrossRefGoogle ScholarPubMed
Sibai, B. M., Ewell, M., Levine, R. J., et al. (1997). Risk factors associated with preeclampsia in healthy nulliparous women. The Calcium for Preeclampsia Prevention (CPEP) Study Group. Am. J. Obstet. Gynecol., 177, 1003–10.CrossRefGoogle ScholarPubMed
Smith, G. C., Stenhouse, E. J., Crossley, J. A., Aitken, D. A., Cameron, A. D. and Connor, J. M. (2002). Early pregnancy levels of pregnancy-associated plasma protein a and the risk of intrauterine growth restriction, premature birth, preeclampsia, and stillbirth. J. Clin. Endocrinol. Metab., 87, 1762–7.CrossRefGoogle ScholarPubMed
Solomon, C. G., Graves, S. W., Greene, M. F. and Seely, E. W. (1994). Glucose intolerance as a predictor of hypertension in pregnancyHypertension, 23, 717–21.CrossRefGoogle ScholarPubMed
Sowers, J. R., Saleh, A. A. and Sokol, R. J. (1995). Hyperinsulinemia and insulin resistance are associated with preeclampsia in African-Americans. Am. J. Hypertens., 8, 1–4.CrossRefGoogle ScholarPubMed
Sugimoto, H., Hamano, Y., Charytan, D., et al. (2003). Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J. Biol. Chem., 278, 12,605–8.CrossRefGoogle ScholarPubMed
Suhonen, L. and Teramo, K. (1993). Hypertension and pre-eclampsia in women with gestational glucose intolerance. Acta Obstet. Gynecol. Scand., 72, 269–72.CrossRefGoogle ScholarPubMed
Tjoa, M. L., Vugt, J. M., Go, A. T., Blankenstein, M. A., Oudejans, C. B. and Wijk, I. J. (2003). Elevated C-reactive protein levels during first trimester of pregnancy are indicative of preeclampsia and intrauterine growth restriction. J. Reprod. Immunol., 59, 29–37.CrossRefGoogle ScholarPubMed
Torry, D. S., Wang, H. S., Wang, T. H., Caudle, M. R. and Torry, R. J. (1998). Preeclampsia is associated with reduced serum levels of placenta growth factor. Am. J. Obstet. Gynecol., 179, 1539–44.CrossRefGoogle ScholarPubMed
Vaillant, P., David, E., Constant, I., et al. (1996). Validity in nulliparas of increased beta-human chorionic gonadotrophin at mid-term for predicting pregnancy-induced hypertension complicated with proteinuria and intrauterine growth retardation. Nephron, 72, 557–63.CrossRefGoogle ScholarPubMed
Vince, G. S., Starkey, P. M., Austgulen, R., Kwiatkowski, D. and Redman, C. W. (1995). Interleukin-6, tumour necrosis factor and soluble tumour necrosis factor receptors in women with pre-eclampsia. Br. J. Obstet. Gynaecol., 102, 20–5.CrossRefGoogle ScholarPubMed
Wilson, M. L., Goodwin, T. M., Pan, V. L. and Ingles, S. A. (2003). Molecular epidemiology of preeclampsia. Obstet. Gynecol. Surv., 58, 39–66.CrossRefGoogle ScholarPubMed
Wolf, M., Sandler, L., Munoz, K., Hsu, K., Ecker, J. L. and Thadhani, R. (2002). First trimester insulin resistance and subsequent preeclampsia: a prospective study. J. Clin. Endocrinol. Metab., 87, 1563–8.CrossRefGoogle ScholarPubMed
Xia, Y., Wen, H. Y. and Kellems, R. E. (2002). Angiotensin II inhibits human trophoblast invasion through AT1 receptor activation. J. Biol. Chem., 277, 24,601–8.CrossRefGoogle ScholarPubMed
Xia, Y., Wen, H., Bobst, S., Day, M. C. and Kellems, R. E. (2003). Maternal autoantibodies from preeclamptic patients activate angiotensin receptors on human trophoblast cells. J. Soc. Gynecol. Investig., 10, 82–93.CrossRefGoogle ScholarPubMed
Yamada, N., Arinami, T., Yamakawa-Kobayashi, K., et al. (2000). The 4G/5G polymorphism of the plasminogen activator inhibitor-1 gene is associated with severe preeclampsia. J. Hum. Genet., 45, 138–41.CrossRefGoogle ScholarPubMed
Yoshimura, T., Chowdhury, F. A., Yoshimura, M. and Okamura, H. (2003). Genetic and environmental contributions to severe preeclampsia: lack of association with the endothelial nitric oxide synthase Glu298Asp variant in a developing country. Gynecol. Obstet. Invest., 56, 10–13.CrossRefGoogle Scholar
Zhou, Y., McMaster, M., Woo, K., et al. (2002). Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am. J. Pathol., 160, 1405–23.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×