Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T10:14:27.741Z Has data issue: false hasContentIssue false

10 - Where do we stand?

Published online by Cambridge University Press:  05 June 2013

Gábor Hofer-Szabó
Affiliation:
Eötvös Loránd University, Budapest
Miklós Rédei
Affiliation:
London School of Economics and Political Science
László E. Szabó
Affiliation:
Eötvös Loránd University, Budapest
Get access

Summary

The history of philosophy teaches us that metaphysical claims of sweeping generality are neither verifiable nor conclusively falsifiable. One can only aim at assessing their plausibility on the basis of the best available evidence provided by the sciences – both formal and empirical sciences. This is what has been done in this book in connection with the Principle of the Common Cause.

In Chapter 2, Reichenbach's notion of common cause and the related Common Cause Principle was formulated explicitly in terms of classical, Kolmogorovian probability measure spaces. The Definition 2.4 of common cause followed Reichenbach's original definition closely, and insisting on the quite obvious methodological principle that probabilistic concepts and statements (in particular claims about random events being correlated or probabilistically independent) are only meaningful within the context of a fixed probability measure space in terms of which some segment of reality is modeled, we specified the notions of common cause incomplete and common cause complete probability theories: a theory was defined to be common cause complete if it contains a proper common cause of every correlation it predicts, common cause incomplete otherwise. (There is a strong version of common cause completeness as well: a probability space was defined to be strongly common cause closed if it contains common causes of all admissible types – Definition 4.4.)

These explicitly defined notions form the basis on which one can start assessing the status of the Common Cause Principle in the spirit of empirical philosophy. Suppose we have an empirically confirmed scientific theory T describing some segment of reality using (possibly among other mathematical structures) a probability measure space (X, S, p).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×