Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T23:38:59.077Z Has data issue: false hasContentIssue false

Part II - Captive Care and Management

Published online by Cambridge University Press:  21 December 2018

Allison B. Kaufman
Affiliation:
University of Connecticut
Meredith J. Bashaw
Affiliation:
Franklin and Marshall College, Pennsylvania
Terry L. Maple
Affiliation:
Jacksonville Zoo and Gardens
Get access
Type
Chapter
Information
Scientific Foundations of Zoos and Aquariums
Their Role in Conservation and Research
, pp. 189 - 324
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

BirdLife International (2016). Anodorhynchus leari. The IUCN Red List of Threatened Species 2016: e.T22685521A93077801. Retrieved from www.iucnredlist.org/details/22685521/0.Google Scholar
Bottoni, L., Massa, R., Lea, R. W., & Sharp, P. J. (1993). Mate choice and reproductive success in the red-legged partridge (Alectoris rufa). Hormones and Behavior, 27, 308317.CrossRefGoogle ScholarPubMed
Bressan, P. M. & Gonçalves, M. L. (2014). Fundação Parque Zoológico de São Paulo. São Paulo: Relatório Anual.Google Scholar
BRASIL (2006). Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA). Plano de Manejo da Arara-Azul-de-Lear (Anodorhynchus leari). Coordenação de Espécies da Fauna. Brasília: IBAMA.Google Scholar
BRASIL (2013). Instituto Chico Mendes de Conservação da Biodiversidade. Portaria no. 231, de 26 de Setembro de 2013. Aprova o Programa de Cativeiro da Arara azul-de-lear, espécie ameaçada de extinção, estabelecendo seu objetivo, objetivos específicos, ações estratégicas para a conservação ex situ da espécie. Diário Oficial da União, Brasília, DF, de 30 de Setembro de 2013. Seção, 1.Google Scholar
BRASIL (2014). Portaria MMA no. 444 de 17 de Dezembro de 2014. Diário Oficial da União, Poder Executivo, Brasília, DF, 18 Dez 2014. Seção, 1.Google Scholar
Comunicação ICMBio (2017). Centro registra 1350 araras-azuis-de-lear na natureza. Últimas notícias. Brasília. Retreived from www.icmbio.gov.br/portal/ultimas-noticias/20-geral/9221-centro-registra-1-350-araras-azuis-de-lear-na-natureza.Google Scholar
Cornejo, J. (2018). Lear’s Macaw (Anodorhynchus leari) International Studbook and Population Analysis. Captive Program for the Lear´s Macaw. Singapore: ICMBio.Google Scholar
Favoretto, G. R. (2016). Comportamento reprodutivo Arara-Azul-de-Lear (Anodorhynchus leari, Bonaparte, 1856) em cativeiro e a influência da técnica do flocking na interação de pares. São Paulo: Dissertação (Mestrado em Conservação da Fauna) Universidade Federal de São Carlos/Fundação Parque Zoológico de São Paulo.Google Scholar
Flammer, K., & Clubb, S. L. (1994). Neonatology. In: Ritchie, B. W., Harrison, G. J., & Harrison, L. R. (Eds.), Avian Medicine: Principles and Application (pp. 805838). Lake Worth, FL: Winger Publishing, Inc.Google Scholar
Francisco, R. M. & Silveira, L. F. (2013). Conservação animal ex situ. In: Piratelli, A. J. & Francisco, M. R. (Eds.), Conservação da Biodiversidade: Dos Conceitos às Ações, 1st edn. (pp. 117130). Rio de Janeiro: Technical Books.Google Scholar
Gaudioso, V. R., Alonso, M. E., Robles, R., Garrido, J. A., Olmedo, J. A. (2002). Effects of housing type and breeding system on the reproductive capacity of the red-legged partridge (Alectoris rufa). Poultry Science, 81, 169172.Google Scholar
Guedes, N. M. R. (2009). Arara-azul-de-lear. Site do Projeto Arara Azul. Instituto Arara Azul. Retrieved from www.projetoararaazul.org.br.Google Scholar
Guida, F. J. V. & Paiva, R. V. (2015). Reprodução em cativeiro de arara-azul-de-lear. Presented at III Simpósio Brasileiro de Biologia da Conservação, FPZSP, São Paulo.Google Scholar
Guida, F. J. V., Paiva, R. V., & Pacífico de Assis, E. C. (2017). Desenvolvimento ontogenético de filhotes de arara-azul-de-lear, Anodorhynchue leari, criados artificialmente: Uma comparação com dados obtidos in situ. Presented at I Reunião Científica da FPZSP, São Paulo.Google Scholar
Ihle, M., Kempenaers, B., & Forstmeier, W. (2015). Fitness benefits of mate choice for compatibility in a socially monogamous species. PLoS Biology, 13, e1002248.CrossRefGoogle Scholar
Lugarini, C, Barbosa, A. E. A., de Oliveira, K. G. (2012). Plano de Ação Nacional para a Conservação da Arara-azul-de-Lear. 2nd edn. Brasília: ICMBio – Instituto Chico Mendes de Conservação da Biodiversidade.Google Scholar
Mellen, J. D. (1994). Survey and interzoo studies used to address husbandry problems in some zoo vertebrates. Zoo Biology, 13, 459470.CrossRefGoogle Scholar
Pacífico de Assis, E. C. (2011). Biologia reprodutiva da arara-azul-de-lear Anodorhynchus leari (Aves: Psittacidae) na Estação Biológica de Canudos, BA. São Paulo: Dissertação (Mestrado em Zoologia) – Instituto de Biociências, Universidade de São Paulo.Google Scholar
Scott, D. K. (1980). Functional aspects of the pair bond in winter in Bewick’s swans (Cygnus columbianus bewickii). Behavioral Ecology and Sociobiology, 7, 323327.Google Scholar
Sick, H. (1979). Anodorhynchus leari, descoberta. Alauda, 47, 5960.Google Scholar
Watson, R. (2007). Captive husbandry management of the Lear’s Macaw (Anodorhynchus leari) at Al Wabra Wildlife Preservation. Presented at: 33rd Annual Convention of the American Federation of Aviculture (AFA), Los Angeles.Google Scholar
West-Eberhard, M. J. (1979). Sexual selection, social competition, and evolution. Proceedings of the American Philosophical Society, 123, 222234.Google Scholar

References

Balsam, P., Sanchez-Castillo, H., Taylor, K., Van Volkinburg, H., & Ward, R. D. (2009). Timing and anticipation: conceptual and methodological approaches. European Journal of Neuroscience, 30(9), 17491755.CrossRefGoogle ScholarPubMed
Bassett, L., & Buchanan-Smith, H. M. (2007). Effects of predictability on the welfare of captive animals. Applied Animal Behaviour Science, 102(3–4), 223245.Google Scholar
Bateson, M., & Matheson, S. M. (2007). Performance on a categorisation task suggests that removal of environmental enrichment induces “pessimism” in captive European starlings (Sturnus vulgaris). Animal Welfare, 16(2), 3336.CrossRefGoogle Scholar
Bethell, E. J. (2015). A “how-to” guide for designing judgment bias studies to assess captive animal welfare. Journal of Applied Animal Welfare Science, 18, S18S42.CrossRefGoogle Scholar
Bloomfield, R. C., Gillespie, G. R., Kerswell, K. J., Butler, K. L., & Hemsworth, P. H. (2015). Effect of partial covering of the visitor viewing area window on positioning and orientation of zoo orangutans: A preference test. Zoo Biology, 34(3), 223229.Google Scholar
Bloomsmith, M. A., & Lambeth, S. P. (1995). Effects of predictable versus unpredictable feeding schedules on chimpanzee behavior. Applied Animal Behaviour Science, 44(1), 6574.Google Scholar
Boissy, A., & Erhard, H. W. (2014). How Studying Interactions between Animal Emotions, Cognition, and Personality Can Contribute to Improve Farm Animal Welfare. San Diego, CA: Elsevier Academic Press Inc.Google Scholar
Boissy, A., & Lee, C. (2014). How assessing relationships between emotions and cognition can improve farm animal welfare. Revue Scientifique et Technique – Office International Des Epizooties, 33(1), 103110.Google Scholar
Brenes, J. C., & Schwarting, R. K. W. (2015). Individual differences in anticipatory activity to food rewards predict cue-induced appetitive 50-kHz calls in rats. Physiology & Behavior, 149, 107118.Google Scholar
Carlstead, K., Mellen, J., & Kleiman, D. G. (1999). Black rhinoceros (Diceros bicornis) in U.S. zoos: I. Individual behavior profiles and their relationship to breeding success. Zoo Biology, 18(1), 1734.3.0.CO;2-K>CrossRefGoogle Scholar
