Skip to main content
×
Home
Principles of Snow Hydrology
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 33
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Islam, Mohammad S. Bonner, James S. Paley, James B. and Fuller, Christopher B. 2016. Low-Cost Stand-Alone System for Real-Time Hydrological Monitoring. Environmental Engineering Science,


    Mair, E. Leitinger, G. Della Chiesa, S. Niedrist, G. Tappeiner, U. and Bertoldi, G. 2016. A simple method to combine snow height and meteorological observations to estimate winter precipitation at sub-daily resolution. Hydrological Sciences Journal, Vol. 61, Issue. 11, p. 2050.


    Marulanda Aguirre, Alejandro Fonseca Tobasura, Omar Alfonso Vélez Upegui, Jorge Julián and Arboleda, Omar Darío Cardona 2016. Hydrological study of the potential effects of the melting of Nevado del Ruiz glacier on urban growth zones in Manizales, Colombia. Hydrological Sciences Journal, Vol. 61, Issue. 12, p. 2179.


    Rajagopal, Seshadri and Harpold, Adrian A. 2016. Testing and Improving Temperature Thresholds for Snow and Rain Prediction in the Western United States. JAWRA Journal of the American Water Resources Association,


    Bobál, P. Podhorányi, M. Mudroň, I. and Holubec, M. 2015. Mathematical modelling of the dynamics of mountain basin snow cover in Moravian-Silesian Beskydy for operational purposes. Water Resources, Vol. 42, Issue. 3, p. 302.


    Bodrova, Anna Chechkin, Aleksei V. Cherstvy, Andrey G. and Metzler, Ralf 2015. Quantifying non-ergodic dynamics of force-free granular gases. Phys. Chem. Chem. Phys., Vol. 17, Issue. 34, p. 21791.


    Bodrova, Anna S Chechkin, Aleksei V Cherstvy, Andrey G and Metzler, Ralf 2015. Ultraslow scaled Brownian motion. New Journal of Physics, Vol. 17, Issue. 6, p. 063038.


    León, José Gabriel and Pedrozo, Fernando Luis 2015. Lithological and hydrological controls on water composition: evaporite dissolution and glacial weathering in the south central Andes of Argentina (33°-34°S). Hydrological Processes, Vol. 29, Issue. 6, p. 1156.


    McDaniel, Mark and Zielinska, Barbara 2015. Polycyclic Aromatic Hydrocarbons in the Snowpack and Surface Water in Blackwood Canyon, Lake Tahoe, CA, as Related to Snowmobile Activity. Polycyclic Aromatic Compounds, Vol. 35, Issue. 1, p. 102.


    Moore, Cara Kampf, Stephanie Stone, Brandon and Richer, Eric 2015. A GIS-based method for defining snow zones: application to the western United States. Geocarto International, Vol. 30, Issue. 1, p. 62.


    Trandafir, Aurelian C. Ertugrul, Ozgur L. Giraud, Richard E. and McDonald, Greg N. 2015. Geomechanics of a snowmelt-induced slope failure in glacial till. Environmental Earth Sciences, Vol. 73, Issue. 7, p. 3709.


    Vafakhah, Mehdi Nouri, Anis and Alavipanah, Sayyed Kazem 2015. Snowmelt-runoff estimation using radiation SRM model in Taleghan watershed. Environmental Earth Sciences, Vol. 73, Issue. 3, p. 993.


    Avanzi, Francesco Michele, Carlo De and Ghezzi, Antonio 2014. Liquid-Solid Partitioning of Precipitation along an Altitude Gradient and Its Statistical Properties: An Italian Case Study. American Journal of Climate Change, Vol. 03, Issue. 01, p. 71.


    Burns, Sean P. Molotch, Noah P. Williams, Mark W. Knowles, John F. Seok, Brian Monson, Russell K. Turnipseed, Andrew A. and Blanken, Peter D. 2014. Snow Temperature Changes within a Seasonal Snowpack and Their Relationship to Turbulent Fluxes of Sensible and Latent Heat. Journal of Hydrometeorology, Vol. 15, Issue. 1, p. 117.


    Dariane, A B Azimi, S and Zakerinejad, A 2014. Artificial neural network coupled with wavelet transform for estimating snow water equivalent using passive microwave data. Journal of Earth System Science, Vol. 123, Issue. 7, p. 1591.


    Fazel, Khalida Scharffenberg, William A. and Bombardelli, Fabián A. 2014. Assessment of the Melt Rate Function in a Temperature Index Snow Model Using Observed Data. Journal of Hydrologic Engineering, Vol. 19, Issue. 7, p. 1275.


    Harpold, Adrian A. Biederman, Joel A. Condon, Katherine Merino, Manuel Korgaonkar, Yoganand Nan, Tongchao Sloat, Lindsey L. Ross, Morgan and Brooks, Paul D. 2014. Changes in snow accumulation and ablation following the Las Conchas Forest Fire, New Mexico, USA. Ecohydrology, Vol. 7, Issue. 2, p. 440.


    Seyednasrollah, Bijan and Kumar, Mukesh 2014. Net radiation in a snow-covered discontinuous forest gap for a range of gap sizes and topographic configurations. Journal of Geophysical Research: Atmospheres, Vol. 119, Issue. 17, p. 10,323.


    López-Moreno, J. I. Pomeroy, J. W Revuelto, J. and Vicente-Serrano, S. M. 2013. Response of snow processes to climate change: spatial variability in a small basin in the Spanish Pyrenees. Hydrological Processes, Vol. 27, Issue. 18, p. 2637.


    Kulessa, B. Chandler, D. Revil, A. and Essery, R. 2012. Theory and numerical modeling of electrical self-potential signatures of unsaturated flow in melting snow. Water Resources Research, Vol. 48, Issue. 9, p. n/a.


