Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-20T00:59:55.033Z Has data issue: false hasContentIssue false

8 - Spin glass above D = 6

Published online by Cambridge University Press:  21 October 2009

Irene Giardina
Affiliation:
Università degli Studi di Roma 'La Sapienza', Italy
Get access

Summary

In the previous chapters we have analyzed in detail the SK model and its solution within the replica method and via mean field-like TAP equations. The physical scenario unveiled by the RSB solution is novel and intriguing, depicting a low temperature phase where ergodicity is broken in a multiplicity of pure states with a nontrivial structure. Yet, so far we have been dealing with a mean field model and one may wonder whether all these surprising results are just an artefact of the long range interaction. This question is indeed very much debated and different points of view exist with conflicting conclusions. In this book hereafter we shall embrace what seems a most natural approach for the finite dimensional model, developing a field theory that has as mean field limit the SK solution described in Chapter 6, and building up a perturbation expansion around it. This is justified if we assume that the physics of the SK model remains qualitatively relevant for a finite dimensional system. Vice versa, we may say that, if we are able to build a well defined field theory and control its perturbation expansion, this is a strong indication of the physical relevance of its content.

Even if our program is conceptually standard routine in field theory, from a practical point of view it is far from simple, given the complex nature of the order parameter. As we shall see, even the analysis of Gaussian fluctuations becomes cumbersome.

Type
Chapter
Information
Random Fields and Spin Glasses
A Field Theory Approach
, pp. 141 - 158
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×