Carlstead, K., & Shepherdson, D. (2000). Alleviating stress in zoo animals with environmental enrichment. In Mench, G. P. M. J. A. (Ed.), The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare (pp. 337349). New York, NY: CABI Publishing.Google Scholar
Chamove, A. S. (1989). Environmental enrichment: A review. Animal Technology: Journal of the Institute of Animal Technology, 40(3), 155178.Google Scholar
Chelluri, G. I., Ross, S. R., & Wagner, K. E. (2013). Behavioral correlates and welfare implications of informal interactions between caretakers and zoo-housed chimpanzees and gorillas. Applied Animal Behaviour Science, 147(3–4), 306315.Google Scholar
Chittka, L., & Jensen, K. (2011). Animal cognition: Concepts from apes to bees. Current Biology, 21(3), R116R119.Google Scholar
Chitty, J. (2003). Feather plucking in psittacine birds 2. Social, environmental and behavioural considerations. In Practice, 25(9), 550.Google Scholar
Clark, F. E. (2011). Great ape cognition and captive care: Can cognitive challenges enhance well-being? Applied Animal Behaviour Science, 135(1), 112.Google Scholar
Clark, F. E. (2013). Marine mammal cognition and captive care: A proposal for cognitive enrichment in zoos and aquariums. Journal of Zoo and Aquarium Research, 1(1), 16.Google Scholar
Clegg, I., & Delfour, F. (2018). Cognitive judgement bias is associated with frequency of anticipatory behavior in bottlenose dolphins. Zoo Biology, 37(2), 6773.Google Scholar
Cunningham, C. L., Gremel, C. M., & Groblewski, P. A. (2006). Drug-induced conditioned place preference and aversion in mice. Nature Protocols, 1(4), 16621670.Google Scholar
Davidson, A. J., Tataroglu, O., & Menaker, M. (2005). Circadian effects of timed meals (and other rewards). In Young, M. W. (Ed.), Circadian Rhythms (Vol. 393, pp. 509523). San Diego, CA: Elsevier Academic Press Inc.Google Scholar
Dudink, S., Simonse, H., Marks, I., de Jonge, F. H., & Spruijt, B. M. (2006). Announcing the arrival of enrichment increases play behaviour and reduces weaning-stress-induced behaviours of piglets directly after weaning. Applied Animal Behaviour Science, 101(1–2), 86101.Google Scholar
Escobar, C., Martinez-Merlos, M. T., Angeles-Castellanos, M., Minana, M. D., & Buijs, R. M. (2007). Unpredictable feeding schedules unmask a system for daily resetting of behavioural and metabolic food entrainment. European Journal of Neuroscience, 26(10), 28042814.Google Scholar
Fanselow, M. S. (1980). Conditional and unconditional components of post-shock freezing. The Pavlovian Journal of Biological Science: Official Journal of the Pavlovian, 15(4), 177182.Google Scholar
Franks, B., Champagne, F. A., & Higgins, E. T. (2013). How enrichment affects exploration trade-offs in rats: Implications for welfare and well-being. PLoS ONE, 8(12), e83578.Google Scholar
Garner, J. P., Meehan, C. L., Famula, T. R., & Mench, J. A. (2006). Genetic, environmental, and neighbor effects on the severity of stereotypies and feather picking in orange-winged Amazon parrots (Amazona amazonica): An epidemiological study. Applied Animal Behaviour Science, 96(1), 153168.Google Scholar
Gottlieb, D. H., Coleman, K., & McCowan, B. (2013). The effects of predictability in daily husbandry routines on captive rhesus macaques (Macaca mulatta). Applied Animal Behaviour Science, 143(2–4), 117127.Google Scholar
Gottlieb, D. H., Ghirardo, S., Minier, D. E., Sharpe, N., Tatum, L., & McCowan, B. (2011). Efficacy of 3 types of foraging enrichment for rhesus macaques (Macaca mulatta). Journal of the American Association for Laboratory Animal Science, 50(6), 888894.Google Scholar
Grindlinger, H. M. (1991). Compulsive feather picking in birds. Archives of General Psychiatry, 48(9), 857857.Google Scholar
Gunn, D., & Morton, D. B. (1995). Inventory of the behaviour of New Zealand white rabbits in laboratory cages. Applied Animal Behaviour Science, 45(3), 277292.Google Scholar
Hall, L. E., Robinson, S., & Buchanan-Smith, H. M. (2015). Refining dosing by oral gavage in the dog: A protocol to harmonise welfare. Journal of Pharmacological and Toxicological Methods, 72, 3546.Google Scholar
Harding, E. J., Paul, E. S., & Mendl, M. (2004). Animal behaviour: Cognitive bias and affective state. Nature, 427(6972), 312312.Google Scholar
Harley, H. E., Fellner, W., & Stamper, M. A. (2010). Cognitive research with dolphins (Tursiops truncatus) at Disney’s The Seas: A program for enrichment, science, education, and conservation. International Journal of Comparative Psychology, 23(3), 331343.Google Scholar
Herbert, P. L., & Bard, K. (2000). Orangutan use of vertical space in an innovative habitat. Zoo Biology, 19(4), 239251.Google Scholar
Herrelko, E. S., Buchanan-Smith, H. M., & Vick, S.-J. (2015). Perception of available space during chimpanzee introductions: Number of accessible areas is more important than enclosure size. Zoo Biology, 34(5), 397405.CrossRefGoogle ScholarPubMed
Hill, J. O., Pavlik, E. J., Smith, G. L., Burghardt, G. M., & Coulson, P. B. (1976). Species-characteristic responses to catnip by undomesticated felids. Journal of Chemical Ecology, 2(2), 239253.Google Scholar
Hughes, B. O., & Duncan, I. J. H. (1988). The notion of ethological “need,” models of motivation and animal welfare. Animal Behaviour, 36(6), 16961707.Google Scholar
Imfeld-Mueller, S., & Hillmann, E. (2012). Anticipation of a food ball increases short-term activity levels in growing pigs. Applied Animal Behaviour Science, 137(1–2), 2329.Google Scholar
Inglis, I. R., Langton, S., Forkman, B., & Lazarus, J. (2001). An information primacy model of exploratory and foraging behaviour. Animal Behaviour, 62(3), 543557.CrossRefGoogle Scholar
Jensen, A. L. M., Delfour, F., & Carter, T. (2013). Anticipatory behavior in captive bottlenose dolphins (Tursiops truncatus): A preliminary study. Zoo Biology, 32(4), 436444.Google Scholar
Kirkwood, J. K., & Hubrecht, R. (2001). Animal consciousness, cognition and welfare. Animal Welfare, 10(1), 517.Google Scholar
Krebs, B. L., & Watters, J. V. (2016). Using technology driven environments to promote animal well-being in zoos. Paper presented at the Human Computer Interactions, San Jose, CA.Google Scholar
Krebs, B. L., & Watters, J. V. (2017). Simple but temporally unpredictable puzzles are cognitive enrichment. Animal Behavior and Cognition, 4(1), 119134.Google Scholar
Krebs, B. L., Torres, E., Chesney, C., Kantoniemi Moon, V., & Watters, J. V. (2017). Applying behavioral conditioning to identify anticipatory behaviors. Journal of Applied Animal Welfare Science, 20(2), 155175.Google Scholar
Kuczaj, S., Lacinak, T., Fad, O., Trone, M., Solangi, M., & Ramos, J. (2002). Keeping environmental enrichment enriching. International Journal of Comparative Psychology, 15(2), 127137.Google Scholar
Laule, G. E. (2003). Positive reinforcement training and environmental enrichment: Enhancing animal well-being. Journal of the American Veterinary Medical Association, 223(7), 969973.CrossRefGoogle ScholarPubMed
MacDonald, S. E., & Ritvo, S. (2016). Comparative cognition outside the laboratory. Comparative Cognition & Behavior Reviews, 11, 4961.Google Scholar
Makowska, I. J., & Weary, D. M. (2016). Differences in anticipatory behaviour between rats (Rattus norvegicus) housed in standard versus semi-naturalistic laboratory environments. PLoS ONE, 11, e0147595.CrossRefGoogle ScholarPubMed
Manteuffel, G., Langbein, J., & Puppe, B. (2009a). From operant learning to cognitive enrichment in farm animal housing: bases and applicability. Animal Welfare, 18(1), 8795.Google Scholar
Manteuffel, G., Langbein, J., & Puppe, B. (2009b). Increasing farm animal welfare by positively motivated instrumental behaviour. Applied Animal Behaviour Science, 118(3–4), 191198.Google Scholar