    ×
  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    Principles of Snow Hydrology
    • Online ISBN: 9780511535673
    • Book DOI: https://doi.org/10.1017/CBO9780511535673
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to? *
    ×
  • Buy the print book

Book description

Principles of Snow Hydrology describes the factors that control the accumulation, melting and runoff of water from seasonal snowpacks over the surface of the earth. The book addresses not only the basic principles governing snow in the hydrologic cycle, but also the latest applications of remote sensing, and techniques for modeling streamflow from snowmelt across large mixed land-use river basins. Individual chapters are devoted to climatology and distribution of snow, snowpack energy exchange, snow chemistry, ground-based measurements and remote sensing of snowpack characteristics, snowpack management, and modeling snowmelt runoff. Many chapters have review questions and problems with solutions available online. This book is a reference book for practicing water resources managers and a text for advanced hydrology and water resources courses which span fields such as engineering, earth sciences, meteorology, biogeochemistry, forestry and range management, and water resources planning.

Reviews

    • Aa
    • Aa
Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send:
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.


P. J. Kocin and L. W. Uccellini (2004). A snowfall impact scale derived from Northeast storm snowfall distributions. Bulletin Amer. Meteorol. Soc., 85(Feb), 177–194.

R. G. Barry (1992). Mountain Weather and Climate, 2nd edn. New York: Routledge.

R. A. Beebee and M. Manga (2004). Variation in the relationship between snowmelt runoff in Oregon and ENSO and PDO. J. Amer. Water Resour. Assoc., 40, 1011–24.

M. P. Clark , M. C. Serreze , and G. J. McCabe (2001). Historical effects of El Nino and La Nina events on the seasonal evolution of the montane snowpack in the Columbia and Colorado River Basins. Water Resour. Res., 37(3), 741–57.

S. J. Dery and M. K. Yau (1999). A bulk blowing snow model. Boundary-Layer Meteorol., 93, 237–51.

R. Essery , L. Long , and J. Pomeroy (1999). A distributed model of blowing snow over complex terrain. Hydrol. Processes, 13, 2423–38.

P. Gauer (2001). Numerical modelling of blowing and drifting snow in Alpine terrain. J. Glaciol., 47(156), 97–110.

A. N. Gelfan , J. W. Pomeroy , L. S. Kuchment (2004). Modeling forest cover influences on snow accumulation, sublimation and melt. J. Hydromet., 5, 785–803.

N. R. Hedstrom and J. W. Pomeroy (1998). Measurements and modelling of snow interception in the boreal forest. Hydrol. Processes, 12, 1611–25.

R. C. Johnson (1990). The interception, throughfall and stemflow in a forest in Highland Scotland and the comparison with other upland forests in the U.K. J. Hydrol., 118, 281–7.

J. C. King , P. S. Anderson , and G. W. Mann (2001). The seasonal cycle of sublimation at Halley, Antarctica. J. Glaciol., 47(156), 1–8.

T. Kobayashi (1961). The growth of snow crystals at low supersaturations. Philosophical Magazine B, 6, 1363–1370.

K. E. Kunkel and J. R. Angel (1999). Relationship of ENSO to snowfall and related cyclone activity in the contiguous United States. J. Geophys. Res., 104(D16), 19425–34.

L. Li and J. W. Pomeroy (1997a). Estimates of threshold wind speeds from snow transport using meteorological data. J. Appl. Meteorol., 36, 205–13.

L. Li and J. W. Pomeroy (1997b). Probability of occurrence of blowing snow. J. Geophys. Res., 102(D18), 21955–64.

G. E. Liston , J. P. McFadden , M. Sturm , and R. A. Pielke Jr. (2002). Modelled changes in arctic tundra snow, energy and moisture fluxes due to increased shrubs. Global Change Biol., 8(1), 17–32.

A. Lundberg and S. Halldin (2001). Snow interception evaporation: review of measurement techniques, processes and models. Theoretical and Applied Climatology, 70, 117–33.

G. J. McCabe , M. J. Dettinger (2002). Primary modes and predictability of year-to-year snowpack variations in the western United States from teleconnections with Pacific Ocean Climate. J. Hydromet., 3, 13–25.

D. C. Norton and S. J. Bolsenga (1993). Spatiotemporal trends in lake effect and continental snowfall in the Laurentian Great Lakes, 1951–1980. J. Climate, 6, 1943–56.

J. W. Pomeroy and L. Li (2000). Prairie and arctic areal snow cover mass balance using a blowing snow model. J. Geophy. Res., 105(D21), 26619–34.

J. W. Pomeroy , D. M. Gray , N. R. Hedstrom , and J. R. Janowicz (2002). Prediction of seasonal snow accumulation in cold climate forests. Hydrol. Process., 16, 3543–58.

J. W. Pomeroy , P. Marsh , and. D. M. Gray (1997). Application of a distributed blowing snow model to the arctic. Hydrol. Processes, 11, 1451–64.

J. W. Pomeroy , J. Parviainen N. Hedstrom , and D. M. Gray (1998). Coupled modelling of forest snow interception and sublimation. Hydrol. Processes, 12, 2317–37.

R. Prasad , D. G. Tarboton , G. E. Liston , C. H. Luce , and M. S. Seyfried (2001). Testing a blowing snow model against distributed snow measurements at Upper Sheep Creek Idaho, USA. Water Resour. Res., 37(5), 1341–50.

D. R. Satterlund and H. F. Haupt (1967). Snow catch by conifer crowns. Water Resour. Res., 3(4), 1035–9.

D. R. Satterlund and H. F. Haupt (1970). The disposition of snow caught by conifer crowns. Water Resour. Res., 6(2), 649–52.

R. A. Schmidt and D. R. Gluns (1991). Snowfall interception on branches of three conifer species. Can. J. For. Res., 21:1262–9.

R. A. Schmidt and J. W. Pomeroy (1990). Bending of a conifer branch at subfreezing temperatures: implications for snow interception. Can. J. For. Res. 20, 1250–53.

S. R. Smith and J. J. O'Brien (2001). Regional snowfall distributions associated with ENSO: Implications for seasonal forecasting. Bull. Amer. Meteorol. Soc., 82(6), 1179–92.

P. Storck , D. P. Lettenmaier and S. M. Bolton (2002). Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, U.S. Water Resour. Res., 38(11:1223), 5–1 to 5–16.

J. Xiao , R. Bintanja , S. J. Dery , G. W. Mann , and P. A. Taylor (2000). An intercomparison among four models of blowing snow. Boundary-Layer Meteorol., 97, 109–35.

S. C. Colbeck (1974). Water flow through snow overlying an impermeable boundary. Water Resour. Res., 10(1), 119–23.

C. Coleou , K. Xu , B. Lesaffre , and J.-B. Brzoska (1999). Capillary rise in snow. Hydrol. Processes, 13, 1721–32.

A. Judson and N. Doesken (2000). Density of freshly fallen snow in the central Rocky Mountains. Bull. Amer. Meteorol. Soc., 81(7), 1577–87.

M. Sturm and J. B. Johnson (1992). Thermal conductivity measurements of depth hoar. J. Geophys. Res., 97(B2), 2129–39.

J. C. Alter (1937). Shielded storage precipitation gauges. Mon. Weather Rev., 65, 262–5.

D. C. Blanchard (1970). Wilson Bentley, the snowflake man. Weatherwise, 23, 260–9.

H. S. Boyne and D. Fisk (1987). A comparison of snow cover liquid water measurement techniques. Water Resour. Res., 23(10), 1833–36.

J. D. Cross (1969). Scanning electron microscopy of evaporating ice. Science, 164, 174–5.

R. E. Davis , J. Dozier , E. R. LaChapelle , and R. Perla (1985). Field and laboratory measurements of snow liquid water by dilution. Water Resour. Res., 21, 1415–20.

E. F. Erbe , A. Rango , J. Foster , E. G. Josberger , C. Pooley , and W. P. Wergin (2003). Collecting, shipping, storing, and imaging snow crystals and ice grains with low temperature scanning electron microscopy. Microsc. Res. Techniq., 62, 19–32.

B. E. Goodison (1978). Accuracy of Canadian snow gauge measurements. J. Appl. Meteorol., 17, 1542–8.

C. L. Hanson (1989). Precipitation catch measured by the Wyoming shield and dual gauge system. Water Resour. Bull., 25, 159–64.

C. L. Hanson , G. L. Johnson , and A. Rango (1999). Comparison of precipitation catch between nine measuring systems. J. of Hydrol. Engineering, 4(11), 70–5.

C. L. Hanson , J. F. Zuzel , and R. P. Morris (1983). Winter precipitation catch by heated tipping-bucket gauges. T. Am. Soc. Ag. Eng., 26(5), 1479–80.

R. N. Jones (1979). A Comparison of Centrifuge and Freezing Calorimeter Methods for Measuring Free Water in Snow, Report NBSIR 79–1604. Boulder, CO: National Bureau of Standards.

L. W. Larson and E. L. Peck (1974). Accuracy of precipitation measurements for hydrologic modeling. Water Resour. Res., 10(4), 857–63.

R. P. Morris and C. L. Hanson (1983). Weighing and recording precipitation gauge modification. T. Am. Soc. Civ. Eng., 26(1), 167–78.

U. Nakaya (1954). Snow Crystals: Natural and Artificial. Cambridge, MA: Harvard University Press.

A. Rango , W. P. Wergin , and E. F. Erbe (1996a). Snow crystal imaging using scanning electron microscopy: I. Precipitated snow. Hydrol. Sciences Journal, 41, 219–33.

A. Rango , W. P. Wergin , E. F. Erbe , and E. G. Josberger (2000). Snow crystal imaging using scanning electron microscopy: III. Glacier ice, snow and biota. Hydrol. Sciences Journal, 45, 357–75.

W. P. Wergin , A. Rango , and E. F. Erbe (1995). Observations of snow crystals using low temperature scanning electron microscopy. Scanning, 17, 41–9.

W. P. Wergin , A. Rango , and E. F. Erbe (1998a). Image comparisons of snow and ice crystals photographed by light (video) microscopy and low temperature scanning electron microscopy. Scanning, 20, 285–296.

S. Adam , A. Pietroniro , and M. M. Brugman (1997). Glacier snowline mapping using ERS-1 SAR imagery. Remote Sens. Environ., 61, 46–54.

R. L. Armstrong and M. J. Brodzik (1995). An earth-gridded SSM/I dataset for cryospheric studies and global change monitoring. Adv. Space Res., 16(10), 155–63.

J. Dozier (1989). Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens. Environ., 28, 9–22

J. Dozier and T. H. Painter (2004). Multispectral and hyperspectral remote sensing of alpine snow properties. Annu. Rev. Earth Pl. Sci., 32, 465–94.

A. W. England (1990). Radiobrightness of diurnally heated, freezing soil. IEEE Trans. Geosci. Remote Sens., 28(4), 464–76.

K. Goita , A. Walker , and B. Goodison (2003). Algorithm development for the estimation of snow water equivalent in the boreal forest using passive microwave data. Int. J. Remote Sens., 24(5), 1097–102.

E. Gomez-Landesa and A. Rango (2002). Operational snowmelt runoff forecasting in the Spanish Pyrenees using the Snowmelt Runoff Model. Hydrol. Processes, 16, 1583–1591.