Mason, G. J. (1991). Stereotypies: A critical review. Animal Behaviour, 41(6), 10151037.CrossRefGoogle Scholar
Meehan, C. L., & Mench, J. A. (2007). The challenge of challenge: Can problem solving opportunities enhance animal welfare? Applied Animal Behaviour Science, 102(3–4), 246261.Google Scholar
Meehan, C. L., Millam, J. R., & Mench, J. A. (2003). Foraging opportunity and increased physical complexity both prevent and reduce psychogenic feather picking by young Amazon parrots. Applied Animal Behaviour Science, 80(1), 7185.Google Scholar
Mellor, D. J., Hunt, S., & Gusset, M. (Eds.) (2015). Caring for Wildlife: The World Zoo and Aquarium Animal Welfare Strategy. Gland: WAZA Executive Office.Google Scholar
Mench, J. A. (1998). Environmental enrichment and the importance of exploratory behavior. In Shepherdson, D. J., Mellen, J. D., & Hutchins, M. (Eds.), Second Nature: Environmental Enrichment for Captive Animals (pp. 3046). Washington, DC: Smithsonian Institution Press.Google Scholar
Mendl, M., Burman, O. H. P., Parker, R. M. A., & Paul, E. S. (2009). Cognitive bias as an indicator of animal emotion and welfare: Emerging evidence and underlying mechanisms. Applied Animal Behaviour Science, 118(3), 161181.Google Scholar
Mistlberger, R. E. (1994). Circadian food-anticipatory activity: Formal models and physiological mechanisms. Neuroscience & Biobehavioral Reviews, 18(2), 171195.Google Scholar
Mistlberger, R. E. (2009). Food-anticipatory circadian rhythms: Concepts and methods. European Journal of Neuroscience, 30(9), 17181729.Google Scholar
Morimura, N. (2006). Cognitive enrichment in chimpanzees: An approach of welfare entailing an animal’s entire resources. In Matsuzawa, T., Tomonaga, M., & Tanaka, M. (Eds.), Cognitive Development in Chimpanzees (pp. 368391). Tokyo: Springer Tokyo.Google Scholar
Newberry, R. C. (1995). Environmental enrichment: Increasing the biological relevance of captive environments. Applied Animal Behaviour Science, 44(2), 229243.CrossRefGoogle Scholar
Novak, M. A., Kinsey, J. H., Jorgensen, M. J., & Hazen, T. J. (1998). Effects of puzzle feeders on pathological behavior in individually housed rhesus monkeys. American Journal of Primatology, 46(3), 213227.Google Scholar
Owen, M. A., Swaisgood, R. R., Czekala, N. M., & Lindburg, D. G. (2005). Enclosure choice and well-being in giant pandas: Is it all about control? Zoo Biology, 24(5), 475481.Google Scholar
Panksepp, J. (2005). Affective consciousness: Core emotional feelings in animals and humans. Consciousness and Cognition, 14(1), 3080.Google Scholar
Poole, T. B. (1987). Social behavior of a group of orangutans (Pongo pygmaeus) on an artificial island in Singapore Zoological Gardens. Zoo Biology, 6(4), 315330.CrossRefGoogle Scholar
Puppe, B., Ernst, K., Schön, P. C., & Manteuffel, G. (2007). Cognitive enrichment affects behavioural reactivity in domestic pigs. Applied Animal Behaviour Science, 105(1–3), 7586.Google Scholar
Renner, M. J., & Rosenzweig, M. R. (1986). Object interactions in juvenile rats (Rattus norvegicus): Effects of different experiential histories. Journal of Comparative Psychology, 100(3), 229236.Google Scholar
Richter, S. H., Schick, A., Hoyer, C., Lankisch, K., Gass, P., & Vollmayr, B. (2012). A glass full of optimism: Enrichment effects on cognitive bias in a rat model of depression. Cognitive, Affective, & Behavioral Neuroscience, 12(3), 527542.Google Scholar
Rimpley, K., & Buchanan-Smith, H. M. (2013). Reliably signalling a startling husbandry event improves welfare of zoo-housed capuchins (Sapajus apella). Applied Animal Behaviour Science, 147(1–2), 205213.Google Scholar
Ross, S. R. (2006). Issues of choice and control in the behaviour of a pair of captive polar bears (Ursus maritimus). Behavioural Processes, 73(1), 117120.Google Scholar
Rushen, J. (1996). Using aversion learning techniques to assess the mental state, suffering, and welfare of farm animals. Journal of Animal Science, 74(8), 19901995.Google Scholar
Sambrook, T. D., & Buchanan-Smith, H. M. (1997). Control and complexity in novel object enrichment. Animal Welfare, 6(3), 207216.Google Scholar
Shepherdson, D. (1994). The role of environmental enrichment in the captive breeding and reintroduction of endangered species. In Olney, P. J. S., Mace, G. M., & Feistner, A. T. C. (Eds.), Creative Conservation: Interactive management of wild and captive animals (pp. 167177). Dordrecht: Springer Netherlands.Google Scholar
Shepherdson, D., Lewis, K. D., Carlstead, K., Bauman, J., & Perrin, N. (2013). Individual and environmental factors associated with stereotypic behavior and fecal glucocorticoid metabolite levels in zoo housed polar bears. Applied Animal Behaviour Science, 147(3), 268277.CrossRefGoogle Scholar
Solis-Salazar, T., Martinez-Merlos, M. T., Angeles-Castellanos, M., Mendoza, J., & Escobar, C. (2005). Behavioral and physiological adaptations in rats during food-entrainment. Biological Rhythm Research, 36(1–2), 99108.Google Scholar
Spruijt, B. M., van den Bos, R., & Pijlman, F. T. A. (2001). A concept of welfare based on reward evaluating mechanisms in the brain: Anticipatory behaviour as an indicator for the state of reward systems. Applied Animal Behaviour Science, 72(2), 145171.Google Scholar
Stephan, F. K. (2002). The “other” circadian system: Food as a zeitgeber. Journal of Biological Rhythms, 17(4), 284292.CrossRefGoogle Scholar
Swaisgood, R. R., & Shepherdson, D. J. (2005). Scientific approaches to enrichment and stereotypies in zoo animals: what’s been done and where should we go next? Zoo Biology, 24(6), 499518.Google Scholar
Tarou, L. R., & Bashaw, M. J. (2007). Maximizing the effectiveness of environmental enrichment: Suggestions from the experimental analysis of behavior. Applied Animal Behaviour Science, 102(3–4), 189204.Google Scholar
Troisi, A. (2002). Displacement activities as a behavioral measure of stress in nonhuman primates and human subjects. Stress, 5(1), 4754.CrossRefGoogle ScholarPubMed
Valuska, A. J., Leighty, K. A., Schutz, P. J., Ferrie, G. M., Sky, C. C., & Bettinger, T. L. (2013). The use of visual barriers to reduce aggression among a group of marabou storks (Leptoptilos crumeniferus). Zoo Biology, 32(6), 648651.CrossRefGoogle ScholarPubMed
van den Bos, R., Meijer, M. K., van Renselaar, J. P., van der Harst, J. E., & Spruijt, B. M. (2003). Anticipation is differently expressed in rats (Rattus norvegicus) and domestic cats (Felis silvestris catus) in the same Pavlovian conditioning paradigm. Behavioural Brain Research, 141(1), 8389.Google Scholar
van der Harst, J. E., Fermont, P. C. J., Bilstra, A. E., & Spruijt, B. M. (2003). Access to enriched housing is rewarding to rats as reflected by their anticipatory behaviour. Animal Behaviour, 66, 493504.Google Scholar
van der Kolk, B. A. (1988). The trauma spectrum: The interaction of biological and social events in the genesis of the trauma response. Journal of Traumatic Stress, 1(3), 273290.Google Scholar
van der Kolk, B. A., & Saporta, J. (1991). The biological response to psychic trauma: Mechanisms and treatment of intrusion and numbing. Anxiety Research, 4(3), 199212.Google Scholar
Watters, J. V. (2009). Toward a predictive theory for environmental enrichment. Zoo Biology, 28(6), 608622.Google Scholar
Watters, J. V. (2014). Searching for behavioral indicators of welfare in zoos: Uncovering anticipatory behavior. Zoo Biology, 33(4), 251256.Google Scholar
Watters, J. V., Margulis, S. W., & Atsalis, S. (2009). Behavioral monitoring in zoos and aquariums: A tool for guiding husbandry and directing research. Zoo Biology, 28(1), 3548.Google Scholar
Watters, J. V., Miller, J. T., & Sullivan, T. J. (2011). Note on optimizing environmental enrichment: A study of fennec fox and zoo guests. Zoo Biology, 30(6), 647654.Google Scholar
Watters, J. V., & Powell, D. M. (2011). Measuring animal personality for use in population management in zoos: Suggested methods and rationale. Zoo Biology, 31(1), 112.Google Scholar
Watters, J. V., et al. (2015). Assessing quality of life in geriatric zoo animals. WAZA Magazine, 16, 3740.Google Scholar
Weiss, S. J. (2007). Neurobiological alterations associated with traumatic stress. Perspectives in Psychiatric Care, 43(3), 114122.CrossRefGoogle ScholarPubMed
Wells, D. L. (2009). Sensory stimulation as environmental enrichment for captive animals: A review. Applied Animal Behaviour Science, 118(1–2), 111.Google Scholar
Whitham, J. C., & Wielebnowski, N. (2013). New directions for zoo animal welfare science. Applied Animal Behaviour Science, 147(3–4), 247260.Google Scholar
Wichman, A., Keeling, L. J., & Forkman, B. (2012). Cognitive bias and anticipatory behaviour of laying hens housed in basic and enriched pens. Applied Animal Behaviour Science, 140(1–2), 6269.Google Scholar
Wojciechowski, S. (2004). Introducing a fourth primate species to an established mixed-species exhibit of African monkeys. Zoo Biology, 23(2), 95108.Google Scholar
Yeates, J. W., & Main, D. C. (2008). Assessment of positive welfare: A review. The Veterinary Journal, 175(3), 293300.Google Scholar
Zebunke, M., Puppe, B., & Langbein, J. (2013). Effects of cognitive enrichment on behavioural and physiological reactions of pigs. Physiology & Behavior, 118, 7079.Google Scholar

References

Allard, S. M., Fuller, G., & Hamilton, J. (2016). The roles of time and space in captive animal welfare. In: Weaver, J. (Ed.), Animal Welfare: Assessments, Challenges and Improvement Strategies (pp. 154). New York: Nova Science Publishers.Google Scholar
Anderson, U. S., Benne, M., Bloomsmith, M. A., & Maple, T. L. (2002). Retreat space and human visitor density moderate undesirable behavior in petting zoo animals. Journal of Applied Animal Welfare Science, 5(2), 125137.Google Scholar
Ashokan, A., Sivasubramanian, M., & Mitra, R. (2016). Seeding stress resilience through inoculation. Neural Plasticity, 2016, 492808.Google Scholar
Baird, B. A., Kuhar, C. W., Lukas, K. E., Amendolagine, L. A., Fuller, G. A., Nemet, J., … Schook, M. W. (2016). Program animal welfare: Using behavioral and physiological measures to assess the well-being of animals used for education programs in zoos. Applied Animal Behaviour Science, 176, 150162.Google Scholar
Bashaw, M. J. (in press). Creating a giraffic park: Design and management ideas for optimal giraffe wellness. In: Segura, V. D., Forthman, D. L., & Maple, T. L. (Eds.), Wellness for Elephants. Fernandina Beach, FL: Red Leaf Press.Google Scholar
Bashaw, M. J., Bloomsmith, M. A., Maple, T. L., & Bercovitch, F. B. (2007). The structure of social relationships among captive female giraffe (Giraffa camelopardalis). Journal of Comparative Psychology, 121(1), 4653.Google Scholar
Bassett, L., & Buchanan-Smith, H. M. (2007). Effects of predictability on the welfare of captive animals. Applied Animal Behaviour Science, 102(3), 223245.Google Scholar
Bateson, M. (2004). Mechanisms of decision-making and the interpretation of choice tests. Animal Welfare, 13, S115S120.Google Scholar
Behringer, V., Stevens, J. M., Hohmann, G., Möstl, E., Selzer, D., & Deschner, T. (2014). Testing the effect of medical positive reinforcement training on salivary cortisol levels in bonobos and orangutans. PLoS ONE, 9, e108664.CrossRefGoogle ScholarPubMed
Bloomfield, R. C., Gillespie, G. R., Kerswell, K. J., Butler, K. L., & Hemsworth, P. H. (2015). Effect of partial covering of the visitor viewing area window on positioning and orientation of zoo orangutans: A preference test. Zoo Biology, 34(3), 223229.Google Scholar
Bloomsmith, M. A., Laule, G. E., Alford, P. L., & Thurston, R. H. (1994). Using training to moderate chimpanzee aggression during feeding. Zoo Biology, 13(6), 557566.Google Scholar
Buchanan-Smith, H. M., & Badihi, I. (2012). The psychology of control: Effects of control over supplementary light on welfare of marmosets. Applied Animal Behaviour Science, 137(3), 166174.Google Scholar
Clark, F. E. (2011). Space to choose: Network analysis of social preferences in a captive chimpanzee community, and implications for management. American Journal of Primatology, 73(8), 748757.Google Scholar
Clark, F. E., Davies, S. L., Madigan, A. W., Warner, A. J., & Kuczaj, S. A. (2013). Cognitive enrichment for bottlenose dolphins (Tursiops truncatus): Evaluation of a novel underwater maze device. Zoo Biology, 32(6), 608619.Google Scholar
Clark, F. E., & Smith, L. J. (2013). Effect of a cognitive challenge device containing food and non-food rewards on chimpanzee well-being. American Journal of Primatology, 75(8), 807816.Google Scholar
Clay, A. W., Bloomsmith, M. A., Marr, M. J., & Maple, T. L. (2009). Systematic investigation of the stability of food preferences in captive orangutans: Implications for positive reinforcement training. Journal of Applied Animal Welfare Science, 12(4), 306313.Google Scholar
Clay, A. W., Perdue, B. M., Gaalema, D. E., Dolins, F. L., & Bloomsmith, M. A. (2011). The use of technology to enhance zoological parks. Zoo Biology, 30(5), 487497.Google Scholar
Clayton, J. B., & Glander, K. E. (2011). Dietary choices by four captive slender lorises (Loris tardigradus) when presented with various insect life stages. Zoo biology, 30(2), 189198.Google Scholar
Coe, J. (2006). Naturalistic enrichment. Proceedings of the Australasian Regional Association of Zoological Parks and Aquaria Conference. Retrieved from www.zoolex.org/publication/coe/NaturalisticEnrichment2006.pdf.Google Scholar
Coe, J. C., & Mendez, R. (2005). The unzoo alternative. Proceedings of the Australasian Regional Association of Zoological Parks and Aquaria Conference. Retrieved from www.zoolex.org/publication/coe/Unzoo150805.pdf.Google Scholar
Coe, J. C., Scott, D., & Lukas, K. E. (2009). Facility design for bachelor gorilla groups. Zoo Biology, 28(2), 144162.Google Scholar
Coleman, K., Pranger, L., Maier, A., Lambeth, S. P., Perlman, J. E., Thiele, E., & Schapiro, S. J. (2008). Training rhesus macaques for venipuncture using positive reinforcement techniques: A comparison with chimpanzees. Journal of the American Association for Laboratory Animal Science, 47(1), 3741.Google Scholar
Cox, M., Gaglione, E., Prowten, P., & Noonan, M. (1996). Food preferences communicated via symbol discrimination by a California sea lion (Zalophus californianus). Aquatic Mammals, 22, 310.Google Scholar
Crawford, E. (2012). An elephant never forgets … the right microclimate: Thermal comfort and microclimatic design of Asian elephant zoo enclosures (unpublished doctoral dissertation). Guelph, Ontario: The University of Guelph,.Google Scholar
da Silva Vasconcellos, A., Adania, C. H., & Ades, C. (2012). Contrafreeloading in maned wolves: Implications for their management and welfare. Applied Animal Behaviour Science, 140(1), 8591.Google Scholar
Dawkins, M. S. (1990). From an animal’s point of view: Motivation, fitness, and animal welfare. Behavioral and Brain Sciences, 13, 19.Google Scholar
Deamer, K. (2017). Dutch zoo tests ‘Tinder for Orangutans’ mating program. Live Science, Retrieved from www.livescience.com/57746-tinder-for-orangutans-mating-program.html.Google Scholar
Desmond, T., & Laule, G. (1991). Protected contact elephant training. In Proceedings of the American Association of Zoological Parks and Aquariums Annual Conference, San Diego, CA. Retrieved from http://activeenvironments.org/pdf/PC_Elephant_Training.pdf.Google Scholar