E. Gomez-Landesa , A. Rango , and M. Bleiweiss (2004). An algorithm to address the MODIS bowtie effect, Can. J. Remote Sens., 30(4), 644–50

N. C. Grody and A. N. Basist (1996). Global identification of snowcover using SSM/I measurements. IEEE Trans. Geosci. Remote Sens., 34(1), 237–49.

D. K. Hall (1987). Influence of depth hoar on microwave emission from snow in northern Alaska. Cold Reg. Sci. Technol., 13, 225–231.

D. K. Hall and J. Martinec (1985). Remote Sensing of Ice and Snow. New York: Chapman and Hall.

M. Hallikainen (1989). Microwave radiometry of snow. Adv. Space Res., 9(1), 267–75.

H. J. Kramer (2002). Observation of Earth and Its Environment: Survey of Missions and Sensors.Berlin: Springer-Verlag.

L. Kurvonen and M. Hallikainen (1997). Influence of land-cover category on brightness temperature of snow. IEEE Trans. Geosci. Remote Sens., 35(2), 367–77.

R. Leconte and P. D. Klassen (1991). Lake and river ice investigations in northern Manitoba using airborne SAR imagery. Arctic, 44(Supp.1), 153–63.

D. W. Leverington and C. R. Duguay (1997). A neural network method to determine the presence or absence of permafrost near May, Yukon Territory, Canada. Permafrost Periglac. 8, 205–15.

C. Matzler (1994). Passive microwave signatures of landscapes in winter. Meteorol. Atmos. Phys., 54, 241–60.

C. Matzler , T. Strozzi , T. Weise , D. M. Floricioiu , and H. Rott (1997). Microwave snowpack studies made in the Austrian Alps during the SIR-C/X-SAR experiment. Int. J. Remote Sens., 18(12), 2505–30.

A. Rango (1993). Snow hydrology processes and remote sensing. Hydrol. Processes, 7, 121–38.

A. Rango , J. Martinec , A. T. C. Chang , J. Foster , and V. Katwijk (1989). Average areal water equivalent of snow in a mountain basin using microwave and visible satellite data. IEEE Trans. Geosci. Remote Sens., GE-27(6), 740–5.

E. A. Anderson (1968). Development and testing of snow pack energy balance equation. Water Resour. Res., 4(1), 19–37.

G. Bellocchi , M. Acutis , G. Fila and M. Donatelli (2002). An indicator of solar radiation model performance based on a fuzzy expert system. Agron. J., 94, 1222–33.

K. L. Bristow and G. S. Campbell (1984). On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric. and Forest Meteorol., 31, 159–66.

W. Brutsaert (1975). On a derivable formula for long-wave radiation from clear skies. Water Resour. Res., 11, 742–4.

W. Brutsaert (1982). Evaporation into the Atmosphere: Theory, History, and Applications. Dordrecht: D. Reidel Publ. Co.

D. W. Cline (1997). Snow surface energy exchanges and snowmelt at a continental, midlatitude alpine site. Water Resour. Res., 33(4), 689–701.

D. R. DeWalle and J. R. Meiman (1971). Energy exchange and late season snowmelt in a small opening in Colorado subalpine forest. Water Resour. Res., 7(1), 184–8.

M. Donatelli , G. Bellocchi , and F. Fontana (2003). RadEst 3.00: Software to estimate daily radiation data from commonly available meteorological variables. Eur. J. Agron., 18, 363–7.

R. J. Granger and D. H. Male . (1978). Melting of a prarie snowpack. J. Appl. Meteorol., 17, 1833–42.

U. Hogstrom (1988). Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol., 42, 55–78.

E. Hood , M. Williams , and D. Cline (1999). Sublimation from a seasonal snowpack at a continental mid-latitude alpine site. Hydrol. Process., 13, 1781–97.

L. S. Kuchment and A. N. Gelfan (1996). The determination of the snowmelt rate and the meltwater outflow from a snowpack for modelling river runoff generation. J. Hydrol., 179, 23–36.

W. P. Kustas , A. Rango , and R. Uijlenhoet (1994). A simple energy budget algorithm for the snowmelt runoff model. Water Resour. Res., 30(5), 1515–27.

G. E. Liston (1995). Local advection of momentum, heat, and moisture during the melt of patchy snow covers. J. Appl. Meterol., 34, 1705–15.

D. H. Male and R. J. Granger (1981). Snow surface energy exchange. Water Resour. Res., 17(3), 609–27.

D. Marks and J. Dozier (1992). Climate and energy exchange at the snow surface in the alpine region of the Sierra Nevada, 2. snow cover energy balance. Water Resour. Res., 28(11), 3043–54.

D. Marks , J. Domingo , D. Susong , T. Link , and D. Garen (1999). A spatially distributed energy balance snowmelt model for application in mountain basins. Hydrol. Processes, 13, 1935–59.

E. M. Morris (1989). Turbulent transfer over snow and ice. J. Hydrol., 105, 205–23.

N. Neumann and P. Marsh (1998). Local advection of sensible heat in the snowmelt landscape of Arctic tundra. Hydrol. Processes, 12, 1547–60.

P. E. Thornton and S. W. Running (1999). An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity and precipitation. Agric. and Forest Meteorol., 93(4), 211–28.

S. G. Warren (1982). Optical properties of snow. Rev. Geophys. Space Physics, 20(1), 67–89.

A. Weiss , C. J. Hays , Q. Hu and W. E. Easterling (1993). Incorporating bias error in calculating solar irradiance. Agron. J., 93, 1321–6.

D. B. Baldocchi , D. R. Matt , B. A. Hutchison , and R. T. McMillen (1984). Solar radiation within an oak-hickory forest: an evaluation of the extinction coefficients for several radiation components during fully-leafed and leafless periods. Agric. For. Meteorol., 32, 307–22.

R. Barry , M. Prevost , J. Stein , and A. P. Plamondon (1990). Application of a snow cover energy and mass balance model in a balsam fir forest. Water Resour. Res., 26(5), 1079–92.

C. F. Bohren and D. B. Thorud (1973). Two theoretical models of radiation heat transfer between forest trees and snowpacks. Agric. Meteorol., 11(1973), 3–16.

J. M. Chen and J. Cihlar (1996). Retrieving leaf area index of boreal conifer forest using LANDSAT TM images. Remote Sens. Environ., 55(2), 153–62.

J. M. Chen , P. D. Blanken , T. A. Black , M. Guilbeault , and S. Chen (1997a). Radiation regime and canopy architecture in a boreal aspen forest. Agric. For. Meteorol., 86 (1997), 107–25.

J. M. Chen , P. M. Rich , S. T. Gower , J. M., Norman and S. Plummer (1997b). Leaf area index of boreal forests: theory, techniques, and measurements. J. Geophys. Res., 102(D24), 29 429–43.

R. E. Davis , J. P. Hardy , W. Ni , C. Woodcock , J. C. McKenzie , R. Jordan , and X. Li. (1997). Variation of snow cover ablation in the boreal forest: a sensitivity study on the effects of conifer canopy. J. Geophys. Res., 102(D24), 29 389–95.

J. Dozier and J. Frew (1990). Rapid calculation of terrain parameters for radiation modelling from digital elevation data. IEEE Trans. Geosci. Remote Sens., 28(5), 963–9.

C. A. Federer (1971). Solar radiation absorption by leafless hardwood forests. Agric. Meteorol., 9(1971/1972), 3–20.

M. D. Hartman , J. S. Baron , R. B. Lammers , D. W. Cline , L. E. Band , G. E. Liston , and C. Tague (1999). Simulations of snow distribution and hydrology in a mountain basin. Water Resour. Res., 35(5), 1587–603.

E. Linacre (1992). Climate Data and Resources. London: Routledge.

T. Link and D. Marks (1999). Distributed simulation of snowcover mass- and energy-balance in the boreal forest. Hydrol. Processes, 13, 2439–52.

W. Ni , L. Xiaowen , C. E. Woodcock , J. L. Roujean , and R. E. Davis (1997). Transmission of solar radiation in boreal conifer forests: measurements and models. J. Geophys. Res., 102(D24), 29 555–66.

M. Ovhed and B. Holmgren (1995). Spectral quality and absorption of solar radiation in a mountain birch forest, Abisko, Sweden. Arctic and Alpine Res., 27(4), 380–8.

R. Perez , P. Ineichen , R. Seals , J. Michalsky and R. Stewart (1990). Modelling daylight availability and irradiance components from direct and global irradiance. Sol. Energy, 44(5), 271–89.

J. W. Pomeroy and K. Dion (1996). Winter radiation extinction and reflection in a boreal pine canopy: measurements and modelling. Hydrol. Processes, 10, 1591–608.

A. G. Price (1988). Prediction of snowmelt rates in a deciduous forest. J. Hydrol., 101, 145–57.

W. E. Reifsnyder , G. M. Furnival , and J. L. Horowitz (1971/72). Spatial and temporal distribution of solar radiation beneath forest canopies. Agric. Meteorol., 9, 21–7.

J. Ross (1981). The Radiation Regime and Architecture of Plant Stands. The Hague: Dr W. Junk Publishers.

D. Susong , D. Marks , and D. Garen (1999). Methods for developing time-series climate surfaces to drive topographically distributed energy- and water-balance models. Hydrol. Processes, 13, 2003–21.

K. Suzuki and T. Ohta (2003). Effect of larch forest density on snow surface energy balance. J. Hydrometeorol. 4, 1181–93.

Y. Tanaka (1997). Evaporation and bulk transfer coefficients on a forest floor during times of leaf-shedding. J. Agric. Meteorol. (Japan), 53(2), 119–29.

M. Woo and M. A. Giesbrecht (2000). Simulation of snowmelt in a subarctic spruce woodlands: 1. tree model. Water Resour. Res., 36(8), 2275–85.

T. Yamazaki and J. Kondo (1992). The snowmelt and heat balance in snow-covered forested areas. J. Appl. Meteorol., 31, 1322–27.

R. C. Bales , R. E. Davis , and D. A. Stanley (1989). Ion elution through shallow homogeneous snow. Water Resour. Res., 25, 1869–77.

E. W. Boyer , G. M. Hornberger , K. E. Bencala , and D. M. McKnight . (1997). Response characteristics of DOC flushing in an alpine catchment. Hydrol. Processes, 11, 1635–47.

P. D. Brooks and M. W. Williams (1999). Snowpack controls on nitrogen cycling and export in seasonally snow-covered catchments. Hydrol. Processes, 13(14–15), 2177–90.

S. H. Cadle and J. M. Dasch (1987a). Composition of snowmelt and runoff in northern Michigan. Environ. Sci. Technol., 21(3), 295–9.

Cadle, S. H. and Dasch, J. M. (1987b). The contribution of dry deposition to snowpack acidity in Michigan. In Seasonal Snowcovers: Physics, Chemistry, Hydrology, NATO ASI Series C: Math. and Phys. Sci., vol. 211, ed. H. G. Jones and W. J. Orville-Thomas , pp. 299–320.

S. C. Colbeck (1981). A simulation of the enrichment of atmospheric pollutants in snow cover runoff. Water Resour. Res., 17(5), 1383–8.

H. Craig (1961). Isotopic variations in meteoric waters. Science, 133, 1702–3.

T. D. Davies , P. W. Abrahams , M. Tranter , I. Blackwood , P. Brimblecombe , and C. E. Vincent (1984). Black acidic snow in the remote Scottish Highlands. Nature, 312, 58–61.