Dettmer, E. L., Phillips, K. A., Rager, D. R., Bernstein, I. S., & Fragaszy, D. M. (1996). Behavioral and cortisol responses to repeated capture and venipuncture in Cebus apella. American Journal of Primatology, 38(4), 357362.Google Scholar
Dorey, N. R., Mehrkam, L. R., & Tacey, J. (2015). A method to assess relative preference for training and environmental enrichment in captive wolves (Canis lupus and Canis lupus arctos). Zoo Biology, 34(6), 513517.Google Scholar
Dorman, N., & Bourne, D. C. (2010). Canids and ursids in mixed‐species exhibits. International Zoo Yearbook, 44(1), 7586.Google Scholar
Duncan, L. M., & Pillay, N. (2013). Shade as a thermoregulatory resource for captive chimpanzees. Journal of Thermal Biology, 38(4), 169177.Google Scholar
Fàbregas, M. C., Guillén-Salazar, F., & Garcés-Narro, C. (2012). Do naturalistic enclosures provide suitable environments for zoo animals? Zoo Biology, 31, 362373.Google Scholar
Fernandez, E. J., Dorey, N., & Rosales-Ruiz, J. (2004). A two-choice preference assessment with five cotton-top tamarins (Saguinus oedipus). Journal of Applied Animal Welfare Science, 7(3), 163169.Google Scholar
Gaalema, D. E., Perdue, B. M., & Kelling, A. S. (2011). Food preference, keeper ratings, and reinforcer effectiveness in exotic animals: The value of systematic testing. Journal of Applied Animal Welfare Science, 14(1), 3341.Google Scholar
Gaengler, H., & Clum, N. (2015). Investigating the impact of large carcass feeding on the behavior of captive Andean condors (Vultur gryphus) and its perception by zoo visitors. Zoo Biology, 34(2), 118129.Google Scholar
Gibson, A. R., Smucny, D. A., & Kollar, J. (1989). The effects of feeding and ecdysis on temperature selection by young garter snakes in a simple thermal mosaic. Canadian Journal of Zoology, 67, 1923.Google Scholar
Goodkin, F. (1976). Rats learn the relationship between responding and environmental events: An expansion of the learned helplessness hypothesis. Learning and Motivation, 7(3), 382393.Google Scholar
Gregory, T. (2017). Bird bachelorette research may yield crucial answers to zoo animals’ survival. Chicago Tribune. Retrieved from www.chicagotribune.com/news/ct-bird-breeding-research-the-bachelorette-met-20170209-story.html.Google Scholar
Gresswell, C., & Goodman, G. (2011). Case study: Training a chimpanzee (Pan troglodytes) to use a nebulizer to aid the treatment of airsacculitis. Zoo biology, 30(5), 570578.Google Scholar
Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tâche, F., … Detrain, C. (2007). Social integration of robots into groups of cockroaches to control self-organized choices. Science, 318(5853), 11551158.Google Scholar
Hansen, S. W., & Jensen, M. B. (2006). Quantitative evaluation of the motivation to access a running wheel or a water bath in farm mink. Applied Animal Behaviour Science, 98(1), 127144.Google Scholar
Hardie, S. M., & Buchanan-Smith, H. M. (2000). Responses of captive single-and mixed-species groups of Saguinus to novel nonthreatening objects. International Journal of Primatology, 21(4), 629648.Google Scholar
Herrelko, E. S., Vick, S.-J., & Buchanan-Smith, H. M. (2012). Cognitive research in zoo-housed chimpanzees: Influence of personality and impact on welfare. American Journal of Primatology, 74(9), 828840.Google Scholar
Hogan, L. A., Johnston, S. D., Lisle, A. T., Keeley, T., Wong, P., Nicolson, V., … Phillips, C. J. (2011). Behavioural and physiological responses of captive wombats (Lasiorhinus latifrons) to regular handling by humans. Applied Animal Behaviour Science, 134(3), 217228.Google Scholar
Hosey, G. (2008). A preliminary model of human–animal relationships in the zoo. Applied Animal Behaviour Science, 109(2), 105127.Google Scholar
Hutchinson, J. (2005). Is more choice always desirable? Evidence and arguments from leks, food selection, and environmental enrichment. Biological Reviews, 80(1), 7392.Google Scholar
Huys, Q. J., & Dayan, P. (2009). A Bayesian formulation of behavioral control. Cognition, 113(3), 314328.Google Scholar
Hyson, J. (2000). Jungles of Eden: The design of American zoos. In Conan, M. (Ed.), Environmentalism in Landscape Architecture (Vol. 22, pp. 2344). Washington, DC: Dumbarton Oaks Research Library and Collections.Google Scholar
Inglis, I. R., Forkman, B., & Lazarus, J. (1997). Free food or earned food? A review and fuzzy model of contrafreeloading. Animal Behaviour, 53(6), 11711191.Google Scholar
Jenny, S., & Schmid, H. (2002). Effect of feeding boxes on the behavior of stereotyping Amur tigers (Panthera tigris altaica) in the Zurich Zoo, Zurich, Switzerland. Zoo Biology, 21(6), 573584.Google Scholar
Jens, W., Mager‐Melicharek, C. A. X., & Rietkerk, F. E. (2012). Free‐ranging New World primates in zoos: Cebids at Apenheul. International Zoo Yearbook, 46, 137149.Google Scholar
Kelling, A. S., & Gaalema, D. E. (2011). Postoccupancy evaluations in zoological settings. Zoo Biology, 30(6), 597610.Google Scholar
Kilgour, R. J., Faure, P. A., & Brigham, R. M. (2013). Evidence of social preferences in big brown bats (Eptesicus fuscus). Canadian Journal of Zoology, 91(10), 756760.CrossRefGoogle Scholar
Kurtycz, L. M., Wagner, K. E., & Ross, S. R. (2014). The choice to access outdoor areas affects the behavior of great apes. Journal of Applied Animal Welfare Science, 17(3), 185197.Google Scholar
Langman, V. A., Langman, S. L., & Ellifrit, N. (2015). Seasonal acclimatization determined by non‐invasive measurements of coat insulation. Zoo Biology, 34(4), 368373.Google Scholar
Langman, V. A., & Maloiy, G. M. O. (1989). Passive obligatory heterothermy of the giraffe. Journal of Physiology (UK), 415, 89.Google Scholar
Laule, G. E., Bloomsmith, M. A., & Schapiro, S. J. (2003). The use of positive reinforcement training techniques to enhance the care, management, and welfare of primates in the laboratory. Journal of Applied Animal Welfare Science, 6(3), 163173.Google Scholar
Laule, G., & Whittaker, M. (2007) Enhancing nonhuman primate care and welfare through the use of positive reinforcement training. Journal of Applied Animal Welfare Science, 10, 3138.Google Scholar
Lawson, D. P., Ogden, J., & Snyder, R. J. (2008). Maximizing the contribution of science in zoos and aquariums: Organizational models and perceptions. Zoo Biology, 27(6), 458469.Google Scholar
Macdonald, C., & Whiten, A. (2011). The “Living Links to Human Evolution” Research Centre in Edinburgh Zoo: A new endeavour in collaboration. International Zoo Yearbook, 45(1), 717.Google Scholar
Macri, A. M., & Patterson-Kane, E. (2011). Behavioural analysis of solitary versus socially housed snow leopards (Panthera uncia), with the provision of simulated social contact. Applied Animal Behaviour Science, 130(3), 115123.Google Scholar
Maier, S. F. (1984). Learned helplessness and animal models of depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 8(3), 435446.Google Scholar
Maple, T. L. (2008). Empirical zoo: Opportunities and challenges to a scientific zoo biology. Zoo Biology, 27(6), 431435.Google Scholar
Maple, T. L., & Finlay, T. W. (1987). Post-occupancy evaluation in the zoo. Applied Animal Behaviour Science, 18(1), 518.Google Scholar
Martin, M. S., & Shepherdson, D. J. (2012). Role of familiarity and preference in reproductive success in ex situ breeding programs. Conservation Biology, 26(4), 649656.Google Scholar
Mason, G. J., Cooper, J., & Clarebrough, C. (2001). Frustrations of fur-farmed mink. Nature, 410, 3536.CrossRefGoogle ScholarPubMed
McGowan, R. T., Rehn, T., Norling, Y., & Keeling, L. J. (2014). Positive affect and learning: Exploring the “eureka effect” in dogs. Animal Cognition, 17(3), 577587.Google Scholar