Davies, T. D., Brimblecombe, P., Blackwood, I. L., Tranter, M., and Abrahams, P. W. (1988). Chemical composition of snow in the remote Scottish Highlands. In Acid Deposition at High Elevation Sites, NATO ASI Series C, vol. 252, ed. M. H. Unsworth and D. Fowler . Dordrecht: Kluwer Academic, pp. 517–40.

T. D. Davies , C. E. Vincent , and P. Brimblecombe (1982). Preferential elution of strong acids from a Norwegian ice cap. Nature, 300, 161–3.

K. Heuer , P. D. Brooks and K. A. Tonnessen (1999). Nitrogen dynamics in two high elevations catchments during spring snowmelt. Hydrol. Processes, 13(14–15), 2203–14.

M. Johannessen and A. Henriksen (1978). Chemistry of snow meltwater: changes in concentration during melting. Water Resour. Res., 14(4), 615–19.

H. G. Jones (1999). The ecology of snow-covered systems: a brief overview of nutrient cycling and life in the cold. Hydrol. Processes, 13, 2135–47.

Pomeroy, J. W. and Jones, H. G. (1996). Wind-blown snow: sublimation, transport and changes to polar-snow. In Chemical Exchange between the Atmosphere and Polar Snow, NATO ASI Series I, Global Environ. Change, vol. 43, ed. E. W. Wolff and R. C. Bales . Berlin: Springer-Verlag, pp. 453–89.

J. W. Pomeroy , T. D. Davies , H. G. Jones , P. Marsh , N. E. Peters , and M. Tranter (1999). Transformations of snow chemistry in the boreal forest: accumulation and volatilization. Hydrol. Processes, 13(14–15), 2257–73.

Schaefer, D. A. and Reiners, W. A. (1990). Throughfall chemistry and canopy processing mechanisms. In Acidic Precipitation: Sources, Deposition, and Canopy Interactions, vol. 3, ed. S. E. Lindberg , A. L. Page , and S. A. Norton . New York: Springer-Verlag, pp. 241–84.

W. E. Sharpe , D. R. DeWalle , R. T. Leibfried , R. S. Dinicola , W. G. Kimmel , and L. S. Sherwin (1984). Causes of acidification of four streams on Laurel Hill in southwestern Pennsylvania. J. Environ. Qual., 13(4), 619–31.

S. Taylor , X. Feng , J. W. Kirchner , R. Osterhuber , B. Klaue , and C. E. Renshaw (2001). Isotopic evolution of a seasonal snowpack and its melt. Water Resour. Res., 37(3), 759–69.

S. Taylor , X. Feng , M. Williams , and J. McNamara (2002). How isotopic fractionation of snowmelt affects hydrograph separation. Hydrol. Processes, 16, 3683–90.

M. Tranter , P. Brimblecombe , T. D. Davies , C. E. Vincent , P. W. Abrahams , and I. Blackwood (1986). The composition of snowfall, snowpack and meltwater in the Scottish Highlands-evidence for preferential elution. Atmos. Environ., 20(3), 517–25.

M. W. Williams and J. M. Melack (1991). Solute chemistry of snowmelt and runoff in an alpine basin, Sierra Nevada. Water Resour. Res., 27(7), 1575–88.

V. B. Aizen , E. M. Aizen , and J. M. Melack (1995). Climate, snow cover, glaciers, and runoff in the Tien Shan, Central Asia. Water Resour. Bull., 31(6), 1113–29.

V. B. Aizen , E. M. Aizen , and J. M. Melack (1996). Precipitation, melt and runoff in the northern Tien Shan. J. Hydrol., 186, 229–51.

J. C. Bathurst and K. R. Cooley (1996). Use of SHE hydrological modelling system to investigate basin response to snowmelt at Reynolds Creek, Idaho. J. Hydrol., 175, 181–211.

L. Bengtsson and W. Westerstrom (1992). Urban snowmelt and runoff in northern Sweden. Hydrol. Sci., 37, 263–75.

L. Bengtsson , P. Seuna , A. Lepisto , and R. K. Saxena (1992). Particle movement of melt water in a subdrained agricultural basin. J. Hydrol., 135, 383–98.

S. N. Berris and R. D. Harr (1987). Comparative snow accumulation and melt during rainfall in forested and clear-cut plots in the Western Cascades of Oregon. Water Resour. Res., 23(1), 135–42.

J. M. Buttle (1994). Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins. Prog. Phys. Geog., 18(1), 16–41.

N. Caine (1992). Modulation of the diurnal streamflow response by the seasonal snowcover of an alpine basin. J. Hydrol., 137, 245–60.

A. T. DeGaetano , D. S. Wilks , and M. McKay (1996). A physically based model of soil freezing in humid climates using air temperature and snow cover data. J. Appl. Meteorol., 35, 1009–27.

R. D. Harr (1986). Effects of clearcutting on rain-on-snow runoff in Western Oregon: a new look at old studies. Water Resour. Res., 22(7), 1095–100.

L. D. Hinzman and D. L. Kane . (1991). Snow hydrology of a headwater Arctic basin 2. Conceptual analysis and computer modeling. Water Resour. Res., 27, 1111–21.

D. L. Kane and J. Stein (1983). Water movement into seasonally frozen soils. Water Resour. Res., 19(6), 1547–57.

K. A. Kendall , J. B. Shanley , and J. J. McDonnell (1999). A hydrometric and geochemical approach to test the transmissivity feedback hypothesis during snowmelt. J. Hydrol., 219, 188–205.

T. Lewis , C. Braun , D. R. Hardy , P. Francus , and R. S. Bradley . (2005). An extreme sediment transfer event in a Candadian high Arctic stream. Arct., Antarct. Alp. Res., 37, 477–82.