Meehan, C. L., & Mench, J. A. (2007). The challenge of challenge: Can problem solving opportunities enhance animal welfare? Applied Animal Behaviour Science, 102(3), 246261.Google Scholar
Melfi, V. A. (2009). There are big gaps in our knowledge, and thus approach, to zoo animal welfare: A case for evidence‐based zoo animal management. Zoo Biology, 28(6), 574588.Google Scholar
Mellen, J., & Sevenich MacPhee, M. (2001). Philosophy of environmental enrichment: Past, present, and future. Zoo Biology, 20(3), 211226.Google Scholar
Mellor, D. J., Hunt, S., & Gusset, M. (2015). Caring for Wildlife: The World Zoo and Aquarium Animal Welfare Strategy. Gland: WAZA Executive Office.Google Scholar
Owen, M. A., Swaisgood, R. R., Czekala, N. M., & Lindburg, D. G. (2005). Enclosure choice and well-being in giant pandas: Is it all about control? Zoo Biology, 24(5), 475481.Google Scholar
Perdue, B. M., Clay, A. W., Gaalema, D. E., Maple, T. L., & Stoinski, T. S. (2012). Technology at the zoo: The influence of a touchscreen computer on orangutans and zoo visitors. Zoo Biology, 31(1), 2739.Google Scholar
Perdue, B. M., Evans, T. A., Washburn, D. A., Rumbaugh, D. M., & Beran, M. J. (2014). Do monkeys choose to choose? Learning & Behavior, 42(2), 164175.Google Scholar
Pomerantz, O., & Terkel, J. (2009). Effects of positive reinforcement training techniques on the psychological welfare of zoo-housed chimpanzees (Pan troglodytes). American Journal of Primatology, 71(8), 687695.Google Scholar
Price, E. C., Wormell, D., Brayshaw, M., Furrer, S., Heer, T., & Steinmetz, H. W. (2012). Managing free-ranging callitrichids in zoos. International Zoo Yearbook, 46, 123136.Google Scholar
Raffaele, P. (2006). Speaking bonobo. Smithsonian Magazine, 37, 74.Google Scholar
Reisberg, S. E., Grove, J., & Bashaw, M. J. (2010). Environmental enrichment for North American river otters. Animal Keeper’s Forum, 37, 340344.Google Scholar
Ross, S. R. (2006). Issues of choice and control in the behaviour of a pair of captive polar bears (Ursus maritimus). Behavioural Processes, 73(1), 117120.Google Scholar
Ross, S. R., Schapiro, S. J., Hau, J., & Lukas, K. E. (2009). Space use as an indicator of enclosure appropriateness: A novel measure of captive animal welfare. Applied Animal Behaviour Science, 121(1), 4250.Google Scholar
Schapiro, S. J., Bloomsmith, M. A., & Laule, G. E. (2003). Positive reinforcement training as a technique to alter nonhuman primate behavior: Quantitative assessments of effectiveness. Journal of Applied Animal Welfare Science, 6(3), 175187.Google Scholar
Sherwen, S. L., Harvey, T. J., Magrath, M. J., Butler, K. L., Fanson, K. V., & Hemsworth, P. H. (2015). Effects of visual contact with zoo visitors on black-capped capuchin welfare. Applied Animal Behaviour Science, 167, 6573.Google Scholar
Soltis, J., Orban, D., Mellen, J., & Perkins, L. (2016). Sound at the zoo. Paper presented at the Annual Conference of the Association of Zoos and Aquariums, San Diego, California.Google Scholar
Sullivan, M., Lawrence, C., & Blache, D. (2016). Why did the fish cross the tank? Objectively measuring the value of enrichment for captive fish. Applied Animal Behaviour Science, 174, 181188.Google Scholar
Tarou, L. R., Kuhar, C. W., Adcock, D., Bloomsmith, M. A., & Maple, T. L. (2004). Computer-assisted enrichment for zoo-housed orangutans (Pongo pygmaeus). Animal Welfare, 13(4), 445453.Google Scholar
Teodorescu, K., & Erev, I. (2014). Learned helplessness and learned prevalence: Exploring the causal relations among perceived controllability, reward prevalence, and exploration. Psychological Science, 25(10), 18611869.Google Scholar
US Fish and Wildlife Service, Black-footed Ferret Recovery Program (2017). Black-Footed Ferret Managed Care Operations Manual. Washington, DC: US Fish and Wildlife Service.Google Scholar
Veasey, J., & Hammer, G. (2010). Managing captive mammals in mixed-species communities. In: Kleiman, D. G., Thompson, K. V., & Baer, C. K. (Eds.), Wild Mammals in Captivity: Principles and Techniques (2nd ed., pp. 151161). Chicago, IL: University of Chicago Press.Google Scholar
Wark, J. D., Kuhar, C. W., & Lukas, K. E. (2014). Behavioral thermoregulation in a group of zoo-housed colobus monkeys (Colobus guereza). Zoo Biology, 33(4), 257266.Google Scholar
Warwick, C., Frye, F. L., & Murphy, J. B. (Eds.) (1995). Health and Welfare of Captive Reptiles. London: Chapman & Hall.Google Scholar
Whitham, J. C., & Wielebnowski, N. (2013). New directions for zoo animal welfare science. Applied Animal Behaviour Science, 147(3), 247260.Google Scholar
Whittaker, M., & Laule, G. (2012). Training techniques to enhance the care and welfare of nonhuman primates. Veterinary Clinics of North America: Exotic Animal Practice, 15(3), 445454.Google Scholar
Wilson, S. F. (1982). Environmental influences on the activity of captive apes. Zoo Biology, 1(3), 201209.Google Scholar
Wilson, M. L., Perdue, B. M., Bloomsmith, M. A., & Maple, T. L. (2015). Rates of reinforcement and measures of compliance in free and protected contact elephant management systems. Zoo Biology, 34(5), 431437.Google Scholar
Young, T., Finegan, E., & Brown, R. D. (2013). Effects of summer microclimates on behavior of lions and tigers in zoos. International Journal of Biometeorology, 57(3), 381390.Google Scholar

References

Baker, K. C., & Aureli, F. (1997). Behavioral indicators of anxiety: An empirical test in chimpanzees. Behaviour, 134, 10311050.Google Scholar
Benton, D. (2007). The impact of diet on social, violent and criminal behavior. Neuroscience and Biobehavioural Reviews, 31, 752774.Google Scholar
Britt, A. (1998). Encouraging natural feeding behavior in captive-bred black and white ruffed lemurs (Varecia variegata variegata). Zoo Biology, 17, 379392.Google Scholar
Britt, S., Cowlard, K., Baker, K., & Plowman, A. (2015). Aggression and self-directed behavior of captive lemurs (Lemur catta, Varecia variegata, V. rubra and Eulemur coronatus) is reduced by feeding fruit-free diets. Journal of Zoo and Aquarium Research, 3, 5258.Google Scholar
Cabana, F. (2014). Pygmy slow loris (Nycticebus pygmaeus) European zoo diet survey. Journal of Zoo and Aquarium Research, 2, 3943Google Scholar
Cabana, F., & Nekaris, K. A. I. (2015). Diets high in fruits and low in gym exudates promote the occurrence and development of dental disease in pygmy slow loris (Nycticebus pygmaeus). Zoo Biology, 34, 547553.Google Scholar
Cabana, F., & Plowman, A.B. (2014). Pygmy slow loris (Nycticebus pygmaeus) natural diet replication in captivity. Endangered Species Research, 23, 197204.Google Scholar
Cabana, F., Dierenfeld, E., Wirdateti, W., Donati, G., & Nekaris, K. A. I. (2017). The seasonal feeding ecology of the Javan slow loris (Nycticebus javanicus). American Journal of Physical Anthropology, 162, 768781.Google Scholar
Cabana, F., Dierenfeld, E., Wirdateti, W., Donati, G., & Nekaris, K. A. I. (2018). Trialling nutrient recommendations for slow lorises (Nycticebus spp.) based on wild feeding ecology. Journal of Animal Physiology and Animal Nutrition, 102, e1e10.Google Scholar
Calvert, J. J. (1985). Food selection by western gorillas (G.g. gorilla) in relation to food chemistry. Oecologia, 65, 236246Google Scholar
Charles-Dominique, P. (1977). Ecology and Behavior of Nocturnal Primates: Prosimians of Equatorial West Africa. New York: Columbia University Press.Google Scholar
Crook, G. (1974). An alternative method of managing the hyperactive child. Paediatrics, 5, 4656.Google Scholar