J. D. Lundquist , M. D. Dettinger and D. R. Cayan (2005). Snow-fed streamflow timing at different basin scales: Case study of the Tuolumne River above Hetch Hetchy, Yosemite, California. Water Resour. Res., 41(W07005), 1–14.

L. H. MacDonald and J. A. Hoffman (1995). Causes of peak flows in Northwestern Montana and Northeastern Idaho. Water Resour. Bull., 31(l), 79–95.

D. Marks , J. Kimball , D. Tingey , and T. Link (1998). The sensitivity of snowmelt processes to climate conditions and forest cover during rain-on-snow: a case study of the 1996 Pacific Northwest flood. Hydrol. Processes, 12, 1569–87.

P. Marsh (1999). Snowcover formation and melt: recent advances and future prospects. Hydrol. Processes, 13, 2117–34.

J. P. McNamara , D. L. Kane and L. D. Hinzman . (1997). Hydrograph separation in an Arctic watershed using mixing model and graphical techniques. Water Resour. Res., 33, 1707–19.

M. Prévost , R. Barry , J. Stein , and A. P. Plamondon (1990). Snowmelt runoff modelling in a balsam fir forest with a variable source area simulator (VSAS2). Water Resour. Res., 26(5), 1067–77.

J. B. Shanley and A. Chalmers (1999). The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont. Hydrol. Processes, 13, 1843–57.

D. Stadler , H. Wunderli , A. Auckenthaler , H. Flühler , and M. Bründl (1996). Measurement of frost-induced snowmelt runoff in a forest soil. Hydrol. Process., 10, 1293–1304.

P. E. Todhunter (2001). A hydroclimatological analysis of the Red River of the North snowmelt flood catastrophe of 1997. J. Amer. Water Resour. Assoc., 37, 1263–78.

J. R. Westmacott and D. H. Burn (1997). Climate change effects on the hydrologic regime within the Churchill-Nelson River Basin. J. Hydrol., 202, 263–79.

M.-K. Woo (1986). Permafrost hydrology in North America. Atmos. Ocean, 24(3), 201–234.

M.-K. Woo (1983). Hydrology of a drainage basin in the Canadian high Arctic. Annals Assoc. Amer. Geogr., 73, 577–596.

Z. Zhang , D. L. Kane , and L. D. Hinzman . (2000). Development and application of a spatially-distributed Arctic hydrological and thermal process model (ARHYTHM). Hydrol. Processes, 14, 1017–44.

L. Zhao and D. M. Gray (1999). Estimating snowmelt infiltration into frozen soils. Hydrol. Processes, 13, 1827–42.

M. Albert and G. Krajeski (1998). A fast, physically based point snowmelt model for use in distributed applications. Hydrol. Processes, 12, 1809–24.

R. C. Bales , N. P. Molotch , T. H. Painter , M. D. Dettinger , R. Rice , and J. Dozier (2006). Mountain hydrology of the western United States. Water Resour. Res., 42, W08432.

V. A. Bell and R. J. Moore (1999). An elevation-dependent snowmelt model for upland Britain. Hydrol. Processes, 13, 1887–903.

G. Blöschl , R. Kirnbauer , and D. Gutnecht (1991b). Distributed snowmelt simulations in an alpine catchment: 1. Model evaluation on the basis of snow cover patterns. Water Resour. Res., 27(12), 3171–79.

K. Brubaker , A. Rango and W. Kustas (1996). Incorporating radiation inputs into the snowmelt runoff model. Hydrol. Processes, 10, 1329–43.

M. P. Clark , A. G. Slater , A. P. Barrett , L. E. Hay , G. J. McCabe , B. Rajagopalan , and G. H. Leavesley (2006). Assimilation of snow covered area information into hydrologic and land-surface models. Adv. Water Resour., 29, 1209–21.

G. N. Day (1985). Extended streamflow forecasting using NWSRFS. J. Water Resour. Planning Manag., 111(2), 157–70.

F. A. Scally (1992). Influence of avalanche snow transport on snowmelt runoff. J. Hydrol., 137, 73–97.

K. A. Dressler , G. H. Leavesley , R. C. Bales , and S. R. Fassnacht (2006). Evaluation of gridded snow water equivalent and satellite snow cover products for mountain basins in a hydrologic model. Hydrol. Processes, 20, 673–88.

S. R. Fassnacht , K. A. Dressler , and R. C. Bales (2003). Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data. Water Resour. Res., 39(8), 1208.

M. A. Giesbrecht and M. Woo (2000). Simulation of snowmelt in a subarctic spruce woodland: 2. open woodland model. Water Resour. Res., 36(8), 2287–95.

L. Hamlin , A. Pietroniro , T. Prowse , R. Soulis , and N. Kouwen (1998). Application of indexed snowmelt algorithms in a northern wetland regime. Hydrol. Processes, 12, 1641–57.

F. Horne and M. L. Kavvas (1997). Physics of the spatially averaged snowmelt process. J. Hydrol., 191, 179–207.

D. L. Kane , L. D. Hinzman , C. S. Benson , and G. E. Liston (1991). Snow hydrology of a headwater Arctic basin: 1. Physical measurements and process studies. Water Resour. Res., 27(6), 1099–109.

G. H. Leavesley , S. L. Markstrom , P. J. Restrepo , and R. J. Viger (2001). A modular approach to addressing model design, scale, and parameter estimation issues in distributed hydrological modeling. Hydrol. Processes, 16(2), 173–87.

C. H. Luce , D. G. Tarboton and K. R. Cooley (1999). Sub-grid parameterization of snow distribution for an energy and mass balance snow cover model. Hydrol. Processes, 13, 1921–33.