Curtis, D. J. (2004). Diet and nutrition in wild mongoose lemurs (Eulemur mongoz) and their implications for the evolution of female dominance and small group size in lemurs. American Journal of Physical Anthropology, 124, 234247.Google Scholar
Das, N., Nekaris, K. A. I., & Bhattacharjee, P. C. (2014). Medicinal plant exudativory by the Bengal slow loris Nycticebus bengalensis. Endangered Species Research, 23, 149157.Google Scholar
Dempsey, J. L., Britt, A., Iambana, B., Porton, I., Schmidt, D., & Kerley, M. (2002). A survey of the nutrient content of plants consumed by Varecia variegata variegata in Betampona Natural Reserve. American Journal of Primatology, 57S, 31.Google Scholar
Dierenfeld, E. S., & McCann, C. M. (1999). Nutrient composition of selected plant species consumed by semi free-ranging lion-tailed macaques (Macqua silenus) and ring-tailed lemurs (Lemur catta) on St Catherine’s Island, Georgia, U.S.A. Zoo Biology, 18 481494.Google Scholar
Edwards, M. S., & Ullrey, D. E. (1999). Effect of dietary fiber concentration on apparent digestibility and digesta passage in non‐human primates. I. Ruffed lemurs (Varecia variegata variegata and V. v. rubra). Zoo Biology, 18, 529536.Google Scholar
Godfrey, L. R., Samonds, K. E., Jungers, W. L., Sutherland, M. R., & Irwin, M. T. (2004). Ontogenic correlates of diet in Malagasy lemurs. American Journal of Physical Anthropology, 123, 250276.Google Scholar
Goodchild, S., & Schwitzer, C. (2008). The problem of obesity in captive lemurs. International Zoo News, 55, 353357.Google Scholar
Hosey, G. (2005). How does the zoo environment affect the behavior of captive primates? Applied Animal Behaviour Science, 90, 107129.Google Scholar
Hosey, G., Melfi, V., & Pankhurst, S. (2009). Zoo Animals: Behaviour, Management and Welfare. New York: Oxford University Press.Google Scholar
IUCN (2017). The IUCN Red List of Threatened Species. Version 2017-1. Retrieved from www.iucnredlist.org.Google Scholar
Jablonski, N. G., & Crompton, R. H. (1994). Feeding behavior, mastication, and tooth wear in the western tarsier (Tarsius bancanus). International Journal of Primatology, 15, 2959.Google Scholar
Johnson-Delaney, C. A. (2008). Nonhuman primate dental care. Journal of Exotic Pet Medicine, 17, 138143.Google Scholar
Kaumanns, W., Hampe, K., Schwitzer, C., & Stahl, D. (2000). Primate nutrition: Towards an integrated approach. In Nijboer, J., Hatt, J. M., Kaumanns, W., Beijnen, A., & Ganslober, U. (Eds.), Zoo Animal Nutrition. Fürth: Filander Verlag.Google Scholar
Kim, Y., & Chang, H. (2011). Correlation between attention deficit hyperactivity disorder and sugar consumption, quality of diet, and dietary behavior in school children. Nutrition Research and Practice, 5, 236245.Google Scholar
Knott, C. D. (1998). Changes in orangutan caloric intake, energy balance and ketones in response to fluctuating fruit availability. International Journal of Primatology, 19, 10611079.Google Scholar
Kuhar, C. W., Fuller, G. A., & Dennis, P. M. (2013). A survey of diabetes prevalence in zoo-housed primates. Zoo Biology, 32, 6369.Google Scholar
Lease, H.M., & Wolf, B.O. (2011). Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiological Entomology, 36, 2938.Google Scholar
Lien, L., Lien, N., Heyerdahl, S., Thoresen, S., & Bjertness, E. (2006). Consumption of soft drinks and hyperactivity, mental distress and conduct problems among adolescents in Oslo, Norway. American Journal of Public Health, 96, 18151820.Google Scholar
MacLeod, A., Perlman, J., Theisen-Watt, L., & Martino, M. (2003). Return to health: Toward more natural diets. Presented at First Annual Crissey Zoological Nutrition Symposium. Raleigh, NC.Google Scholar
Milton, K. (1999). Nutritional characteristics of wild primate foods: Do the diets of our closest living relatives have lessons for us? Nutrition, 15, 488498.Google Scholar
Moore, R. (2012). Ethics, ecology and evolution of Indonesian slow lorises (Nycticebus spp.) rescued from the pet trade (unpublished doctoral dissertation). Oxford, UK: Oxford Brookes University.Google Scholar
Mowry, C. B., & Campbell, J. L. (2001). Ring-Tailed Lemur (Lemur catta) Husbandry Manual. Silver Spring, MD: American Association of Zoos and Aquariums.Google Scholar
Nekaris, K. A. I., & Rasmussen, D. T. (2003). Diet and feeding behavior of Mysore slender lorises. International Journal of Primatology, 24, 3346.Google Scholar
Nishihara, T. (1995). Feeding ecology of western lowland gorillas in the Nouabale-Ndoki National Park, Congo. Primates, 36, 151168Google Scholar
Oftedal, O. T., & Allen, M. E. (1996). The feeding and nutrition of omnivores with emphasis on primates. In Kleiman, D. G., Allen, M. E., Thompson, K. V., & Lumpkin, S. (Eds.), Wild Mammals in Captivity: Principles and Techniques (pp. 148160). Chicago, IL: University of Chicago Press.Google Scholar
Oonincx, D. G. A. B., & Dierenfeld, E. S. (2012). An investigation into the chemical composition of alternative invertebrate prey. Zoo Biology, 29, 115.Google Scholar
Plowman, A. (2013). Diet review and change for monkeys at Paignton Zoo Environmental Park. Journal of Zoo and Aquarium Research, 1, 7377.Google Scholar
Register, T. C., & Clarkson, T. B. (2009). Social stress, visceral obesity and coronary artery atherosclerosis: Product of a primate adaptation. American Journal of Primatology, 71, 742751.Google Scholar
Remis, M. J. (1997). Western lowland gorillas (Gorilla gorilla gorilla) as seasonal frugivores: Use of variable resources. American Journal of Primatology, 43, 87109Google Scholar
Roberts, S. B., Pi-Sunyer, X., Kuller, L., Lane, M. A., Ellison, P., Prior, J. C., & Shapses, S. (2001). Physiologic effects of lowering calorific intake in non-human primates and non-obese humans. Journal of Gerontology Series A, 56, 6675.Google Scholar
Rogers, M. E., Maisels, F., Williamson, E. A., Fernandez, M., & Tutin, C. E. G. (1990). Gorilla diet in the Lope Reserve, Gabon: A nutritional analysis. Oecologia, 84, 326339.Google Scholar
Sabater Pi, J. (1977). Contributions to the study of alimentation of lowland gorillas in the natural state, in Rio Muni, Republic of Equatorial Guinea (West Africa). Primates, 18, 183204.Google Scholar
Sbeglia, G. C., Tang-Martinez, Z., & Sussman, R. W. (2010). Effects of food, proximity, and kinship on social behavior in ring-tailed lemurs. American Journal of Primatology, 72, 981991.Google Scholar
Schmidt, D. A., Kerley, M. S., Porter, J. H. & Dempsey, J. L. (2005). Structural and nonstructural carbohydrate, fat, and protein composition of commercially available, whole produce. Zoo Biology, 24, 359373.Google Scholar
Schwitzer, C., & Kaumanns, W. (2000). Feeding behavior in two captive groups of black-and-white ruffed lemurs (Varecia v. variegata), Kerr 1792. In Nijboer, J., Hatt, J. M., Kaumanns, W., Beijnen, A., & Ganslosser, U. (Eds.), Zoo Animal Nutrition (pp. 119130). Fürth: Filander Verlag.Google Scholar
Schwitzer, C., & Kaumanns, W. (2001). Body weights of ruffed lemurs (Varecia variegata) in European zoos with reference to the problem of obesity. Zoo Biology, 20, 261269.Google Scholar
Schwitzer, C., Polowinsky, S. Y., & Solman, C. (2009). Fruits as foods. Common misconceptions about frugivory. In Clauss, M., Fidgett, A., Janssens, G., Hatt, J.-M., Huisman, T., Hunnal, J., Nijboer, J., & Plowman, A. B. (Eds.), Zoo Animal Nutrition IV (pp. 131168). Fürth: Filander Verlag.Google Scholar
Soini, P. (1982). Ecology and population dynamics of the pygmy marmoset, Cebuella pygmaea. Folia Primatologia, 39, 121.Google Scholar
Starr, C., & Nekaris, K. A. I. (2013). Obligate exudativory characterizes the diet of the pygmy slow loris Nycticebus pygmaeus. American Journal of Primatology, 75, 10541061.Google Scholar