M. Mcguire , A. W. Wood , A. F. Hamlett , and D. P. Lettenmaier (2006). Use of satellite data for streamflow and reservoir storage forecasts in the Snake River basin, ID. J. Water Resour. Planning Manag, 132, 97–110.

R. A. Metcalfe and J. M. Buttle (1998). A statistical model of spatially distributed snowmelt rates in a boreal forest basin. Hydrol. Processes, 12, 1701–22.

K. M. Mitchell and D. R. DeWalle (1998). Application of the SRM using multiple parameter landscape zones on the Towanda Creek Basin, Pennsylvania. J. Amer. Water Resour. Assoc., 34(2), 335–46.

N. P. Molotch , M. T. Colee , R. C. Bales , and J. Dozier (2005). Estimating the spatial distribution of snow water equivalent in an alpine basin using binary regression tree models: the impact of digital elevation data and independent variable selection. Hydrol. Processes, 19, 1459–79.

R. D. Moore (1993). Application of a conceptual streamflow model in a glacierized drainage basin. J. Hydrol., 150, 151–68.

J. W. Pomeroy , D. M. Gray , and P. G. Landine (1993). The prairie blowing snow model: characteristics, validation and operation. J. Hydrol., 144, 165–92.

A. Rango and J. Martinec (1994). Model accuracy in snowmelt-runoff forecasts extending from 1–20 days. Water Resour. Bull., 30(3), 463–70.

A. Rango (1996). Spaceborne remote sensing for snow hydrology applications. Hydrol. Sci. J., 41, 477–93.

M. Rodell and P. R. Houser (2004). Updating a land surface model with MODIS-derived snow cover. J. Hydrometeorol., 5, 1064–75.

J. Schaper , J. Martinec , and K. Seidel (1999). Distributed mapping of snow and glaciers for improved runoff modelling. Hydrol. Processes, 13, (12/13), 2023–32.

O. Turpin , R. Ferguson , and B. Johansson (1999). Use of remote sensing to test and update simulated snow cover in hydrologic models. Hydrol. Processes, 13, 2067–77.

K. S. Williams and D. G. Tarboton (1999). The ABC's of snowmelt: a topographically factorized energy component snowmelt model. Hydrol. Processes, 13, 1905–20.

A. Winstral , K. Elder , and R. E. Davis (2002). Spatial snow modeling of wind-redistributed snow using terrain-based parameters. J. Hydrometeorol., 3(5), 524–38.

J. Martinec and A. Rango (1986). Parameter values for snowmelt runoff modelling. J. Hydrol. 84, 197–219.

J. Martinec and A. Rango (1989). Merits of statistical criteria for the performance of hydrological models. Water Resour. Bull. 25(20), 421–32.

L. L Nash and J. A. Gleick (1991). Sensitivity of streamflow in the Colorado Basin to climatic changes. J. Hydrol., 125, 221–41.

A. Rango and J. Martinec (1995). Revisiting the degree-day method for snowmelt computation. Water Resour. Bull. 31(4), 657–69.

A. Rango and V. Katwijk (1990). Development and testing of a snowmelt runoff forecasting technique. Water Resour. Bull., 26(1), 135–44.

J. D. Bilbro and D. W. Fryrear (1988). Chapter 8: Annual herbaceous windbarriers for protecting crops and soils and managing snowfall. In Agriculture, Ecosystems and Environ., vol. 22/23, 149–61.

L. M. Eisel , K. M. Bradley , and C. F. Leaf (1990). Estimated runoff from man-made snow. Water Resour. Bull., 26(3), 519–26.

L. M. Eisel , K. D. Mills , and C. F. Leaf (1988). Estimated consumptive loss from man-made snow. Water Resour. Bull., 24(4), 815–20.

D. L. Golding and R. H. Swanson (1986). Snow distribution patterns in clearing and adjacent forest. Water Resour. Res., 22(13), 1931–40.

G. M. Heisler and D. R. DeWalle (1988). Chapter 2: Effects of windbreak structure on wind flow. In Agriculture, Ecosystems and Environ., vol. 22/23, 41–69.

C. L. I. Ho and C. Valeo (2004). Observations of urban snow properties in Calgary, Canada. Hydrol. Processes, 19, 459–73.

C. E. Kongoli and W. L. Bland . (2002). Influence of manure application on surface energy and snow cover. J. Environ. Qual., 31, 1166–1173.

R. A. Schmidt and C. A. Troendle (1989). Snowfall into a forest and clearing. J. Hydrol., 110, 335–48.

R. A. Schmidt , C. A. Troendle and J. R. Meiman (1998). Sublimation of snowpacks in subalpine conifer forests. Can. J. For. Res., 28, 501–13.

H. Scholten (1988). Chapter 20: Snow distribution on crop fields. In Agriculture, Ecosystems and Environ., vol. 22/23, 363–80.

A. Semadeni-Davies , A. Lundberg , and L. Bengtsson . (2001). Radiation balance of urban snow: a water management perspective. Cold Regions Sci. and Technol., 33, 59–76.

D. L. Shaw (1988). Chapter 19: The design and use of living snow fences in North America. In Agriculture, Ecosystems and Environ., vol. 22/23, 351–62.

D. L. Sturges (1992). Streamflow and sediment transport responses to snow fencing a rangeland watershed. Water Resour. Res., 28(5), 1347–56.

C. A. Troendle and R. M. King (1985). The effect of timber harvest on the Fool Creek Watershed, 30 years later. Water Resour. Res., 21(12), 1915–22.

S. G. Warren and W. J. Wiscombe . (1981). A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J. Atmos. Sci., 37, 2734–45.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 246 *
Loading metrics...

Book summary page views

Total views: 265 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd July 2017. This data will be updated every 24 hours.