Sussman, R. W. (1977). Feeding behavior of Lemur catta and Lemus fulvus. In Clutton-Brock, T. H. (Ed.), Primate Ecology: Studies of Feeding and Ranging Behaviors in Lemurs, Monkeys and Apes (pp. 136). London: Academic Press.Google Scholar
Taylor, A. B. (2006). Feeding behavior, diet, and the functional consequences of jaw force in orangutans, with implications for the evolution of Pongo. Journal of Human Evolution, 50, 377393.Google Scholar
Terborgh, J. (1983). Five New World Primates. A Study in Comparative Ecology. Princeton, NJ: Princeton University Press.Google Scholar
Tutin, C. E., & Fernandez, M. (1985). Foods consumed by sympatric populations of Gorilla g. gorilla and Pan t. troglodytes in Gabon: Some preliminary data. International Journal of Primatology, 6, 2743.Google Scholar
Videan, E. N., Fritz, J., & Murphy, J. (2007). Development of guidelines for assessing obesity in captive chimpanzees (Pan troglodytes). Zoo Biology, 26, 93104.Google Scholar
Wiens, F., Zitzmann, A., & Hussein, N. A. (2006). Fast food for slow lorises: Is low metabolism related to secondary compounds in high-energy plant diet? Journal of Mammalogy, 87, 790798.Google Scholar
Williamson, E. A., Tutin, C. E. G., Rogers, M. E., & Fernandez, M. (1990). Composition of the diet of lowland gorillas at Lopé in Gabon. American Journal of Primatology, 21, 265277.Google Scholar

References

Arluke, A. (1994). Managing emotions in an animal shelter. In Manning, A. & Serpell, J. (Eds.), Animals and Human Society (pp. 145165). New York: Routledge.Google Scholar
Arluke, A. (1999). Uneasiness among laboratory technicians. Occupational Medicine, 14(2), 305316.Google Scholar
Asa, C. & Agnew, M. (2014). Breed early and often: Improving reproductive management through lifetime reproductive planning. Connect, 12–17.Google Scholar
Asa, C.S., Bauman, K.L., Devery, S., Zordan, M., Camilo, G.R., Boutelle, S., & Moresco, A. (2014). Factors associated with uterine endometrial hyperplasia and pyometra in wild canids: implications for fertility. Zoo Biology, 33(1), 819.Google Scholar
Association of Zoos and Aquariums (2014). Species Survival Plan® (SSP) Program Handbook. Silver Spring, MD: Association of Zoos and Aquariums.Google Scholar
Boyle, P., Andrews, B., Dorsey, C., Fouraker, M., Pate, D., Reed, M., & Wiese, B. (2011). Building sustainable zoo populations. Connect, 11–13.Google Scholar
Carter, S. & Kagan, R. (2010). Management of “surplus” animals. In Kleiman, D. G., Thompson, K. V., & Baer, C. K. (Eds.), Wild Mammals in Captivity: Principles and Techniques for Zoo Management (pp. 263267). Chicago, IL: University of Chicago Press.Google Scholar
Daigle, C. L., Brown, J. L., Carlstead, K., Pukazhenthi, B., Freeman, E. W., & Snider, R. J. (2015). Multi-institutional survey of social, management, husbandry and environmental factors for the SSP African lion Panthera leo population: Examining the effects of a breeding moratorium in relation to reproductive success. International Zoo Yearbook, 49(1), 198213.Google Scholar
Graham, S. (1996). Issues of surplus animals. In Kleiman, D. G., Thompson, K. V., & Baer, C. K. (Eds,). Wild Mammals in Captivity: Principles and Techniques for Zoo Management (pp. 290296). Chicago, IL: University of Chicago Press.Google Scholar
Gray, J. (2017). Zoo Ethics: The Challenges of Compassionate Conservation. Ithaca, NY: Cornell University Press.Google Scholar
Gussett, M. & Dick, G. (2011). The global reach of zoos and aquariums in visitor numbers and conservation expenditures. Zoo Biology, 30(5), 566569.Google Scholar
Hemsworth, P. H. & Coleman, G. J. (2011). Human–Livestock Interactions (2nd edn.). London: Centre for Agriculture and Biosciences International.Google Scholar
Hibbard, C., Hogg, C. J., Ford, C., & Embury, A. (2011). Maintaining the status of species management in a changing operating environment: Outcomes over outputs. WAZA Magazine, 12, 610.Google Scholar
Lees, C. M. & Wilcken, J. (2009). Sustaining the ark: The challenges faced by zoos in maintaining viable populations. International Zoo Yearbook, 43, 618.Google Scholar
Leus, K., Bingaman-Lackey, L., van Lint, W., de Man, D., Riewald, S., Veldkam, A., & Wijmans, J. (2011). Sustainability of European Association of Zoos & Aquaria bird and mammal populations. WAZA Magazine, 12, 1114.Google Scholar
Lindburg, D. & Lindburg, L. (1995). Success breeds a quandary: To cull or not to cull. In Norton, B. G., Hutchins, M., Stevens, E. F., & Maple, T. L. (Eds.), Ethics on the Ark: Zoos, Animal Welfare, and Wildlife Conservation (pp. 195208). Washington, DC: Smithsonian Institution Press.Google Scholar
Lockyear, K. M., Waddell, W. T., Goodrowe, K. L., & MacDonald, S. E. (2009). Retrospective investigation of captive red wolf reproductive success in relation to age and inbreeding. Zoo Biology, 28(3), 214229.Google Scholar
Long, S., Dorsey, C., & Boyle, P. (2011). Status of Association of Zoos and Aquariums cooperatively managed populations. WAZA Magazine, 12, 1518.Google Scholar
Martin, R. A. & Melfi, V. (2016). A comparison of zoo animal behavior in the presence of familiar and unfamiliar people. Journal of Applied Animal Welfare Science, 19(3), 234244.Google Scholar
Munson, L., Moresco, A., & Calle, P. P. (2005). Adverse effects of contraceptives. In Asa, C. S. & Porton, I. J. (Eds.), Wildlife Contraception: Issues, Methods, and Applications (pp. 6682). Baltimore, MD: Johns Hopkins University Press.Google Scholar
Patrick, P., Matthews, C., Ayers, D., & Tunnicliffe, S. (2007). Conservation and education: Prominent themes in zoo mission statements. The Journal of Environmental Education 38(3), 5360.Google Scholar
Penfold, L., Powell, D., Traylor-Holzer, K., & Asa, C. (2014). “Use it or lose it”: Characterization, implications, and mitigation of female infertility in captive wildlife. Zoo Biology, 33(1), 2028.Google Scholar
Powell, D. M. & Ardaiolo, M. (2016). Survey of U.S. zoo and aquarium animal care staff attitudes regarding humane euthanasia for population management. Zoo Biology, 35(3), 187200.Google Scholar
Powell, D. (2015). Humane euthanasia of animals for population management: Perspectives from a sample of European zoo keepers. Animal Keeper’s Forum, 42(3), 7678.Google Scholar
Powell, D. & Ardaiolo, M. (2015). Nationwide survey of keeper attitudes and knowledge regarding population management euthanasia: Initial results. Animal Keeper’s Forum, 42(3), 7475.Google Scholar
Rollin, B. E. (1987). Euthanasia and moral stress. Loss, Grief, and Care, 1(1), 115126.Google Scholar
Rollin, B. E. (2011). Euthanasia, moral stress, and chronic illness in veterinary medicine. Veterinary Clinics: Small Animal Practice, 41(3), 651659.Google Scholar
Rollin, B. E. (2016). A New Basis for Animal Ethics: Telos and Common Sense. Columbia, MO: University of Missouri Press.Google Scholar
Rohlf, V. & Bennett, P. (2005). Perpetration-induced traumatic stress in persons who euthanize nonhuman animals in surgeries, animal shelters, and laboratories. Society & Animals, 13(3), 201219.Google Scholar
Saunders, S. P., Harris, T., Traylor-Holzer, K., & Beck, K. G. (2014). Factors influencing breeding success, ovarian cyclicity, and cub survival in zoo-managed tigers (Panthera tigris). Animal Reproduction Science, 144(1–2), 3847.Google Scholar
Suddendorf, T. (2013). The Gap: The Science of What Separates Us from Other Animals. New York: Perseus Books Group.Google Scholar
World Association of Zoos and Aquariums (2015). Global Species Management Plan Handbook. Gland: World Association of Zoos and Aquariums.Google Scholar
WWF (2016). Living Planet Report 2016. Risk and Resilience in a New Era. Gland: WWF International.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×